Preprint
Article

This version is not peer-reviewed.

Adapt-Plan: A Hybrid Control Architecture for PEI-Guided Reliable Adaptive Planning in Dynamic Agentic Environments

Submitted:

31 December 2025

Posted:

01 January 2026

You are already at the latest version

Abstract
The field of agentic artificial intelligence is transitioning from reasoning-centric architectures toward systems explicitly designed for reliability under uncertainty. Current agent frameworks, while effective in controlled environments, exhibit cognitive rigidity—an inability to proactively correct planning trajectories when confronted with unexpected faults. This paper introduces Adapt-Plan, a foundational hybrid architecture that reformulates planning as a control-theoretic process by elevating the Planning Efficiency Index (PEI) from a post-hoc evaluation metric to a real-time control signal. Through dual-mode planning (strategic and tactical) and Extended Dynamic Memory (EDM) for selective experience consolidation, Adapt-Plan enables agents to detect behavioral drift early and initiate corrective adaptation before catastrophic degradation occurs. Controlled validation across 150 episodes demonstrates PEI=0.91 ± 0.06 and FRR=78% ± 4.2% (95% CI [74%, 82%], p < 0.001, Cohen’s d = 2.18 vs. ReAct), establishing the algorithmic viability of metric-driven adaptation. Comprehensive ablation studies isolate component contributions, revealing that PEI-guided control accounts for 31% of performance gains. These architectural principles were subsequently validated at scale through rigorous certification frameworks, confirming that PEI-driven control generalizes to deployment-grade reliability when augmented with safety protocols. This work establishes the conceptual foundation for reliable agentic AI through the tight integration of architecture, metrics, and control.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated