Submitted:
29 December 2025
Posted:
30 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Classical and Contemporary Evaluation Models in the Context of AI-Based Learning
3. Research Methodology
3.1. Research Design Overview
3.2. Identifying Evaluation Dimensions and Their Indicators
3.3. Expert Panel and Delphi Refinement
3.4. DANP Weighting Procedure
- Capturing causal and systemic interdependencies among evaluation criteria;
- Allowing expert judgment to compensate for limited empirical data;
- Producing weights that are realistic, justifiable, and aligned with the complexity of AI-assisted learning ecosystems.
3.5. Empirical Validation and Decision Usefulness
- Actionability: ability to identify areas for course improvement;
- Interpretability: clarity of indicator contributions and dimension profiles;
- Face validity: alignment between evaluation outcomes and expert judgement regarding course design and AI integration.
4. Proposed Indicator System for Evaluation of AI-Based Learning
4.1. Pedagogical Design and Content Quality (PD)
- PD3 – Alignment with Learning Objectives: Extent to which AI-generated content, activities, and resources are mapped to intended learning outcomes/competencies; checks whether AI use remains goal-directed and avoids tangential or mis-leveled outputs [41].
4.2. Learner Engagement and Analytics (LE)
4.3. Adaptivity and Personalization (AP)
4.4. Assessment and Feedback (AF)
4.5. Ethics, Privacy, and Governance (EG)
4.6. Comparison to Traditional Evaluation Frameworks
5. Practical Example of Implementing the Proposed Indicator System
5.1. DEMATEL Analysis
5.2. DANP Weight Derivation
- Pedagogical Design (PD) primarily feeds Learner Engagement (LE): PD→LE is the largest entry in the PD column ( = 0.229), indicating that instructional structure and content decisions propagate most strongly into interactivity and motivation. PD’s remaining influence is distributed across AP ( = 0.213, PD itself ( = 0.208), AF ( = 0.174), and EG ( = 0.175), suggesting PD acts as a broad upstream contributor rather than a single-direction lever.
- Learner Engagement (LE) most strongly supports Pedagogical Design (PD): LE→PD is the dominant linkage from LE ( = 0.231), followed closely by LE→LE ( = 0.221) and LE→AP ( = 0.193). This pattern is consistent with engagement traces (interaction intensity, persistence) informing instructional adjustments and refinements more directly than they drive assessment routines (LE→AF is the weakest, = 0.159.
- Adaptivity and Personalisation (AP) most strongly drives Learner Engagement (LE): AP→LE is the largest entry in the AP column ( = 0.237), with additional spillovers toward PD ( = 0.217) and AF ( = 0.196). This aligns with the role of adaptive sequencing and difficulty control in sustaining participation and shaping subsequent learning activities.
- Assessment and Feedback (AF) channels its largest share toward Pedagogical Design (PD): AF→PD is the strongest outgoing flow from AF ( = 0.225), followed by AF→LE ( = 0.209) and AF→AP ( = 0.205). This suggests that assessment evidence and feedback loops mainly feed back into pedagogical redesign and interaction patterns, rather than remaining confined within the AF cluster: AF→AF ( = 0.173).
- Ethics and Governance (EG) primarily conditions PD and LE: EG→PD and EG→LE are tied as the two largest entries in the EG column ( = 0.221; = 0.221), followed by EG→AF ( = 0.184). This indicates that privacy, fairness, and transparency considerations act chiefly through course structuring and learners’ willingness to participate, while EG’s direct influence on adaptivity is comparatively smaller: EG→AP ( = 0.193).
- Diagonal values are not dominant (≈ 0.173 – 0.221): within-cluster self-reinforcement is comparable to, and often weaker than, several cross-cluster flows. This confirms that the evaluation system is governed primarily by cross-dimensional interactions, supporting the use of a network-based weighting approach (DANP) rather than independence-assuming weighting.
- Content Quality (PD1, = 0.095) ranks first, implying that the overall perceived strength of AI-assisted learning depends most on the accuracy, clarity, relevance, and completeness of instructional content. Even when engagement and adaptivity mechanisms are strong, weak or unreliable content constrains learning value, explaining PD1’s dominant position.
- Difficulty Adjustment (AP3, = 0.092) and Learning Path Personalization (AP2, = 0.064) receive comparatively high weights, highlighting adaptive control of challenge level and sequencing as key leverage points. Practically, this emphasizes the importance of matching task complexity to learner ability and guiding progression coherently through the curriculum.
- In Assessment & Feedback, Feedback Quality (AF1, = 0.081) is weighted more strongly than Feedback Timeliness (AF3, = 0.059) and Assessment Diversity (AF2, = 0.037). This suggests that, in the network, what feedback communicates (accuracy, specificity, actionability) contributes more to perceived impact than speed or variety alone.
- In Learner Engagement, Motivation (LE2, = 0.082) and Interactivity (LE1, = 0.077) are both highly ranked, indicating that engagement is driven mainly by active learner–system exchange and motivational support. Collaboration (LE3, = 0.065) remains meaningful but appears secondary to these more direct engagement mechanisms.
- The lowest weights are assigned to Assessment Diversity (AF2, = 0.037) and Content Adaptivity (AP1, = 0.042), with Data Privacy (EG1, = 0.051) also in the lower range. This does not imply these aspects are negligible; rather, within the estimated interdependency structure they act more as enablers or constraints and/or their influence is partly mediated through higher-priority drivers such as content quality, adaptive difficulty control, and feedback quality.
6. Empirical Application
6.1. Aggregation of Expert Evaluations
6.2. Weighted Contributions and Total Course Scores
- 1)
- Digital Marketing – 4.185;
- 2)
- Internet Technologies in Tourism – 3.955;
- 3)
- E-Government – 3.807;
- 4)
- MIS – 3.765.
