Submitted:
24 December 2025
Posted:
25 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. APP Transcript and Iron Regulatory Elements
3. Cellular Iron Export in the Brain - APP and Ferroportin
4. Iron Binding Amyloid β
5. Clearance of Amyloid β from the Brain
6. Is Clearance of Labile Iron in the Interstitial Fluid a Function of Amyloid β?
7. Removal of Labile Iron from the Extracellular Milieu
8. Evidence Supporting that Amyloid β Functions as a Mammalian Siderophore
9. The Presence of Iron in Amyloid Deposits
10. Remaining Wor
11. CNS Clearance of Amyloid β in Patients with Alzheimer’s Disease
12. Is Anemia of Inflammation a Contributing Pathogenic Mechanism in Alzheimer’s Disease?
13. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Artificial Intelligence
References
- Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels/Metabolism. Biomed Res Int. 2018 Oct 25;2018:3087475. [CrossRef]
- Allen HB. Alzheimer's Disease: Assessing the Role of Spirochetes, Biofilms, the Immune System, and Amyloid-β with Regard to Potential Treatment and Prevention. J Alzheimers Dis. 2016 Jun 27;53(4):1271-6. [CrossRef]
- Ameka M, Hasty AH. Paying the Iron Price: Liver Iron Homeostasis and Metabolic Disease. Compr Physiol. 2022 Jun 29;12(3):3641-3663. [CrossRef]
- Anand G, Lahariya R. Bloodstream Infection-induced Neuroinflammation: from Systemic Infection To Brain Invasion. Curr Microbiol. 2025 Dec 1;83(1):47. [CrossRef]
- Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci. 2014 May;71(9):1607-22. [CrossRef]
- Anderson GJ, Frazer DM. Hepatic iron metabolism. Semin Liver Dis. 2005 Nov;25(4):420-32. [CrossRef]
- Andreev A, Erdinc B, Shivaraj K, Schmutz J, Levochkina O, Bhowmik D, Farag F, Money KM, Primavera LH, Gotlieb V, Sahni S. The Association Between Anemia of Chronic Inflammation and Alzheimer's Disease and Related Dementias. J Alzheimers Dis Rep. 2020 Sep 18;4(1):379-391. [CrossRef]
- Ayton S, Lei P, Hare DJ, Duce JA, George JL, Adlard PA, McLean C, Rogers JT, Cherny RA, Finkelstein DI, Bush AI. Parkinson's disease iron deposition caused by nitric oxide-induced loss of β-amyloid precursor protein. J Neurosci. 2015 Feb 25;35(8):3591-7. [CrossRef]
- Ayton S, Diouf I, Bush AI; Alzheimer’s disease Neuroimaging Initiative. Evidence that iron accelerates Alzheimer's pathology: a CSF biomarker study. J Neurol Neurosurg Psychiatry. 2018 May;89(5):456-460. [CrossRef]
- Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's disease. Nitric Oxide. 2023 May 1;134-135:23-37. [CrossRef]
- Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain. 2024 Jul 17;17(1):44. [CrossRef]
- Bailey DK, Kosman DJ. Is brain iron trafficking part of the physiology of the amyloid precursor protein? J Biol Inorg Chem. 2019 Dec;24(8):1171-1177. [CrossRef]
- Bandyopadhyay S, Hartley DM, Cahill CM, Lahiri DK, Chattopadhyay N, Rogers JT. Interleukin-1alpha stimulates non-amyloidogenic pathway by alpha-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. J Neurosci Res. 2006 Jul;84(1):106-18. [CrossRef]
- Banerjee P, Sahoo A, Anand S, Ganguly A, Righi G, Bovicelli P, Saso L, Chakrabarti S. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein. Neuromolecular Med. 2014 Dec;16(4):787-98. [CrossRef]
- Bao G, Clifton M, Hoette TM, Mori K, Deng SX, Qiu A, Viltard M, Williams D, Paragas N, Leete T, Kulkarni R, Li X, Lee B, Kalandadze A, Ratner AJ, Pizarro JC, Schmidt-Ott KM, Landry DW, Raymond KN, Strong RK, Barasch J. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol. 2010 Aug;6(8):602-9. [CrossRef]
- Barton Pai A, Pai MP, Depczynski J, McQuade CR, Mercier RC. Non-transferrin-bound iron is associated with enhanced Staphylococcus aureus growth in hemodialysis patients receiving intravenous iron sucrose. Am J Nephrol. 2006;26(3):304-9. [CrossRef]
