Submitted:
02 January 2026
Posted:
06 January 2026
You are already at the latest version
Abstract
Diabetes mellitus is a serious chronic disease whose main characteristic is hyperglycemia (increased blood glucose), accompanied by changes in lipid and protein metabolism. For individuals with diabetes mellitus, physical activity provides significant benefits and is an essential tool for metabolic management. Daily step counting, measured with AI support through wearable devices, can be an important metric of physical activity for the prevention and treatment of this disease if performed regularly and respecting a minimum daily amount. Objective: To investigate the association between daily steps and diabetes and to determine what minimum amount should be performed daily for a protective effect in participants of the Longitudinal Study of Adult Health. Methods: The study was cross-sectional and participants from the 2nd segment (2016-2018) were analyzed, with a sample of 12,636 participants. The dependent variable was diabetes, assessed by laboratory tests, and the independent variable was daily steps counting, assessed by accelerometry. The associations between the dependent and independent variables were analyzed using logistic regression. The odds ratio with 95% CI was estimated. Results: An association was found between daily steps and diabetes (OR = 0.76, CI = 0.70-0.83), in addition to the cutoff point of 6,880 with area under the ROC curve = 0.58 (CI = 0.57-0.59). Conclusion: Based on the results found in this study, we can conclude that the number of daily steps has a protective effect against diabetes, especially in men and women with abdominal obesity and in men with moderate/vigorous leisure-time physical activity.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Population and Sample
2.2. Data Production
2.3. Diabetes Assessment
2.4. Assessment of Daily Steps
2.5. Data Analysis
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Caspersen, C.; Powell, K.; Chirstenson, J. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. V. 1985, 100(n. 2), 126–131. [Google Scholar]
- Aberg, AC; Sidenvall, B; Hepworth, M; O'Reilly, K; Lithell, H.; Hordern, M.; et al.; On loss of activity and independence; adaptation improves life satisfaction in old age--a qualitative study of patients' perceptions Acute response of blood glucose to short-term exercise training in patients with type 2 diabetes. Qual Life Res;Journal of science and medicine in sport / Sports Medicine Australia 2005, 14(4) V. 14.(n. 3), 1111-25 238-42. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C; Bell, RC; Myers, AM; Harris, SB; Ecclestone, NA; Lauzon, N; Rodger, NW; Oliveira, M.; et al.; Controlled outcome evaluation of the First Step Program: a daily physical activity intervention for individuals with type II diabetes Nível de atividade física habitual e laboral estimada por pedômetros. Int J Obes Relat Metab Disord;Revista Brasileira de Atividade Física & Saúde. V. 16 2004, 28(1)(n. 3), 113-9 188-192. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C; Johnson, WD; Katzmarzyk, PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc 2009, 41(7), 1384–91. [Google Scholar] [CrossRef] [PubMed]
- AMERICAN COLLEGE OF SPORTS MEDICINE. AMERICAN DIABETES ASSOCIATION. Exercise and type 2 diabetes. Special Communications. Medicine and Science in Sports and Exercises, Madison, p. 2282-2303, 2010. 6. INTERNATIONAL DIABETES FEDERATION. Global Guideline for Type 2 Diabetes. In International Diabetes Federation Guideline Development Group. Diabetes Research and Clinical Practice; Amsterdam, 2014; Volume v.104, pp. 1–52. [Google Scholar]