6.3. Dimension-Level View
6.4. Discussion
7. Conclusions
- For instructors and instructional designers, it provides a structured lens for reviewing and refining course design. For example, while the E-Government course was strong in pedagogy and ethics, it underutilized AI for personalization. Digital Marketing, conversely, leveraged AI for engagement and adaptivity but showed gaps in ethical scaffolding. The Tourism course balanced engagement and feedback well but would benefit from greater emphasis on transparency and privacy.
- For programme coordinators and academic leaders, the indicator-weighting combination enables comparative assessment across courses and supports prioritization of course improvements, staff development, or investment in learning technologies.
- For IT units and technology vendors, the framework clarifies which AI features contribute not just to functionality, but to pedagogical quality and ethical acceptability, guiding procurement, customization, and governance.
- For policy makers and quality assurance bodies, the framework offers a transparent and multidimensional reference for articulating expectations about responsible and effective AI integration in higher education.
- Instructors and designers can use the framework for self-assessment and as a design checklist when integrating AI. Compact modules should emphasize high-leverage features such as AI-driven feedback and concise ethics components tied to applied cases.
- Programme coordinators can apply the framework in program-level reviews to ensure systematic AI integration and use DANP weights to identify the most impactful intervention points.
- Teaching and learning centers can embed the indicators into peer-review tools and provide targeted training for weaker dimensions such as feedback, adaptivity, and governance.
- Institutional leaders can incorporate the framework into broader AI governance policies to align educational and ethical criteria with decision-making around AI use.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A.
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
- Criteria (N = 15), where PD1 is Content Quality, PD2 – Instructional Design, PD3 – Alignment with Learning Objectives, LE1 – Interactivity, LE2 – Motivation, LE3 – Collaboration, AP1 – Content Adaptivity, AP2 – Learning Path, AP3 – Difficulty Adjustment, AF1 – Feedback Quality, AF2 – Assessment Diversity, AF3 – Feedback Timeliness, EG1 – Data Privacy, EG2 – Fairness, and EG3 – Transparency.
- Clusters (P = 5):
- Pedagogical Design PD = {PD1, PD2, PD3}
- Learner Engagement LE = {LE1, LE2, LE3}
- Adaptivity and Personalization AP = {AP1, AP2, AP3}
- Assessment and Feedback AF = {AF1, AF2, AF3}
- Ethics and Governance EG = {EG1, EG2, EG3}
- Three experts (K = 3) with expertise in AI-based learning
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PD1 | 0.099 | 0.244 | 0.200 | 0.195 | 0.256 | 0.147 | 0.237 | 0.210 | 0.152 | 0.215 | 0.217 | 0.190 | 0.258 | 0.156 | 0.211 |
| PD2 | 0.099 | 0.099 | 0.184 | 0.073 | 0.187 | 0.119 | 0.209 | 0.163 | 0.069 | 0.079 | 0.147 | 0.135 | 0.145 | 0.163 | 0.160 |
| PD3 | 0.122 | 0.166 | 0.105 | 0.074 | 0.159 | 0.175 | 0.171 | 0.205 | 0.074 | 0.113 | 0.164 | 0.085 | 0.166 | 0.103 | 0.116 |
| LE1 | 0.093 | 0.151 | 0.234 | 0.090 | 0.197 | 0.172 | 0.213 | 0.208 | 0.193 | 0.158 | 0.113 | 0.198 | 0.157 | 0.192 | 0.134 |
| LE2 | 0.123 | 0.210 | 0.231 | 0.122 | 0.142 | 0.176 | 0.187 | 0.169 | 0.177 | 0.177 | 0.116 | 0.217 | 0.223 | 0.150 | 0.215 |
| LE3 | 0.106 | 0.106 | 0.196 | 0.149 | 0.186 | 0.090 | 0.117 | 0.192 | 0.173 | 0.086 | 0.089 | 0.098 | 0.112 | 0.147 | 0.152 |
| AP1 | 0.093 | 0.062 | 0.117 | 0.090 | 0.072 | 0.121 | 0.078 | 0.116 | 0.074 | 0.054 | 0.123 | 0.058 | 0.146 | 0.063 | 0.064 |
| AP2 | 0.162 | 0.149 | 0.176 | 0.116 | 0.163 | 0.085 | 0.162 | 0.111 | 0.109 | 0.086 | 0.188 | 0.114 | 0.173 | 0.084 | 0.120 |
| AP3 | 0.124 | 0.217 | 0.249 | 0.153 | 0.163 | 0.192 | 0.267 | 0.246 | 0.107 | 0.201 | 0.176 | 0.227 | 0.233 | 0.225 | 0.187 |
| AF1 | 0.146 | 0.204 | 0.164 | 0.112 | 0.214 | 0.106 | 0.241 | 0.211 | 0.171 | 0.103 | 0.190 | 0.189 | 0.194 | 0.131 | 0.211 |
| AF2 | 0.049 | 0.063 | 0.064 | 0.044 | 0.112 | 0.052 | 0.149 | 0.160 | 0.045 | 0.093 | 0.059 | 0.058 | 0.169 | 0.048 | 0.111 |
| AF3 | 0.082 | 0.168 | 0.160 | 0.065 | 0.172 | 0.075 | 0.109 | 0.121 | 0.137 | 0.143 | 0.107 | 0.092 | 0.101 | 0.177 | 0.094 |
| EG1 | 0.058 | 0.128 | 0.090 | 0.082 | 0.122 | 0.124 | 0.188 | 0.087 | 0.064 | 0.109 | 0.086 | 0.160 | 0.083 | 0.118 | 0.157 |
| EG2 | 0.129 | 0.155 | 0.122 | 0.174 | 0.197 | 0.123 | 0.177 | 0.119 | 0.091 | 0.157 | 0.133 | 0.203 | 0.165 | 0.104 | 0.188 |
| EG3 | 0.101 | 0.168 | 0.153 | 0.094 | 0.142 | 0.127 | 0.172 | 0.169 | 0.063 | 0.069 | 0.117 | 0.083 | 0.149 | 0.157 | 0.090 |
- PD1 (+1.403)
- AP3 (+1.269)
- LE1 (+0.869)
- AF1 (+0.744).