- Baruch-Suchodolsky R, Fischer B. Abeta40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry. 2009 May 26;48(20):4354-70. [CrossRef]
- Belaidi AA, Gunn AP, Wong BX, Ayton S, Appukuttan AT, Roberts BR, Duce JA, Bush AI. Marked Age-Related Changes in Brain Iron Homeostasis in Amyloid Protein Precursor Knockout Mice. Neurotherapeutics. 2018 Oct;15(4):1055-1062. [CrossRef]
- Berggren K, Agrawal S, Fox JA, Hildenbrand J, Nelson R, Bush AI, Fox JH. Amyloid Precursor Protein Haploinsufficiency Preferentially Mediates Brain Iron Accumulation in Mice Transgenic for The Huntington's Disease Mutation. J Huntingtons Dis. 2017;6(2):115-125. [CrossRef]
- Bian K, Gao Z, Weisbrodt N, Murad F. The nature of heme/iron-induced protein tyrosine nitration. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5712-7. [CrossRef]
- Bishop GM, Robinson SR. Physiological roles of amyloid-beta and implications for its removal in Alzheimer's disease. Drugs Aging. 2004;21(10):621-30. [CrossRef]
- Bodovitz S, Falduto MT, Frail DE, Klein WL. Iron levels modulate alpha-secretase cleavage of amyloid precursor protein. J Neurochem. 1995 Jan;64(1):307-15. [CrossRef]
- Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity. Int J Biochem Cell Biol. 2011 Jun;43(6):877-85. [CrossRef]
- Boopathi S, Kolandaivel P. Fe(2+) binding on amyloid β-peptide promotes aggregation. Proteins. 2016 Sep;84(9):1257-74. [CrossRef]
- Bousejra-ElGarah F, Bijani C, Coppel Y, Faller P, Hureau C. Iron(II) binding to amyloid-β, the Alzheimer's peptide. Inorg Chem. 2011 Sep 19;50(18):9024-30. [CrossRef]
- Bradbury MW. Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 1997 Aug;69(2):443-54. [CrossRef]
- Bulk M, Moursel LG, van der Graaf LM, van Veluw SJ, Greenberg SM, van Duinen SG, van Buchem MA, van Rooden S, van der Weerd L. Cerebral Amyloid Angiopathy With Vascular Iron Accumulation and Calcification. Stroke. 2018 Sep;49(9):2081-2087. [CrossRef]
- Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol. 2014 Mar 13;5:45. [CrossRef]
- Cabantchik IZ, Karmi O, Nechushtai R. The Labile Side of Iron in Health and Disease: A Narrative Review. Adv Exp Med Biol. 2025;1480:47-60. [CrossRef]
- Cahill CM, Lahiri DK, Huang X, Rogers JT. Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta. 2009 Jul;1790(7):615-28. [CrossRef]
- Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q. Role of Blood-Brain Barrier in Alzheimer's Disease. J Alzheimers Dis. 2018;63(4):1223-1234. [CrossRef]
- Campolo N, Bartesaghi S, Radi R. Metal-catalyzed protein tyrosine nitration in biological systems. Redox Rep. 2014 Nov;19(6):221-31. [CrossRef]
- Cassagnes LE, Hervé V, Nepveu F, Hureau C, Faller P, Collin F. The catalytically active copper-amyloid-Beta state: coordination site responsible for reactive oxygen species production. Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11110-3. [CrossRef]
- Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013 May 15;13(5):509-519. [CrossRef]
- Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X. Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res. 2007 Oct;32(10):1640-5. [CrossRef]
- Chaudhary S, Ashok A, McDonald D, Wise AS, Kritikos AE, Rana NA, Harding CV, Singh N. Upregulation of Local Hepcidin Contributes to Iron Accumulation in Alzheimer's Disease Brains. J Alzheimers Dis. 2021;82(4):1487-1497. [CrossRef]
- Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018 Apr;14:450-464. [CrossRef]
- Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017 Sep;38(9):1205-1235. [CrossRef]
- Chen YT, Chen WY, Huang XT, Xu YC, Zhang HY. Iron dysregulates APP processing accompanying with sAPPα cellular retention and β-secretase inhibition in rat cortical neurons. Acta Pharmacol Sin. 2018 Feb;39(2):177-183. [CrossRef]
