Submitted:
29 December 2025
Posted:
30 December 2025
You are already at the latest version
Abstract
Keywords:
MSC: 40A05; 65B10
1. Introduction
is Weniger’s transformation able to simulate the Stieltjes function branch cut?
2. Why Should Weniger’s Transformation be Fit for Decoding Stieltjes Series?
3. Is Weniger’s Transformation Capable to Simulate the Stieltjes Function Branch Cut?
3.1. Preliminaries
Whether or not the formal asymptotic series of has a zero radius of convergence, the Padé approximants of the series are vital for its analysis and are useful for its numerical evaluation […]. We can prove convergence of the Padé approximants largely because we can prove that the poles of the Padé approximants lie on the cuts of the Stieltjes function.
is it true that all zeros of the denominator of Eq. (26) be confined to the sole negative real axis?
3.2. A Necessary Condition to Be Satisfied for Simulating the Branch Cut
3.3. An Alternative Expression of Polynomials
4. Madamina, il catalogo è questo
4.1. Preliminaries
4.2. A Class of Superfactorially Divergent Stieltjes Asymptotic Series
4.3. Laguerre Distribution
4.4. The Modified Bessel Function of the Second Kind
4.5. The Gamma Function
4.6. Jacobi Distribution
4.7. The Bessel Solution of Kepler’s Equation
5. Conclusions
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Eq. (41)
Appendix B. Proof of Eq. (50)
References
- Bender, C.M.; Weniger, E.J. Numerical evidence that the perturbation expansion for a non-Hermitian PT-symmetric Hamiltonian is Stieltjes. J. Math. Phys. 2001, 42, 2167–2183. [Google Scholar] [CrossRef]
- Grecchi, V.; Maioli, M.; Martinez, A. Padé summability of the cubic oscillator. J. Phys. A 2009, 42, 425208–1 – 425208–17. [Google Scholar] [CrossRef]
- Grecchi, V.; Martinez, A. The spectrum of the cubic oscillator. Commun. Math. Phys. 2013, 319, 479–500. [Google Scholar] [CrossRef]
- Colwell, P. Solving Kepler’s Equation Over Three Centuries; Willmann-Bell: Richmond, 1993. [Google Scholar]
- Borghi, R. On the Bessel Solution of Kepler’s Equation. Mathematics 2024, 12, 154. [Google Scholar] [CrossRef]
- Wynn, P. On a device for computing the em(Sn) transformation. Math. Tables Aids Comput. 1956, 10, 91–96. [Google Scholar] [CrossRef]
- Baker, Jr., G.A.; Graves-Morris, P. Padé Approximants, 2 ed.; Cambridge U. P.: Cambridge, 1996. [Google Scholar]
- Borghi, R. Factorial Series Representation of Stieltjes Series Converging Factors. Mathematics 2024, 12, 2330. [Google Scholar] [CrossRef]
- Weniger, E.J. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 1989, 10, 189–371. [Google Scholar] [CrossRef]
- Borghi, R. Converging Factors of a Class of Superfactorially Divergent Stieltjes Series. Mathematics 2025, 13, 2974. [Google Scholar] [CrossRef]
- Borghi, R.; Weniger, E.J. Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Appl. Numer. Math. 2015, 94, 149–178. [Google Scholar] [CrossRef]
- Henrici, P. Applied and Computational Complex Analysis II; Wiley: New York, 1977. [Google Scholar]
- Euler, L. Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. Pars II.1. De transformatione serierum; Academia Imperialis Scientiarum Petropolitana: St. Petersburg, 1755. reprinted as vol. X of Leonardi Euleri Opera Omnia, Seria Prima; Teubner, Leipzig and Berlin, 1913. [Google Scholar]
- Brezinski, C.; Redivo Zaglia, M. Extrapolation Methods; North-Holland: Amsterdam, 1991. [Google Scholar]
- Airey, J.R. The “converging factor” in asymptotic series and the calculation of Bessel, Laguerre and other functions. Philos. Mag. 1937, 24, 521–552. [Google Scholar] [CrossRef]
- Dingle, R.B. Asymptotic Expansions: Their Derivation and Interpretation; Academic Press: London, 1973. [Google Scholar]
- Shanks, D. Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys. (Cambridge, Mass.) 1955, 34, 1–42. [Google Scholar] [CrossRef]
- NIST Handbook of Mathematical Functions; Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., Eds.; Cambridge U. P.: Cambridge, 2010. [Google Scholar]
- Levin, D. Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. B 1973, 3, 371–388. [Google Scholar] [CrossRef]
- Weniger, E.J. Mathematical properties of a new Levin-type sequence transformation introduced by Čížek, Zamastil, and Skála. I. Algebraic theory. J. Math. Phys. 2004, 45, 1209–1246. [Google Scholar] [CrossRef]