- Ha, M; Lim, S; Ko, H. Wearable and flexible sensors for user-interactive health-monitoring devices. J Mater Chem B 2018, 6(24), 4043–4064. [Google Scholar] [CrossRef]
- Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab Synd Obes. 2014, 7, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Matthews, L; Kirk, A; Mutrie, N. Insight from health professionals on physical activity promotion within routine diabetes care. Practical Diabetes. V. 2014, 31(n. 3), 1–11. [Google Scholar]
- AMERICAN DIABETES ASSOCIATION - ADA. Diagnosis and classification of diabetes mellitus. Diabetes care 2014, Vol. 37. Num. Suppl.1. [Google Scholar]
- Moura, B.; Amorin, H.P. Can an aerobic exercise program influence sedentary behavior and moderate vigorous physical activity in patients with type 2 diabetes? Ann Sports Med Res. 2015, V. 2(n.1), 1014. [Google Scholar]
- SBD; Sociedade Brasileira de Diabetes. Diretrizes da Sociedade brasileira de diabetes; SBD: São Paulo, 2021. [Google Scholar]
- BRASIL. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICAS. Pesquisa Nacional de Saúde - 2013: percepção do estado de saúde, estilos de vida e doenças crônicas, Brasil, Grandes Regiões e Unidades da Federação; Brasil: Rio de Janeiro, 2014. [Google Scholar]
- Saraiva, J; Hissa, M; Felício, J; Cavalcanti, C; Saraiva, G; Piha, T; Chacra, A. Diabetes mellitus no Brasil: características clínicas, padrão de tratamento e custos associado aos cuidados da doença. Jornal Brasileiro de Economia da Saúde. V.8 2016, n.81, 80–90. [Google Scholar] [CrossRef]
- Pitanga, F.; Lessa, I. Associação entre Inatividade Física no Tempo Livre e Internações Hospitalares em adultos na cidade de Salvador-Brasil. Rev Bras Cineantropom Desempenho Humano. V. 2008, 10(n. 4), 347–53. [Google Scholar] [CrossRef]
- DECIT-Departamento de Ciência e Tecnologia. ELSA Brasil: Maior estudo epidemiológico da América Latina; Relatórios Técnicos Institucionais: Brasília, Brasil; Rev. Saúde Pública, 2009; Volume 43. [Google Scholar]
- Eickemberg, M; Amorin, L; Almeida, M; Pitanga, F; Aquino, E; Fonseca, M; Matos, S. Obesidade abdominal no ELSA-Brasil: construção de padrão-ouro latente e avaliação da acurácia de indicadores diagnósticos. Ciência & Saúde Coletiva. V. 2020, 25(n. 8), 2985–2998. [Google Scholar]
- Pitanga, F; Griep, R; Almeida, M.; Fonseca, M; Souza, A; Silva, R; Matos, S. Associação entre atividade física no tempo livre e HDLC em participantes do ELSA-Brasil: Existem diferenças entre homens e mulheres no efeito dose-resposta? Arq Bras Cardiol. V. 2021, 117(n. 3), 494–500. [Google Scholar] [CrossRef]
- Schmidt, M; Griep, R; Passos, V; Luft, V; Goulart, A; Enezes, G; et al. Strategies and development of quality assurance and control in the ELSA-Brasil. Rev Saude Publica. V. 2013, 47 Suppl 2, 105–12. [Google Scholar] [CrossRef] [PubMed]
- ORGANIZAÇÃO MUNDIAL DA SAÚDE (OMS). Diagnóstico de definição de hiperglicemia intermediária de diabetes mellitus: relatório de uma consulta da; OMS/IDF, 2006. [Google Scholar]
- Fedeli, L; Vidigal, P; Leite, C; Castilho, C; Pimentel, R; Maniero, V; et al. Logística de coleta e transporte de material biológico e organização do laboratório central no ELSA-Brasil. Rev Saúde Pública. V. 2013, 47(n. 2), 63–71. [Google Scholar] [CrossRef] [PubMed]
- de Paula, D. Accelerometry Measured Movement Behaviors in Middle-Aged and Older Adults: Cross-Sectional Analysis of the ELSA-Brasil Study. JPAH 2023, Vol. 20(No. 11). [Google Scholar] [CrossRef]