- Cheng Y, He CY, Tian DY, Chen SH, Ren JR, Sun HL, Xu MY, Tan CR, Fan DY, Jian JM, Sun PY, Zeng GH, Shen YY, Shi AY, Jin WS, Bu XL, Liu HM, Xu YM, Wang J, Wang YJ. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer's disease. Acta Neuropathol. 2023 Jun;145(6):717-731. [CrossRef]
- Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem. 2010 Oct 8;285(41):31217-32. [CrossRef]
- Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther. 2022 Jul;235:108122. [CrossRef]
- Chung YJ, Swietach P, Curtis MK, Ball V, Robbins PA, Lakhal-Littleton S. Iron-Deficiency Anemia Results in Transcriptional and Metabolic Remodeling in the Heart Toward a Glycolytic Phenotype. Front Cardiovasc Med. 2021 Jan 21;7:616920. [CrossRef]
- Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003 Mar 6;422(6927):37-44. [CrossRef]
- Coulson EJ, Paliga K, Beyreuther K, Masters CL. What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochem Int. 2000 Mar;36(3):175-84. [CrossRef]
- Crisell D, Talbot N, Drakesmith H. Iron, Hepcidin, and Immunity. Adv Exp Med Biol. 2025;1480:197-215. [CrossRef]
- Daigle I, Li C. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):12045-9. [CrossRef]
- Dauvergne E, Mullié C. Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections? Antibiotics (Basel). 2021 Mar 10;10(3):286. [CrossRef]
- Davison R, Gurven M. The importance of elders: Extending Hamilton's force of selection to include intergenerational transfers. Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2200073119. [CrossRef]
- Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem. 2014 Jun;129(5):756-69. [CrossRef]
- Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron. 2004 Aug 5;43(3):333-44. [CrossRef]
- Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest. 2008 Dec;118(12):4002-13. [CrossRef]
- Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2009 Mar;8(1):16-30. [CrossRef]
- De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007 Jun 20;26(12):2823-31. [CrossRef]
- de Oliveira J, Denadai MB, Costa DL. Crosstalk between Heme Oxygenase-1 and Iron Metabolism in Macrophages: Implications for the Modulation of Inflammation and Immunity. Antioxidants (Basel). 2022 Apr 27;11(5):861. [CrossRef]
- Devireddy LR, Hart DO, Goetz DH, Green MR. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010 Jun 11;141(6):1006-17. [CrossRef]
- Dlouhy AC, Bailey DK, Steimle BL, Parker HV, Kosman DJ. Fluorescence resonance energy transfer links membrane ferroportin, hephaestin but not ferroportin, amyloid precursor protein complex with iron efflux. J Biol Chem. 2019 Mar 15;294(11):4202-4214. [CrossRef]
- Du F, Qian ZM, Luo Q, Yung WH, Ke Y. Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats. Mol Neurobiol. 2015 Aug;52(1):101-14. [CrossRef]
- Duca L, Di Pierro E, Scaramellini N, Granata F, Graziadei G. The Relationship Between Non-Transferrin-Bound Iron (NTBI), Labile Plasma Iron (LPI), and Iron Toxicity. Int J Mol Sci. 2025 Jul 3;26(13):6433. [CrossRef]
- Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell. 2010 Sep 17;142(6):857-67. [CrossRef]
- Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D, Heyman A. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology. 1996 Jun;46(6):1592-6. [CrossRef]
- Everett J, Céspedes E, Shelford LR, Exley C, Collingwood JF, Dobson J, van der Laan G, Jenkins CA, Arenholz E, Telling ND. Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide β-amyloid (1-42). J R Soc Interface. 2014 Mar 26;11(95):20140165. [CrossRef]
- Faller P. Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chembiochem. 2009 Dec 14;10(18):2837-45. [CrossRef]
- Faruqi A, Zubair M, Mukkamalla SKR. Iron-Binding Capacity. 2024 May 2. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32644545.