- AP1 (−1.345)
- EG1 (−0.819)
- AF2 (−0.750).
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PD1 | 0.310 | 0.480 | 0.409 | 0.571 | 0.425 | 0.334 | 0.384 | 0.364 | 0.516 | 0.528 | 0.411 | 0.463 | 0.453 | 0.369 | 0.433 |
| PD2 | 0.309 | 0.194 | 0.377 | 0.214 | 0.311 | 0.269 | 0.338 | 0.281 | 0.235 | 0.193 | 0.279 | 0.329 | 0.255 | 0.386 | 0.328 |
| PD3 | 0.381 | 0.326 | 0.214 | 0.216 | 0.264 | 0.396 | 0.278 | 0.355 | 0.250 | 0.278 | 0.311 | 0.208 | 0.292 | 0.244 | 0.238 |
| LE1 | 0.289 | 0.323 | 0.354 | 0.250 | 0.375 | 0.392 | 0.412 | 0.365 | 0.355 | 0.376 | 0.354 | 0.386 | 0.319 | 0.393 | 0.268 |
| LE2 | 0.382 | 0.449 | 0.350 | 0.338 | 0.271 | 0.402 | 0.362 | 0.296 | 0.326 | 0.420 | 0.366 | 0.424 | 0.454 | 0.306 | 0.429 |
| LE3 | 0.329 | 0.227 | 0.296 | 0.412 | 0.354 | 0.206 | 0.226 | 0.338 | 0.319 | 0.204 | 0.280 | 0.190 | 0.227 | 0.301 | 0.303 |
| AP1 | 0.245 | 0.145 | 0.215 | 0.251 | 0.181 | 0.304 | 0.154 | 0.245 | 0.254 | 0.159 | 0.253 | 0.145 | 0.264 | 0.169 | 0.173 |
| AP2 | 0.427 | 0.348 | 0.325 | 0.324 | 0.410 | 0.214 | 0.319 | 0.234 | 0.378 | 0.252 | 0.385 | 0.285 | 0.313 | 0.226 | 0.324 |
| AP3 | 0.328 | 0.506 | 0.460 | 0.425 | 0.409 | 0.482 | 0.527 | 0.521 | 0.368 | 0.589 | 0.362 | 0.570 | 0.423 | 0.606 | 0.503 |
| AF1 | 0.527 | 0.468 | 0.423 | 0.508 | 0.431 | 0.456 | 0.482 | 0.429 | 0.485 | 0.303 | 0.533 | 0.559 | 0.418 | 0.368 | 0.506 |
| AF2 | 0.175 | 0.145 | 0.166 | 0.199 | 0.224 | 0.222 | 0.299 | 0.325 | 0.126 | 0.275 | 0.166 | 0.170 | 0.364 | 0.135 | 0.267 |
| AF3 | 0.298 | 0.387 | 0.412 | 0.293 | 0.345 | 0.323 | 0.219 | 0.246 | 0.388 | 0.421 | 0.301 | 0.271 | 0.218 | 0.497 | 0.227 |
| EG1 | 0.200 | 0.285 | 0.246 | 0.235 | 0.264 | 0.331 | 0.350 | 0.233 | 0.293 | 0.325 | 0.256 | 0.359 | 0.209 | 0.312 | 0.361 |
| EG2 | 0.450 | 0.343 | 0.335 | 0.497 | 0.427 | 0.329 | 0.330 | 0.317 | 0.418 | 0.469 | 0.396 | 0.455 | 0.416 | 0.275 | 0.432 |
| EG3 | 0.350 | 0.372 | 0.419 | 0.268 | 0.308 | 0.340 | 0.320 | 0.451 | 0.288 | 0.207 | 0.348 | 0.185 | 0.375 | 0.413 | 0.206 |
- Learner Engagement (LE): 0.224
- Pedagogical Design (PD): 0.220
- Adaptivity & Personalization (AP): 0.198
- Ethics & Governance (EG): 0.181
- Assessment & Feedback (AF): 0.1775
References
- Alotaibi, N.S. The Impact of AI and LMS Integration on the Future of Higher Education: Opportunities, Challenges, and Strategies for Transformation. Sustainability 2024, 16, 10357. [Google Scholar] [CrossRef]
- Crompton, H.; Burke, D. Artificial Intelligence in Higher Education: The State of the Field. Int. J. Educ. Technol. High. Educ. 2023, 20, 22. [Google Scholar] [CrossRef]
- Batista, J.; Mesquita, A.; Carnaz, G. Generative AI and Higher Education: Trends, Challenges, and Future Directions from a Systematic Literature Review. Information 2024, 15, 676. [Google Scholar] [CrossRef]
- Saifullah, S.; Yawan, H.; Syafitri, N.; Nurhaliza, S. Integrating AI Chatbot into Learning Management System: Enhancing Student Engagement and Learning Outcomes. Dharmas Educ. J. 2024, 5, 1346–1359. [Google Scholar] [CrossRef]
- Jdidou, Y.; Aammou, S. Transforming Education with AI: The Role of Recommendation Systems in Personalized Learning. Proceedings of EDULEARN24: International Conference on Education and New Learning Technologies, Palma de Mallorca, Spain, 1–3 July 2024; pp. 7662–7669. [Google Scholar] [CrossRef]
- Chng, L.K. How AI Makes Its Mark on Instructional Design. Asian J. Distance Educ. 2023, 18, 32–41. Available online: http://asianjde.com/ojs/index.php/AsianJDE/article/view/740 (accessed on 25 December 2025).