- Erdreich, L; & Lee, E. Use of relative operating characteristics analysis in epidemiology: a method for dealing with subjective judment. American Journal of Epidemiology. V. 1981, 114(n.5), 649–662. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, D; Sharma, S. Abdominal Obesity, Adipokines and Non-communicable Diseases. Journal of Steroid Biochemistry and Molecular Biology 2020. [Google Scholar] [CrossRef]
- Klitgaard, H; Bergman, O; Betto, R; Salviati, G; Schiaffino, S; Clausen, T; Saltin, B. Co existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch. 1990, 416(4), 470–2. [Google Scholar] [CrossRef] [PubMed]
- Albers, PH; Pedersen, AJ; Birk, JB; Kristensen, DE; Vind, BF; Baba, O; Roden, M.; Shulman, G.I.; et al.; Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes The integrative biology of type 2 diabetes. Diabetes;Nature 2015, 64((2) 576), 485-97 51–60. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D; Hoppel, F; Macek, C; Messner, H; Faulhaber, M; Kobel, C; et al. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 2011, 301(4), R1078–87. [Google Scholar] [CrossRef] [PubMed]
- Perseghin, G; Price, TB; Petersen, KF; Roden, M; Cline, GW; Gerow, K; et al. Increased glucose transport phosphorylation and muscle glycogen synthesis after exercise training in insulin resistant subjects. N Engl J Med 1996, 335(18), 1357–62. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I; Peleteiro, B; Álvarez Bueno, C; Artero, EG; Garrido-Miguel, M; Martinez-Vizcaíno, V. The Effect of Physical Activity Interventions on Glycosylated Haemoglobin (HbA1c) in Non diabetic Populations: A Systematic Review and Meta-analysis. Sports Med 2018, 48(5), 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wu, W.; Feng, X.; Li, C.; Han, D.; Guo, X.; Forga, Luis; Larrión, José L.; Unciti, Marisol García; Idoate, Fernando; Gorostiaga, Esteban M.; et al.; Physical Activity Levels and Diabetes Prevalence in US Adults: Findings from NHANES 2015–2016. Diabetes Ther. 2020; 11; 1303–1316Javier Ibañez; Mikel Izquierdo; Iñaki Argüelles Twice-Weekly Progressive Resistance Training Decreases Abdominal Fat and Improves Insulin Sensitivity in Older Men With Type 2 Diabetes. Diabetes Care 2005, 28(3), 662–667. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y; Hanashiro, S; Shiga, K; Kitazawa, M; Tsutsumi, S; Yamakawa, H; et al. Associations between glycemic variability, sleep quality, and daily steps in subjects without diabetes using wearable devices. Metabol Open 2023, 20, 100263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monnier, L; Mas, E; Ginet, C; Michel, F; Villon, L; Cristol, JP; Colette, C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006, 295(14), 1681–7. [Google Scholar] [CrossRef] [PubMed]
- Teraguchi, I; Imanishi, T; Ozaki, Y; Tanimoto, T; Orii, M; Shiono, Y; et al. Impact of glucose fluctuation and monocyte subsets on coronary plaque rupture. Nutr Metab Cardiovasc Dis 2014, 24(3), 309–14. [Google Scholar] [CrossRef] [PubMed]
- Saisho, Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci 2014, 15(10), 18381–406. [Google Scholar] [CrossRef] [PubMed]
- Brandt, R; Park, M; Wroblewski, K; Quinn, L; Tasali, E; Cinar, A. Sleep quality and glycaemic variability in a real-life setting in adults with type 1 diabetes. Diabetologia 2021, 64(10), 2159–2169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y; Zhao, LH; Li, DD; Xu, F; Wang, XH; Lu, CF; et al. Association of sleep quality with glycemic variability assessed by flash glucose monitoring in patients with type 2 diabetes. Diabetol Metab Syndr. 