- Fehling C, Qvist I. Ferritin concentration in cerebrospinal fluid. Acta Neurol Scand. 1985 Jun;71(6):510-2. [CrossRef]
- Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol. 2021 Jan;38:101789. [CrossRef]
- Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci. 2024 Feb 16;25(4):2337. [CrossRef]
- Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T. Amyloid-β peptide(1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem. 2011 Aug;118(3):407-15. [CrossRef]
- Fulop T, Witkowski JM, Larbi A, Khalil A, Herbein G, Frost EH. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer's disease? J Neurovirol. 2019 Oct;25(5):634-647. [CrossRef]
- Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med. 2025 Dec;57(1):2472871. [CrossRef]
- Goda GA, Forbes K, Sullivan ME, Eramo GA, Breen C, Porter DF, Khavari PA, Dominguez D, Aleman MM. Iron-sensitive RNA regulation by poly C-binding proteins. Nucleic Acids Res. 2025 Sep 23;53(18):gkaf942. [CrossRef]
- Golonka R, Yeoh BS, Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J Innate Immun. 2019;11(3):249-262. [CrossRef]
- Gong L, Tian X, Zhou J, Dong Q, Tan Y, Lu Y, Wu J, Zhao Y, Liu X. Iron Dyshomeostasis Induces Binding of APP to BACE1 for Amyloid Pathology, and Impairs APP/Fpn1 Complex in Microglia: Implication in Pathogenesis of Cerebral Microbleeds. Cell Transplant. 2019 Aug;28(8):1009-1017. [CrossRef]
- Goodman Y, Mattson MP. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol. 1994 Jul;128(1):1-12. [CrossRef]
- Guo LY, Alekseev O, Li Y, Song Y, Dunaief JL. Iron increases APP translation and amyloid-beta production in the retina. Exp Eye Res. 2014 Dec;129:31-7. [CrossRef]
- Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res. 2017 Apr;95(4):973-991. [CrossRef]
- Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry. 2021 Oct;26(10):5481-5503. [CrossRef]
- Harris ZL, Klomp LW, Gitlin JD. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr. 1998 May;67(5 Suppl):972S-977S. [CrossRef]
- Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018 May;20(5):910-919. [CrossRef]
- Hone E, Martins IJ, Fonte J, Martins RN. Apolipoprotein E influences amyloid-beta clearance from the murine periphery. J Alzheimers Dis. 2003 Feb;5(1):1-8. [CrossRef]
- Hvidberg V, Maniecki MB, Jacobsen C, Højrup P, Møller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin-heme complexes. Blood. 2005 Oct 1;106(7):2572-9. [CrossRef]
- Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012 Aug 15;4(147):147ra111. [CrossRef]
- Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T. Cerebral clearance of human amyloid-beta peptide (1-40) across the blood-brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem. 2007 Dec;103(6):2482-90. [CrossRef]
- Ito S, Ueno T, Ohtsuki S, Terasaki T. Lack of brain-to-blood efflux transport activity of low-density lipoprotein receptor-related protein-1 (LRP-1) for amyloid-beta peptide(1-40) in mouse: involvement of an LRP-1-independent pathway. J Neurochem. 2010 Jun;113(5):1356-63. [CrossRef]
- Jacobsen KT, Iverfeldt K. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci. 2009 Jul;66(14):2299-318. [CrossRef]
- Jeong SY, David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem. 2003 Jul 18;278(29):27144-8. [CrossRef]