- Rodríguez-Ortiz, M.Á.; Santana-Mancilla, P.C.; Anido-Rifón, L.E. Machine Learning and Generative AI in Learning Analytics for Higher Education: A Systematic Review of Models, Trends, and Challenges. Appl. Sci. 2025, 15, 8679. [Google Scholar] [CrossRef]
- Huber, E.; Harris, L.; Wright, S.; White, A.; Raduescu, C.; Zeivots, S.; Brodzeli, A. Towards a Framework for Designing and Evaluating Online Assessments in Business Education. Assess. Eval. High. Educ. 2024, 49, 102–116. [Google Scholar] [CrossRef]
- UNESCO. Guidance for Generative AI in Education and Research. Available online: https://www.unesco.org/en/articles/guidance-generative-ai-education-and-research (accessed on 9 December 2025).
- Li, Y.; Xie, M. Navigating International Challenges of Quality Assurance in Higher Education: A Synergy of Gen-AI and Human-Made Solutions. GBP Proc. Ser. 2025, 3, 186–192. Available online: https://www.gbspress.com/index.php/GBPPS/article/view/177 (accessed on 9 December 2025). [CrossRef]
- Basri, W.S. Effectiveness of AI-Powered Tutoring Systems in Enhancing Learning Outcomes. Eurasian J. Educ. Res. 2024, 110, 33–52. [Google Scholar] [CrossRef]
- Juárez Santiago, B.; Olivares Ramírez, J.M.; Rodríguez-Reséndiz, J.; Dector, A.; García García, R.; González-Durán, J.E.E.; Ferriol Sánchez, F. Learning Management System-Based Evaluation to Determine Academic Efficiency Performance. Sustainability 2020, 12, 4256. [Google Scholar] [CrossRef]
- Almulla, M.A. Investigating Influencing Factors of Learning Satisfaction in AI ChatGPT for Research: University Students Perspective. Heliyon 2024, 10, e32220. [Google Scholar] [CrossRef]
- Kakhkharova, M.; Tuychieva, S. AI-Enhanced Pedagogy in Higher Education: Redefining Teaching-Learning Paradigms. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- McGinty, J.; Murray-Johnson, K. Ethical Frameworks of Artificial Intelligence for Faculty: Upholding Academic Integrity and Authenticity. In New Dir. Adult Contin. Educ.; 2025. [Google Scholar] [CrossRef]
- Li, Z.; Dhruv, A.; Jain, V. Ethical Considerations in the Use of AI for Higher Education: A Comprehensive Guide. In Proceedings of the 2024 IEEE 18th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 5–7 February 2024; pp. 218–223. [Google Scholar]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Center: Geneva, Switzerland, 1972; pp. 12–14. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- The ELEVATE-AI LLMs Framework: An Evaluation Framework for Use of Large Language Models in HEOR: An ISPOR Working Group Report. Available online: https://warwick.ac.uk/fac/cross_fac/eduport/edufund/projects/yang/projects/the-elevate-ai-llms-framework-an-evaluation-framework-for-use-of-large-language-models-in-a16e6d/ https://arxiv.org/pdf/2501.12394v1 (accessed on 9 December 2025).
- Kirkpatrick, D.L. Evaluating Training Programs: The Four Levels; Berrett-Koehler Publishers: San Francisco, CA, USA, 1994. [Google Scholar]
- Masoumi, D.; Lindström, B. Quality in E-Learning: A Framework for Promoting and Assuring Quality in Virtual Institutions. J. Comput. Assist. Learn. 2012, 28, 27–41. [Google Scholar] [CrossRef]
- Konstantinidou, A.; Zorkadis, V.; Koutsopoulos, K. Assuring the Quality of Online Learning in Higher Education. Australas. J. Educ. Technol. 2022, 38, 68–83. [Google Scholar] [CrossRef]
- Dazeley, R.; Goriss-Hunter, A.; Meredith, G.; Sellings, P.; Firmin, S.; Burke, J.; Panther, B. Agile Backward Design: A Framework for Planning Higher Education Curriculum. Aust. Educ. Res. 2025, 52, 1489–1508. [Google Scholar] [CrossRef]
- Wiggins, G.; McTighe, J. Understanding by Design, Expanded, 2nd ed.; ASCD: Alexandria, VA, USA, 2005. [Google Scholar]
- Ross, J.; Curwood, J.S.; Bell, A. A Multimodal Assessment Framework for Higher Education. e-Learn. Digit. Media 2020, 17, 290–306. [Google Scholar] [CrossRef]
- Graham, C.R.; Woodfield, W.; Harrison, J.B. A Framework for Institutional Adoption and Implementation of Blended Learning in Higher Education. Internet High. Educ. 2013, 18, 4–14. [Google Scholar] [CrossRef]
- Council of Europe. Artificial Intelligence and Education: Regulating the Use of AI Systems in Education. Available online: https://rm.coe.int/prems-019925-gbr-2511-artificial-intelligence-and-education-a4-web-bat/1680b6c970 (accessed on 9 December 2025).
- Tyler, R.W. Basic Principles of Curriculum and Instruction; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar] [CrossRef]
- Branson, R.K. The Interservice Procedures for Instructional Systems Development. Educ. Technol. 1978, 18, 11–14. Available online: https://www.jstor.org/stable/44418942 (accessed on 25 December 2025).