- Weniger, E.J. Summation of divergent power series by means of factorial series. Applied Numerical Mathematics 2010, 60, 1429–1441. [Google Scholar] [CrossRef]
- Weniger, E.J.; Steinborn, E.O. Nonlinear sequence transformations for the efficient evaluation of auxiliary functions for GTO molecular integrals. In Proceedings of the Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules Proceedings of the NATO Advanced Research Workshop; NATO ASI Series; Versailles, France, Defranceschi, M., Delhalle, J., Eds.; Dordrecht, 1989; pp. 341–346. [Google Scholar]
- Jentschura, U.D.; Gies, H.; Valluri, S.R.; Lamm, D.R.; Weniger, E.J. QED effective action revisited. Can. J. Phys. 2002, 80, 267–284. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Lötstedt, E. Numerical calculation of Bessel, Hankel and Airy functions. Comput. Phys. Commun. 2012, 183, 506–519. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Mohr, P.J.; Soff, G.; Weniger, E.J. Convergence acceleration via combined nonlinear-condensation transformations. Comput. Phys. Commun. 1999, 116, 28–54. [Google Scholar] [CrossRef]
- Weniger, E.J. On the summation of some divergent hypergeometric series and related perturbation expansions. J. Comput. Appl. Math. 1990, 32, 291–300. [Google Scholar] [CrossRef]
- Weniger, E.J. Interpolation between sequence transformations. Numer. Algor. 1992, 3, 477–486. [Google Scholar] [CrossRef]
- Weniger, E.J. On the efficiency of linear but nonregular sequence transformations. In Nonlinear Numerical Methods and Rational Approximation II; Cuyt, A., Ed.; Kluwer: Dordrecht, 1994; pp. 269–282. [Google Scholar]
- Weniger, E.J. Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Comput. Phys. 1996, 10, 496–503. [Google Scholar] [CrossRef]
- Weniger, E.J. Irregular input data in convergence acceleration and summation processes: General considerations and some special Gaussian hypergeometric series as model problems. Comput. Phys. Commun. 2001, 133, 202–228. [Google Scholar] [CrossRef]
- Weniger, E.J. On the analyticity of Laguerre series. J. Phys. A 2008, 41, 425207–1 – 425207–43. [Google Scholar] [CrossRef]
- Weniger, E.J.; Čížek, J. Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Commun. 1990, 59, 471–493. [Google Scholar] [CrossRef]
- Čížek, J.; Vinette, F.; Weniger, E.J. Examples on the use of symbolic computation in physics and chemistry: Applications of the inner projection technique and of a new summation method for divergent series. Int. J. Quantum Chem. Symp. 1991, 25, 209–223. [Google Scholar] [CrossRef]
- Čížek, J.; Vinette, F.; Weniger, E.J. On the use of the symbolic language Maple in physics and chemistry: Several examples. In Proceedings of the Proceedings of the Fourth International Conference on Computational Physics PHYSICS COMPUTING ’92; Singapore, de Groot, R.A., Nadrchal, J., Eds.; 1993; pp. 31–44. [Google Scholar]
- Čížek, J.; Vinette, F.; Weniger, E.J. On the use of the symbolic language Maple in physics and chemistry: Several examples. Int. J. Mod. Phys. C Reprint of [34]. 1993, 4, 257–270. [Google Scholar] [CrossRef]
- Caliceti, E.; Meyer-Hermann, M.; Ribeca, P.; Surzhykov, A.; Jentschura, U.D. From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep. 2007, 446, 1–96. [Google Scholar] [CrossRef]
- Čížek, J.; Zamastil, J.; Skála, L. New summation technique for rapidly divergent perturbation series. Hydrogen atom in magnetic field. J. Math. Phys. 2003, 44, 962–968. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Becher, J.; Weniger, E.J.; Soff, G. Resummation of QED perturbation series by sequence transformations and the prediction of perturbative coefficients. Phys. Rev. Lett. 2000, 85, 2446–2449. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Weniger, E.J.; Soff, G. Asymptotic improvement of resummations and perturbative predictions in quantum field theory. J. Phys. G 2000, 26, 1545–1568. [Google Scholar] [CrossRef]
- Weniger, E.J. Nonlinear sequence transformations: A computational tool for quantum mechanical and quantum chemical calculations. Int. J. Quantum Chem. 1996, 57, 265–280. [Google Scholar] [CrossRef]
- Weniger, E.J. Erratum: Nonlinear sequence transformations: A computational tool for quantum mechanical and quantum chemical calculations. Int. J. Quantum Chem. 1996, 58, 319–321. [Google Scholar] [CrossRef]