- Ji C, Steimle BL, Bailey DK, Kosman DJ. The Ferroxidase Hephaestin But Not Amyloid Precursor Protein is Required for Ferroportin-Supported Iron Efflux in Primary Hippocampal Neurons. Cell Mol Neurobiol. 2018 May;38(4):941-954. [CrossRef]
- Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE. ApoE promotes the proteolytic degradation of Abeta. Neuron. 2008 Jun 12;58(5):681-93. [CrossRef]
- Jiang D, Li X, Williams R, Patel S, Men L, Wang Y, Zhou F. Ternary complexes of iron, amyloid-beta, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer's disease. Biochemistry. 2009 Aug 25;48(33):7939-47. [CrossRef]
- Jomova K, Alomar SY, Valko R, Nepovimova E, Kuca K, Valko M. The role of redox-active iron, copper, manganese, and redox-inactive zinc in toxicity, oxidative stress, and human diseases. EXCLI J. 2025 Jul 25;24:880-954. [CrossRef]
- Kagan BL, Thundimadathil J. Amyloid peptide pores and the beta sheet conformation. Adv Exp Med Biol. 2010;677:150-67. [CrossRef]
- Kakuta K, Orino K, Yamamoto S, Watanabe K. High levels of ferritin and its iron in fetal bovine serum. Comp Biochem Physiol A Physiol. 1997 Sep;118(1):165-9. [CrossRef]
- Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners? Neuron. 2014 Feb 19;81(4):740-54. [CrossRef]
- Kang DE, Pietrzik CU, Baum L, Chevallier N, Merriam DE, Kounnas MZ, Wagner SL, Troncoso JC, Kawas CH, Katzman R, Koo EH. Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest. 2000 Nov;106(9):1159-66. [CrossRef]
- Keown W, Gary JB, Stack TD. High-valent copper in biomimetic and biological oxidations. J Biol Inorg Chem. 2017 Apr;22(2-3):289-305. [CrossRef]
- Khan MA. Iron-Mediated Overexpression of Amyloid Precursor Protein via Iron Responsive mRNA in Alzheimer's Disease. Int J Mol Sci. 2025 May 30;26(11):5283. [CrossRef]
- Khan MA, Mohammad T, Alalami ZS, Hassan MI. Iron activates Alzheimer's amyloid precursor protein synthesis through an iron responsive element (IRE) mRNA binding to translation initiation factor. Int J Biol Macromol. 2025 Sep;321(Pt 3):146231. [CrossRef]
- Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med. 2025a Jan 9;14(2):386. [CrossRef]
- Kim JW, Lee JS, Choi YJ, Kim C. The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation. Biomolecules. 2025b Aug 16;15(8):1174. [CrossRef]
- Klomp LW, Farhangrazi ZS, Dugan LL, Gitlin JD. Ceruloplasmin gene expression in the murine central nervous system. J Clin Invest. 1996 Jul 1;98(1):207-15. [CrossRef]
- Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019 Mar;133:101-111. [CrossRef]
- Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol. 2023 Jul;22(7):632-642. [CrossRef]
- Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci. 2004 Nov 3;24(44):9838-46. [CrossRef]
- Kögel D, Deller T, Behl C. Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp Brain Res. 2012 Apr;217(3-4):471-9. [CrossRef]
- Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med. 2004 Jul;10(7):719-26. [CrossRef]
- Kontush A, Berndt C, Weber W, Akopyan V, Arlt S, Schippling S, Beisiegel U. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med. 2001 Jan 1;30(1):119-28. [CrossRef]
- Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020 Mar;18(3):152-163. [CrossRef]
- Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014 Dec;76(6):845-61. [CrossRef]
- Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, Cascorbi I, Walker LC, Kroemer HK, Warzok RW, Vogelgesang S. MDR1-P-Glycoprotein (ABCB1) Mediates Transport of Alzheimer's amyloid-beta peptides--implications for the mechanisms of Abeta clearance at the blood-brain barrier. Brain Pathol. 2007 Oct;17(4):347-53. [CrossRef]
- Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med. 2016 May 25;8(340):340ra72. [CrossRef]
- Lane DJ, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med. 2014 Oct;75:69-83. [CrossRef]
- Lee CY, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna). 2010 Aug;117(8):949-60. [CrossRef]
- LeVine SM. Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res. 1997 Jun 20;760(1-2):298-303. [CrossRef]
- LeVine SM. Albumin and multiple sclerosis. BMC Neurol. 2016 Apr 12;16:47. [CrossRef]
- LeVine SM, Zhu H, Tague SE. A Simplified Method for the Histochemical Detection of Iron in Paraffin Sections: Intracellular Iron Deposits in Central Nervous System Tissue. ASN Neuro. 2021 Jan-Dec;13:1759091420982169. [CrossRef]
- LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells. 2023 Nov 16;12(22):2641. [CrossRef]
- LeVine SM, Tsau S, Gunewardena S. Exploring Whether Iron Sequestration within the CNS of Patients with Alzheimer's Disease Causes a Functional Iron Deficiency That Advances Neurodegeneration. Brain Sci. 2023 Mar 18;13(3):511. [CrossRef]
- LeVine SM. Exploring Potential Mechanisms Accounting for Iron Accumulation in the Central Nervous System of Patients with Alzheimer's Disease. Cells. 2024a Apr 16;13(8):689. [CrossRef]
- LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist. 2024b Oct;30(5):525-544. [CrossRef]
- Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. Microglial Priming in Infections and Its Risk to Neurodegenerative Diseases. Front Cell Neurosci. 2022 Jun 15;16:878987. [CrossRef]
- Lipscomb DC, Gorman LG, Traystman RJ, Hurn PD. Low molecular weight iron in cerebral ischemic acidosis in vivo. Stroke. 1998 Feb;29(2):487-92; discussion 493. [CrossRef]
- Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13612-7. [CrossRef]
- Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci. 2024 May 30;16:1368200. [CrossRef]
- Loke SY, Siddiqi NJ, Alhomida AS, Kim HC, Ong WY. Expression and localization of duodenal cytochrome b in the rat hippocampus after kainate-induced excitotoxicity. Neuroscience. 2013 Aug 15;245:179-90. [CrossRef]
- Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease. Mol Psychiatry. 2019 Mar;24(3):345-363. [CrossRef]
- Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci. 1998 Jun 11;158(1):47-52. [CrossRef]
- Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev. 2025 Jan 1;105(1):441-491. [CrossRef]
- Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, Cedarbaum J, Brashear R, Miller DS. Neuropsychiatric symptoms in Alzheimer's disease. Alzheimers Dement. 2011 Sep;7(5):532-9. [CrossRef]
- Ma G, Chen S, Wang X, Ba M, Yang H, Lu G. Short-term interleukin-1(beta) increases the release of secreted APP(alpha) via MEK1/2-dependent and JNK-dependent alpha-secretase cleavage in neuroglioma U251 cells. J Neurosci Res. 2005 Jun 1;80(5):683-92. [CrossRef]
- Madu AJ, Ughasoro MD. Anaemia of Chronic Disease: An In-Depth Review. Med Princ Pract. 2017;26(1):1-9. [CrossRef]
- Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE. Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci. 2009 Apr 1;29(13):4252-62. [CrossRef]
- Marques F, Falcao AM, Sousa JC, Coppola G, Geschwind D, Sousa N, Correia-Neves M, Palha JA. Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology. 2009 Jun;150(6):2822-8. [CrossRef]
- Marques O, Weiss G, Muckenthaler MU. The role of iron in chronic inflammatory diseases: from mechanisms to treatment options in anemia of inflammation. Blood. 2022 Nov 10;140(19):2011-2023. [CrossRef]
- Matsuura H, Akahane S, Kaido T, Kamijo T, Sakamoto K, Yamauchi K. Apolipoprotein E isoforms and their Cys-thiol modifications impact LRP1-mediated metabolism of triglyceride-rich lipoproteins. FEBS Lett. 2024 Feb;598(3):347-362. [CrossRef]
- Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 2010 Dec 24;330(6012):1774. [CrossRef]
- Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li QX. Overexpression of Alzheimer's disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem. 2002 Nov 22;277(47):44670-6. [CrossRef]
- McCarthy RC, Park YH, Kosman DJ. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep. 2014 Jul;15(7):809-15. [CrossRef]
- McCarthy RC, Kosman DJ. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015 Feb;72(4):709-27. [CrossRef]
- McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee CH, Wessling-Resnick M. Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem. 2018 May 18;293(20):7853-7863. [CrossRef]
- Mercadante CJ, Prajapati M, Parmar JH, Conboy HL, Dash ME, Pettiglio MA, Herrera C, Bu JT, Stopa EG, Mendes P, Bartnikas TB. Gastrointestinal iron excretion and reversal of iron excess in a mouse model of inherited iron excess. Haematologica. 2019 Apr;104(4):678-689. [CrossRef]
- Mezzanotte M, Ammirata G, Boido M, Stanga S, Roetto A. Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic-neuronal crosstalk to counteract iron dyshomeostasis during aging. Sci Rep. 2022 Jul 9;12(1):11724. [CrossRef]
- Miklós I, Zádori Z. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. PLoS Comput Biol. 2012 Feb;8(2):e1002356. [CrossRef]
- Miklossy J, Khalili K, Gern L, Ericson RL, Darekar P, Bolle L, Hurlimann J, Paster BJ. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimers Dis. 2004 Dec;6(6):639-49; discussion 673-81. [CrossRef]
- Miklossy J. Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques. J Alzheimers Dis. 2016 Jun 13;53(4):1459-73. [CrossRef]
- Mohamed LA, Kaddoumi A. In vitro investigation of amyloid-β hepatobiliary disposition in sandwich-cultured primary rat hepatocytes. Drug Metab Dispos. 2013 Oct;41(10):1787-96. [CrossRef]
- MohanKumar SMJ, Murugan A, Palaniyappan A, MohanKumar PS. Role of cytokines and reactive oxygen species in brain aging. Mech Ageing Dev. 2023 Sep;214:111855. [CrossRef]
- Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement. 2018 Dec;14(12):1602-1614. [CrossRef]
- Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH. Iron trafficking inside the brain. J Neurochem. 2007 Dec;103(5):1730-40. [CrossRef]
- Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000 Feb;20(1):77-95. [CrossRef]
- Morgan EH. Factors affecting the synthesis of transferrin by rat tissue slices. J Biol Chem. 1969 Aug 10;244(15):4193-9.