- Phillips, J.J. Return on Investment in Training and Performance Improvement Programs; Routledge: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Blundell, C.N.; Mukherjee, M.; Nykvist, S. A Scoping Review of the Application of the SAMR Model in Research. Comput. Educ. Open 2022, 3, 100093. [Google Scholar] [CrossRef]
- Çelik, İ. Towards Intelligent-TPACK: An Empirical Study on Teachers’ Professional Knowledge to Ethically Integrate AI-Based Tools into Education. Comput. Hum. Behav. 2023, 138, 107468. [Google Scholar] [CrossRef]
- Al-Abdullatif, A.M. Modeling Teachers’ Acceptance of Generative Artificial Intelligence Use in Higher Education: The Role of AI Literacy, Intelligent TPACK, and Perceived Trust. Educ. Sci. 2024, 14, 1209. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Zhu, Z.; Wang, J.; Tran, T.; Du, Z. Artificial Intelligence in Education: A Systematic Literature Review. Expert Syst. Appl. 2024, 252, 124167. [Google Scholar] [CrossRef]
- Huang, Q.; Lv, C.; Lu, L.; Tu, S. Evaluating the Quality of AI-Generated Digital Educational Resources for University Teaching and Learning. Systems 2025, 13, 174. [Google Scholar] [CrossRef]
- Myrick, J. Integrating AI into Course Quality Assurance Processes. In Proceedings of the 8th International Academic Conference on Education, Teaching and Learning (IACETL), Helsinki, Finland, 10–12 July 2025; Available online: https://www.dpublication.com/wp-content/uploads/2025/06/19-4196.pdf (accessed on 25 December 2025).
- Logan-Fleming, D.; Thakkar, M.; Martinez Pacheco, S.; Jones, H.; Parrish, D. Assurance of Learning in the Age of AI: A Sector Scan and Future-Focused Call to Action. ASCILITE 2025 Conference Proceedings, Adelaide, Australia, 30 November–3 December 2025. [Google Scholar]
- Yu, H.; Guo, Y. Generative Artificial Intelligence Empowers Educational Reform: Current Status, Issues, and Prospects. Front. Educ. 2023, 8, 1183162. [Google Scholar] [CrossRef]
- Kestin, G.; Miller, K.; Klales, A.; Milbourne, T.; Ponti, G. AI Tutoring Outperforms In-Class Active Learning: An RCT Introducing a Novel Research-Based Design in an Authentic Educational Setting. Sci. Rep. 2025, 15, 17458. [Google Scholar] [CrossRef]
- García-López, I.M.; Trujillo-Liñán, L. Generative Artificial Intelligence in Education: Ethical Challenges, Regulatory Frameworks and Educational Quality in a Systematic Review of the Literature. Front. Educ. 2025, 10, 1565938. [Google Scholar] [CrossRef]
- Verhoeven, B.; Hor, T. A Framework for Human-Centric AI-First Teaching. AACSB Insights 2025. Available online: https://www.aacsb.edu/insights/articles/2025/02/a-framework-for-human-centric-ai-first-teaching (accessed on 25 December 2025).
- Chng, L.K. How AI Makes Its Mark on Instructional Design. Asian J. Distance Educ. 2023, 18, 32–41. Available online: https://asianjde.com/ojs/index.php/AsianJDE/article/view/740 (accessed on 25 December 2025).
- Schleiss, J.; Laupichler, M.C.; Raupach, T.; Stober, S. AI Course Design Planning Framework: Developing Domain-Specific AI Education Courses. Educ. Sci. 2023, 13, 954. [Google Scholar] [CrossRef]
- Wang, F.; Cheung, A.C.; Chai, C.S.; Liu, J. Development and Validation of the Perceived Interactivity of Learner–AI Interaction Scale. Educ. Inf. Technol. 2025, 30, 4607–4638. [Google Scholar] [CrossRef]
- Kovari, A. A Systematic Review of AI-Powered Collaborative Learning in Higher Education: Trends and Outcomes from the Last Decade. Soc. Sci. Humanit. Open 2025, 11, 101335. [Google Scholar] [CrossRef]
- Sajja, R.; Sermet, Y.; Cikmaz, M.; Cwiertny, D.; Demir, I. Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education. Information 2024, 15, 596. [Google Scholar] [CrossRef]
- Zheng, L.; Fan, Y.; Gao, L.; Huang, Z.; Chen, B.; Long, M. Using AI-Empowered Assessments and Personalized Recommendations to Promote Online Collaborative Learning Performance. J. Res. Technol. Educ. 2025, 57, 727–753. [Google Scholar] [CrossRef]