- Weniger, E.J. A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic, and octic anharmonic oscillator. Ann. Phys. (NY) 1996, 246, 133–165. [Google Scholar] [CrossRef]
- Weniger, E.J. Construction of the strong coupling expansion for the ground state energy of the quartic, sextic and octic anharmonic oscillator via a renormalized strong coupling expansion. Phys. Rev. Lett. 1996, 77, 2859–2862. [Google Scholar] [CrossRef] [PubMed]
- Weniger, E.J. Performance of superconvergent perturbation theory. Phys. Rev. A 1997, 56, 5165–5168. [Google Scholar] [CrossRef]
- Weniger, E.J.; Čížek, J.; Vinette, F. Very accurate summation for the infinite coupling limit of the perturbation series expansions of anharmonic oscillators. Phys. Lett. A 1991, 156, 169–174. [Google Scholar] [CrossRef]
- Weniger, E.J.; Čížek, J.; Vinette, F. The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations. J. Math. Phys. 1993, 34, 571–609. [Google Scholar] [CrossRef]
- Borghi, R.; Santarsiero, M. Summing Lax series for nonparaxial beam propagation. Opt. Lett. 2003, 28, 774–776. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Zang, W.; Li, Y.D.; Tian, J. Acceleration of electrons by a tightly focused intense laser beam. Opt. Expr. 2009, 17, 11850–11859. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zang, W.; Tian, J. Simulation of Gaussian laser beams and electron dynamics by Weniger transformation method. Opt. Expr. 2009, 17, 4959–4969. [Google Scholar]
- Dai, L.; Li, J.X.; Zang, W.P.; Tian, J.G. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam. Opt. Expr. 2011, 19, 9303–9308. [Google Scholar] [CrossRef]
- Borghi, R.; Gori, F.; Guattari, G.; Santarsiero, M. Decoding divergent series in nonparaxial optics. Opt. Lett. 2011, 36, 963–965. [Google Scholar] [CrossRef]
- Borghi, R. Evaluation of diffraction catastrophes by using Weniger transformation. Opt. Lett. 2007, 32, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Borghi, R. Summing Pauli asymptotic series to solve the wedge problem. J. Opt. Soc. Amer. A 2008, 25, 211–218. [Google Scholar] [CrossRef]
- Borghi, R. On the numerical evaluation of cuspoid diffraction catastrophes. J. Opt. Soc. Amer. A 2008, 25, 1682–1690. [Google Scholar] [CrossRef]
- Borghi, R. Joint use of the Weniger transformation and hyperasymptotics for accurate asymptotic evaluations of a class of saddle-point integrals. Phys. Rev. E 2008, 78, 026703–1 – 026703–11. [Google Scholar] [CrossRef]
- Borghi, R. Joint use of the Weniger transformation and hyperasymptotics for accurate asymptotic evaluations of a class of saddle-point integrals. II. Higher-order transformations. Phys. Rev. E 2009, 80, 016704–1 – 016704–15. [Google Scholar] [CrossRef]
- Borghi, R. On the numerical evaluation of umbilic diffraction catastrophes. J. Opt. Soc. Amer. A 2010, 27, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Borghi, R. Evaluation of cuspoid and umbilic diffraction catastrophes of codimension four. J. Opt. Soc. Amer. A 2011, 28, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Borghi, R. Optimizing diffraction catastrophe evaluation. Opt. Lett. 2011, 36, 4413–4415. [Google Scholar] [CrossRef]
- Borghi, R. Numerical computation of diffraction catastrophes with codimension eight. Phys. Rev. E 2012, 85, 046704–1 – 046704–14. [Google Scholar] [CrossRef]
- Rahman, Q.I.; Schmeisser, G. Analytic Theory of Polynomials; Clarendon Press: Oxford, U. K., 2003. [Google Scholar]
- Richards, D. Totally positive kernels, Polýa frequency functions, and generalized hypergeometric series. Lin. Alg. Applic. 1990, 137/138, 467–478. [Google Scholar] [CrossRef]
- Schoenberg, I.J. On Pólya frequency functions. I. The totally positive functions and their Laplace transforms. J. d’Anal. Math. 1951, 1, 331–374. [Google Scholar] [CrossRef]
- Driver, K.; Jordaan, K.; Martínez-Finkelshtein, A. Pólya frequency sequences and real zeros of some 3F2 polynomials. J. Math. Anal. Applic. 2007, 332, 1045–1055. [Google Scholar] [CrossRef]
- Orlando, F.; Farina, C.; Zarro, C.; Terra, P. Kepler’s equation and some of its pearls. American Journal of Physics 2018, 86, 11–11. [Google Scholar] [CrossRef]
| 1 | Actually, the definition of the converging factor used here differs by the classical definition by a factor z. This has been done for making the subsequent calculations easier. |



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