2021, 13(1), 102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, G; Kim, S; Lee, YB; Jin, SM; Hur, KY; Kim, JH. A randomized controlled trial of an app based intervention on physical activity and glycemic control in people with type 2 diabetes. BMC Med. 2024, 22(1), 185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hall, KS; Hyde, ET; Bassett, DR; Carlson, SA; Carnethon, MR; Ekelund, U; et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int J Behav Nutr Phys Act 2020, 17(1), 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- BIRCK, MG; ALMEIDA-PITITTO, B; JANOVSKY, CCPS; et al. Thyroid Stimulating Hormone and Thyroid Hormones and Incidence of Diabetes: Prospective Results of the Brazilian Longitudinal Study of Adult Health (ELSA BRASIL). Thyroid. 2022, 32(6), 694–704. [Google Scholar] [CrossRef] [PubMed]
| MEN | WOMEN | p- VALUE | |||
| YEARS OF AGE | n(%) | n(%) | |||
| 41 – 59 | 3,923 (54.95%) | 3,216 (45.05%) | 0.157 | ||
| >60 | 3,090 (56.21%) | 2,407 (43.79%) | |||
| OBESITY | |||||
| No | 4,823 (53.59%) | 4,176 (46.41%) | 0.000 | ||
| Yes | 2,105 (60.79%) | 1,358 (39.21%) | |||
| SMOKING | |||||
| Never smoked | 4,578 (60.06%) | 3,045 (39.94%) | 0.000 | ||
| Ex-smoker or smoker | 2,403 (48.48%) | 2,554 (51.52%) | |||
| PHYSICAL ACTIVITY IN LEISURE TIME | |||||
| Light | 5,043 (58.72%) | 3,545 (41.28%) | 0.000 | ||
| Moderate and Vigorous | 1,896 (48.62%) | 2,004 (51.38%) | |||
| INCOME | |||||
| <6558.5 | 1,882 (42.74%) | 2,521 (57.26%) | 0.004 | ||
| >=6558.5 | 3,741 (45.44%) | 4,492 (54.56%) | |||
| ABDOMINAL OBESITY | |||||
| No | 2,688 (44.09%) | 3,408 (55.91%) | 0.000 | ||
| Yes | 4,084 (66.69%) | 2,040 (33.31%) | |||
|
RACE |
|||||
| Black/Brown | 3,047 (55.69%) | 2,424 (44.31%) | 0.427 | ||
| White | 3,600 (54.97%) | 2,949 (45.03%) | |||
| GLYCATED HEMOGLOBIN | |||||
| <6,5% | 6,075 (56.55%) | 4,667 (43.45%) | 0.000 | ||
| >=6,5% | 938 (49.52%) | 956 (50.48%) | |||
| DIABETES | |||||
| Absence | 3,891 (42.53%) | 5,258 (57.47%) | 0.000 | ||
| Presence | 1,592 (49.92%) | 1,597 (50.08%) | |||
| NUMBER OF DAILY STEPS | |||||
| <6880 | 1,895 (40.05%) | 2,836 (59.95%) | 0.000 | ||
| >= 6880 | 3,728 (47.16%) | 4,177 (52.84%) | |||
| ABSENCE OF ABDOMINAL OBESITY | PRESENCE OF ABDOMINAL OBESITY | |||
| NUMBER OF DAILY STEPS | Insufficient leisure-time physical activity | Leisure-time physical activity Moderate/ vigorous |
Insufficient leisure-time physical activity | Leisure-time physical activity Moderate/ vigorous |
| Men | ||||
| No. of steps < 6.880 | Ref (1,00) |
Ref (1,00) | Ref (1,00) | Ref (1,00) |
| No. of steps > 6.880 | 1.02 (0.814-1.28) | 0.86 (0.613-1.22) | 1.04 (0.83-1.29) | 0.62 (0.43-0.87)* |
| Women | ||||
| No. of steps < 6.880 | Ref (1,00) |
Ref (1,00) | Ref (1,00) | Ref (1,00) |
| No. of steps > 6.880 | 1.22 (0.90-1.65) | 1.15 (0.69-1.92) | 0.90 (0.77-1.06) | 0.78 (0.57-1.06) |
| ABSENCE OF ABDOMINAL OBESITY | PRESENCE OF ABDOMINAL OBESITY | |||
| Number of daily steps | OR | 95%IC | OR | 95%IC |
| Men | ||||
| No. of steps < 6.880 | Ref (1,00) | Ref (1,00) | Ref (1,00) | Ref (1,00) |
| No. of steps > 6.880 | 0.94 | (0.78-1.14) | 0.87 | (0.72-1.04) |
| Women | ||||
| No. of steps < 6.880 | Ref (1,00) | Ref (1,00) | Ref (1,00) | Ref (1,00) |
| No. of steps > 6.880 | 1.18 | (0.921-1.53) | (0.86) * | (0.75-0.98) * |
| Insufficient leisure-time physical activity | Leisure-time physical activity Moderate/ vigorous |
|||
| Number of daily steps | OR | 95%IC | OR | 95%IC |
| Men | ||||
| No. of steps < 6.880 | Ref (1,00) | Ref (1,00) | Ref (1,00) | Ref (1,00) |
| No. of steps > 6.6880 | 0.89 | (0.77-1.03) | 0.64* | (0.50-0.80) |
| Women | ||||
| No. of steps < 6.880 | Ref (1,00) | Ref (1,00) | Ref (1,00) | Ref (1,00) |
| No. of steps > 6.6880 | 0.91 | (0.80-1.04) | 0.78 | (0.61-1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