- Zheng, L.; Fan, Y.; Chen, B.; Huang, Z.; LeiGao; Long, M. An AI-Enabled Feedback–Feedforward Approach to Promoting Online Collaborative Learning. Educ. Inf. Technol. 2024, 29, 11385–11406. [Google Scholar] [CrossRef]
- Karoglou, M.; Ghergulescu, I.; Stramarkou, M.; Boukouvalas, C.; Krokida, M. Building an Adaptive AI-Powered Higher Education Class for the Future of Engineering: A Case Study from NTUA. Appl. Sci. 2025, 15, 8524. [Google Scholar] [CrossRef]
- Naseer, F.; Khan, M.N.; Tahir, M.; Addas, A.; Aejaz, S.M.H. Integrating Deep Learning Techniques for Personalized Learning Pathways in Higher Education. Heliyon 2024, 10, e32628. [Google Scholar] [CrossRef] [PubMed]


| Model/ Approach |
Primary Evaluation Focus |
Typical Application in Higher Education |
Key Limitation in GAI-Enabled Learning |
|---|---|---|---|
| Kirkpatrick’s model [20] |
Reactions, learning, behavior, results |
Training and post-hoc evaluation |
Assumes stable interventions; limited support for continuous or ethics-aware evaluation |
| Tyler model [28] | Alignment of objectives, instruction, outcomes | Curriculum design | Linear logic unsuited to dynamic GAI learning |
| ADDIE [29] | Systematic instructional design | Course and program development |
Staged phases incompatible with iterative AI updates |
| Phillips ROI [30] | Financial return on education |
Resource planning | Prioritizes cost metrics; overlooks academic integrity and impact |
| SAMR [31] | Technology integration levels | Digital innovation mapping |
Lacks pedagogical depth and AI risk constructs |
| TPACK/ iTPACK [32] |
Educator competence/readiness | Faculty development | Omits student outcomes and governance effectiveness |
| E-learning quality frameworks [21] | Multidimensional online learning quality | QA in digital learning | Treat AI as peripheral; don’t model interdependencies |
| Backward Design [23] |
Constructive alignment | Curriculum and Course planning |
Destabilized by AI authorship and adaptive content |
| AI content indices (Delphi-AHP) [35] | Content accuracy/ relevance |
AI-generated resource evaluation |
Narrow scope; omits systemic impact |
| AI-supported QA workflows [36] | Automation/ scalability |
Course monitoring | Emphasize efficiency over pedagogy and causality |
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
| PD1 | 0 | 4 | 1.67 | 4 | 4 | 1 | 2.33 | 2 | 1.67 | 4 | 3.67 | 2 | 4 | 1 | 2.67 |
| PD2 | 1 | 0 | 3.33 | 0 | 3.33 | 1.33 | 4 | 2.33 | 0 | 0 | 2.33 | 2 | 1.33 | 3.33 | 2.67 |
| PD3 | 2 | 3 | 0 | 0 | 2 | 4 | 2.33 | 4 | 0 | 1.67 | 3 | 0 | 2.33 | 1 | 0.67 |
| LE1 | 0 | 1 | 4 | 0 | 2.67 | 2.67 | 3 | 3 | 4 | 2.33 | 0 | 3.33 | 1 | 3.33 | 0.67 |
| LE2 | 1.33 | 3 | 3.67 | 1.33 | 0 | 2.67 | 1.33 | 1 | 3.33 | 3 | 0 | 4 | 3.67 | 1 | 3.67 |
| LE3 | 1.33 | 0 | 3.33 | 3 | 3.33 | 0 | 0 | 3.33 | 4 | 0 | 0 | 0 | 0 | 2.33 | 2.33 |
| AP1 | 2 | 0 | 2 | 1.67 | 0 | 2.67 | 0 | 1.67 | 1 | 0 | 2.67 | 0 | 3 | 0.33 | 0 |
| AP2 | 4 | 2 | 3 | 2 | 2.33 | 0 | 1.67 | 0 | 1.67 | 0 | 4 | 1 | 2.33 | 0 | 1 |
| AP3 | 0.67 | 3 | 4 | 2 | 0 | 3 | 4 | 3.67 | 0 | 3.67 | 1.67 | 4 | 3.33 | 4 | 2 |
| AF1 | 2.33 | 3 | 1 | 1 | 3.33 | 0 | 3.67 | 3 | 3.33 | 0 | 3 | 3 | 2 | 0.67 | 3.67 |
| AF2 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 4 | 0 | 2 | 0 | 0 | 4 | 0 | 2 |
| AF3 | 0.67 | 3 | 2.67 | 0 | 3 | 0 | 0 | 1 | 3 | 2.67 | 1 | 0 | 0 | 4 | 0 |
| EG1 | 0 | 2 | 0 | 1 | 1.33 | 2.33 | 4 | 0 | 0 | 2 | 0.67 | 3.67 | 0 | 1.67 | 3.33 |
| EG2 | 2.33 | 1.67 | 0 | 4 | 3 | 1.33 | 2 | 0 | 0 | 2.67 | 1.67 | 4 | 2 | 0 | 3.33 |
| EG3 | 1.33 | 3.33 | 2.33 | 1 | 1.67 | 2 | 2.67 | 3 | 0 | 0 | 1.33 | 0 | 2 | 3.33 | 0 |
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
| PD1 | 0.099 | 0.244 | 0.200 | 0.195 | 0.256 | 0.147 | 0.237 | 0.210 | 0.152 | 0.215 | 0.217 | 0.190 | 0.258 | 0.156 | 0.211 |
| PD2 | 0.099 | 0.099 | 0.184 | 0.073 | 0.187 | 0.119 | 0.209 | 0.163 | 0.069 | 0.079 | 0.147 | 0.135 | 0.145 | 0.163 | 0.160 |
| PD3 | 0.122 | 0.166 | 0.105 | 0.074 | 0.159 | 0.175 | 0.171 | 0.205 | 0.074 | 0.113 | 0.164 | 0.085 | 0.166 | 0.103 | 0.116 |
| LE1 | 0.093 | 0.151 | 0.234 | 0.090 | 0.197 | 0.172 | 0.213 | 0.208 | 0.193 | 0.158 | 0.113 | 0.198 | 0.157 | 0.192 | 0.134 |
| LE2 | 0.123 | 0.210 | 0.231 | 0.122 | 0.142 | 0.176 | 0.187 | 0.169 | 0.177 | 0.177 | 0.116 | 0.217 | 0.223 | 0.150 | 0.215 |
| LE3 | 0.106 | 0.106 | 0.196 | 0.149 | 0.186 | 0.090 | 0.117 | 0.192 | 0.173 | 0.086 | 0.089 | 0.098 | 0.112 | 0.147 | 0.152 |
| AP1 | 0.093 | 0.062 | 0.117 | 0.090 | 0.072 | 0.121 | 0.078 | 0.116 | 0.074 | 0.054 | 0.123 | 0.058 | 0.146 | 0.063 | 0.064 |
| AP2 | 0.162 | 0.149 | 0.176 | 0.116 | 0.163 | 0.085 | 0.162 | 0.111 | 0.109 | 0.086 | 0.188 | 0.114 | 0.173 | 0.084 | 0.120 |
| AP3 | 0.124 | 0.217 | 0.249 | 0.153 | 0.163 | 0.192 | 0.267 | 0.246 | 0.107 | 0.201 | 0.176 | 0.227 | 0.233 | 0.225 | 0.187 |
| AF1 | 0.146 | 0.204 | 0.164 | 0.112 | 0.214 | 0.106 | 0.241 | 0.211 | 0.171 | 0.103 | 0.190 | 0.189 | 0.194 | 0.131 | 0.211 |
| AF2 | 0.049 | 0.063 | 0.064 | 0.044 | 0.112 | 0.052 | 0.149 | 0.160 | 0.045 | 0.093 | 0.059 | 0.058 | 0.169 | 0.048 | 0.111 |
| AF3 | 0.082 | 0.168 | 0.160 | 0.065 | 0.172 | 0.075 | 0.109 | 0.121 | 0.137 | 0.143 | 0.107 | 0.092 | 0.101 | 0.177 | 0.094 |
| EG1 | 0.058 | 0.128 | 0.090 | 0.082 | 0.122 | 0.124 | 0.188 | 0.087 | 0.064 | 0.109 | 0.086 | 0.160 | 0.083 | 0.118 | 0.157 |
| EG2 | 0.129 | 0.155 | 0.122 | 0.174 | 0.197 | 0.123 | 0.177 | 0.119 | 0.091 | 0.157 | 0.133 | 0.203 | 0.165 | 0.104 | 0.188 |
| EG3 | 0.101 | 0.168 | 0.153 | 0.094 | 0.142 | 0.127 | 0.172 | 0.169 | 0.063 | 0.069 | 0.117 | 0.083 | 0.149 | 0.157 | 0.090 |
| PD1 | 2.987 | 1.583 | 4.570 | 1.403 |
| PD2 | 2.031 | 2.291 | 4.321 | –0.260 |
| PD3 | 1.997 | 2.446 | 4.443 | –0.449 |
| LE1 | 2.503 | 1.634 | 4.137 | 0.869 |
| LE2 | 2.635 | 2.482 | 5.117 | 0.153 |
| LE3 | 1.998 | 1.885 | 3.883 | 0.113 |
| AP1 | 1.331 | 2.676 | 4.007 | –1.345 |
| AP2 | 1.998 | 2.487 | 4.485 | –0.489 |
| AP3 | 2.968 | 1.699 | 4.666 | 1.269 |
| AF1 | 2.588 | 1.844 | 4.431 | 0.744 |
| AF2 | 1.276 | 2.026 | 3.302 | –0.750 |
| AF3 | 1.804 | 2.104 | 3.909 | –0.300 |
| EG1 | 1.656 | 2.475 | 4.131 | –0.819 |
| EG2 | 2.239 | 2.020 | 4.258 | 0.219 |
| EG3 | 1.853 | 2.211 | 4.064 | –0.358 |
| PD | LE | AP | AF | EG | |
| PD | 0.208 | 0.231 | 0.217 | 0.225 | 0.221 |
| LE | 0.229 | 0.221 | 0.237 | 0.209 | 0.221 |
| AP | 0.213 | 0.193 | 0.185 | 0.205 | 0.193 |
| AF | 0.174 | 0.159 | 0.196 | 0.173 | 0.184 |
| EG | 0.175 | 0.197 | 0.165 | 0.187 | 0.181 |
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PD1 | 0.065 | 0.100 | 0.085 | 0.132 | 0.098 | 0.077 | 0.083 | 0.079 | 0.112 | 0.119 | 0.092 | 0.104 | 0.100 | 0.082 | 0.096 |
| PD2 | 0.064 | 0.040 | 0.079 | 0.049 | 0.072 | 0.062 | 0.073 | 0.061 | 0.051 | 0.044 | 0.063 | 0.074 | 0.056 | 0.085 | 0.072 |
| PD3 | 0.079 | 0.068 | 0.045 | 0.050 | 0.061 | 0.091 | 0.060 | 0.077 | 0.054 | 0.063 | 0.070 | 0.047 | 0.064 | 0.054 | 0.053 |
| LE1 | 0.066 | 0.074 | 0.081 | 0.055 | 0.083 | 0.086 | 0.098 | 0.087 | 0.084 | 0.079 | 0.074 | 0.081 | 0.070 | 0.087 | 0.059 |
| LE2 | 0.088 | 0.103 | 0.080 | 0.074 | 0.060 | 0.089 | 0.086 | 0.070 | 0.077 | 0.088 | 0.077 | 0.089 | 0.100 | 0.068 | 0.095 |
| LE3 | 0.075 | 0.052 | 0.068 | 0.091 | 0.078 | 0.045 | 0.054 | 0.080 | 0.076 | 0.043 | 0.059 | 0.040 | 0.050 | 0.066 | 0.067 |
| AP1 | 0.052 | 0.031 | 0.046 | 0.048 | 0.035 | 0.059 | 0.028 | 0.045 | 0.047 | 0.033 | 0.052 | 0.030 | 0.051 | 0.033 | 0.033 |
| AP2 | 0.091 | 0.074 | 0.069 | 0.062 | 0.079 | 0.041 | 0.059 | 0.043 | 0.070 | 0.052 | 0.079 | 0.059 | 0.060 | 0.044 | 0.063 |
| AP3 | 0.070 | 0.108 | 0.098 | 0.082 | 0.079 | 0.093 | 0.097 | 0.096 | 0.068 | 0.121 | 0.074 | 0.117 | 0.082 | 0.117 | 0.097 |
| AF1 | 0.092 | 0.082 | 0.074 | 0.081 | 0.068 | 0.072 | 0.095 | 0.084 | 0.095 | 0.052 | 0.092 | 0.097 | 0.077 | 0.068 | 0.093 |
| AF2 | 0.031 | 0.025 | 0.029 | 0.032 | 0.036 | 0.035 | 0.059 | 0.064 | 0.025 | 0.048 | 0.029 | 0.029 | 0.067 | 0.025 | 0.049 |
| AF3 | 0.052 | 0.067 | 0.072 | 0.046 | 0.055 | 0.051 | 0.043 | 0.048 | 0.076 | 0.073 | 0.052 | 0.047 | 0.040 | 0.092 | 0.042 |
| EG1 | 0.035 | 0.050 | 0.043 | 0.046 | 0.052 | 0.065 | 0.058 | 0.038 | 0.048 | 0.061 | 0.048 | 0.067 | 0.038 | 0.056 | 0.065 |
| EG2 | 0.079 | 0.060 | 0.058 | 0.098 | 0.084 | 0.065 | 0.054 | 0.052 | 0.069 | 0.088 | 0.074 | 0.085 | 0.075 | 0.050 | 0.078 |
| EG3 | 0.061 | 0.065 | 0.073 | 0.053 | 0.061 | 0.067 | 0.053 | 0.074 | 0.047 | 0.039 | 0.065 | 0.035 | 0.068 | 0.075 | 0.037 |
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
| PD1 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 |
| PD2 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 |
| PD3 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 |
| LE1 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 |
| LE2 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 |
| LE3 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 |
| AP1 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 |
| AP2 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 |
| AP3 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 |
| AF1 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 |
| AF2 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 |
| AF3 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 |
| EG1 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 |
| EG2 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 | 0.072 |
| EG3 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 |
| PD1 | PD2 | PD3 | LE1 | LE2 | LE3 | AP1 | AP2 | AP3 | AF1 | AF2 | AF3 | EG1 | EG2 | EG3 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| W | 0.095 | 0.062 | 0.062 | 0.077 | 0.082 | 0.065 | 0.042 | 0.064 | 0.092 | 0.081 | 0.037 | 0.059 | 0.051 | 0.072 | 0.058 |
| Indicator |
E- Government |
Digital Marketing |
MIS |
Internet Tech in Tourism |
| PD1 | 4.6 | 4.1 | 4.3 | 4.2 |
| PD2 | 4.4 | 3.9 | 4.0 | 4.0 |
| PD3 | 4.5 | 4.0 | 4.1 | 4.1 |
| LE1 | 3.6 | 4.6 | 3.7 | 4.4 |
| LE2 | 3.5 | 4.7 | 3.6 | 4.3 |
| LE3 | 3.4 | 4.5 | 3.7 | 4.1 |
| AP1 | 3.0 | 4.2 | 3.7 | 3.6 |
| AP2 | 2.8 | 4.5 | 3.6 | 3.8 |
| AP3 | 2.7 | 4.6 | 3.6 | 3.5 |
| AF1 | 3.8 | 4.4 | 3.5 | 4.0 |
| AF2 | 3.6 | 4.2 | 3.5 | 3.8 |
| AF3 | 3.7 | 4.3 | 3.6 | 4.1 |
| EG1 | 4.5 | 3.4 | 3.9 | 3.8 |
| EG2 | 4.6 | 3.5 | 3.8 | 3.7 |
| EG3 | 4.4 | 3.3 | 3.7 | 3.6 |
| Indicator (weight) | E- Government |
Digital Marketing |
MIS | Internet Tech in Tourism |
|---|---|---|---|---|
| PD1 (0.095) | 0.439 | 0.391 | 0.411 | 0.401 |
| PD2 (0.062) | 0.275 | 0.243 | 0.250 | 0.250 |
| PD3 (0.062) | 0.281 | 0.250 | 0.256 | 0.256 |
| LE1 (0.077) | 0.278 | 0.355 | 0.286 | 0.340 |
| LE2 (0.082) | 0.287 | 0.386 | 0.295 | 0.353 |
| LE3 (0.065) | 0.220 | 0.291 | 0.239 | 0.265 |
| AP1 (0.042) | 0.125 | 0.176 | 0.155 | 0.151 |
| AP2 (0.064) | 0.178 | 0.287 | 0.229 | 0.242 |
| AP3 (0.092) | 0.250 | 0.425 | 0.333 | 0.324 |
| AF1 (0.081) | 0.306 | 0.355 | 0.282 | 0.323 |
| AF2 (0.037) | 0.135 | 0.157 | 0.131 | 0.142 |
| AF3 (0.059) | 0.217 | 0.252 | 0.211 | 0.240 |
| EG1 (0.051) | 0.229 | 0.173 | 0.199 | 0.194 |
| EG2 (0.072) | 0.333 | 0.253 | 0.275 | 0.268 |
| EG3 (0.058) | 0.254 | 0.191 | 0.214 | 0.208 |
| TOTAL | 3.807 | 4.185 | 3.765 | 3.955 |
| Course | E- Government |
Digital Marketing |
MIS | Internet Tech in Tourism |
|---|---|---|---|---|
| PD (PD1–3) | 0.995 | 0.884 | 0.917 | 0.907 |
| LE (LE1–3) | 0.785 | 1.032 | 0.82 | 0.958 |
| AP (AP1–3) | 0.553 | 0.888 | 0.717 | 0.717 |
| AF (AF1–3) | 0.658 | 0.764 | 0.624 | 0.705 |
| EG (EG1-3) | 0.816 | 0.617 | 0.688 | 0.670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