- Mrak RE, Griffin WS. Potential inflammatory biomarkers in Alzheimer's disease. J Alzheimers Dis. 2005 Mar;8(4):369-75. [CrossRef]
- Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxid Med Cell Longev. 2014;2014:604981. [CrossRef]
- Musallam KM, Taher AT. Iron deficiency beyond erythropoiesis: should we be concerned? Curr Med Res Opin. 2018 Jan;34(1):81-93. [CrossRef]
- Nair NG, Perry G, Smith MA, Reddy VP. NMR studies of zinc, copper, and iron binding to histidine, the principal metal ion complexing site of amyloid-beta peptide. J Alzheimers Dis. 2010;20(1):57-66. [CrossRef]
- Nattrass S, Croft DP, Ellis S, Cant MA, Weiss MN, Wright BM, Stredulinsky E, Doniol-Valcroze T, Ford JKB, Balcomb KC, Franks DW. Postreproductive killer whale grandmothers improve the survival of their grandoffspring. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26669-26673. [CrossRef]
- Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004 Dec 17;306(5704):2090-3. [CrossRef]
- Osgood D, Miller MC, Messier AA, Gonzalez L, Silverberg GD. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier. Neurobiol Aging. 2017 Sep;57:178-185. [CrossRef]
- Otterbein LE, Foresti R, Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res. 2016 Jun 10;118(12):1940-1959. [CrossRef]
- Pal I, Nath AK, Roy M, Seal M, Ghosh C, Dey A, Dey SG. Formation of compound I in heme bound Aβ-peptides relevant to Alzheimer's disease. Chem Sci. 2019 Jul 25;10(36):8405-8410. [CrossRef]
- Pan Y, Ren Z, Gao S, Shen J, Wang L, Xu Z, Yu Y, Bachina P, Zhang H, Fan X, Laganowsky A, Yan N, Zhou M. Structural basis of ion transport and inhibition in ferroportin. Nat Commun. 2020 Nov 10;11(1):5686. [CrossRef]
- Pantopoulos K. BioIron: Origin, Chemical Properties, and Biological Functions. Adv Exp Med Biol. 2025;1480:1-15. [CrossRef]
- Parra-Torres V, Melgar-Rodríguez S, Muñoz-Manríquez C, Sanhueza B, Cafferata EA, Paula-Lima AC, Díaz-Zúñiga J. Periodontal bacteria in the brain-Implication for Alzheimer's disease: A systematic review. Oral Dis. 2023 Jan;29(1):21-28. [CrossRef]
- Pastore A, Raimondi F, Rajendran L, Temussi PA. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides? Commun Biol. 2020 Mar 19;3(1):135. [CrossRef]
- Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci. 2002 Aug 1;22(15):6578-86. [CrossRef]
- Pihlaja R, Koistinaho J, Kauppinen R, Sandholm J, Tanila H, Koistinaho M. Multiple cellular and molecular mechanisms are involved in human Aβ clearance by transplanted adult astrocytes. Glia. 2011 Nov;59(11):1643-57. [CrossRef]
- Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep. 2024 Mar 5;14(1):5376. [CrossRef]
- Provenzano F, Deleidi M. Reassessing neurodegenerative disease: immune protection pathways and antagonistic pleiotropy. Trends Neurosci. 2021 Oct;44(10):771-780. [CrossRef]
- Qiang YX, Deng YT, Zhang YR, Wang HF, Zhang W, Dong Q, Feng JF, Cheng W, Yu JT. Associations of blood cell indices and anemia with risk of incident dementia: A prospective cohort study of 313,448 participants. Alzheimers Dement. 2023 Sep;19(9):3965-3976. [CrossRef]
- Qiao B, Sugianto P, Fung E, Del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T, Nemeth E. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 2012 Jun 6;15(6):918-24. [CrossRef]
- Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1. Front Aging Neurosci. 2015 Jul 15;7:136. [CrossRef]
- Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283:537–541. [CrossRef]
- Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson LN. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences. J Biol Chem. 1999 Mar 5;274(10):6421-31. [CrossRef]
- Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem. 2002 Nov 22;277(47):45518-28. [CrossRef]
- Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM, Friedlich AL, Lahiri DK, Leedman PJ, Huang X, Cahill CM. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochem Soc Trans. 2008 Dec;36(Pt 6):1282-7. [CrossRef]
- Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol. 2022 Mar 15;13:855751. [CrossRef]
- Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med. 2001 Feb 15;30(4):447-50. [CrossRef]
- Roy M , Pal I , Nath AK , Dey SG. Peroxidase activity of heme bound amyloid β peptides associated with Alzheimer's disease. Chem Commun (Camb). 2020 Apr 28;56(33):4505-4518. [CrossRef]
- Rubino JT, Franz KJ. Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function. J Inorg Biochem. 2012 Feb;107(1):129-43. [CrossRef]
- Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med. 2007 Sep;13(9):1029-31. [CrossRef]
- Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer's disease. J Alzheimers Dis. 2013;33 Suppl 1(0 1):S87-100. [CrossRef]
- Sands SA, Williams R, Marshall S 3rd, LeVine SM. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis. Neurosci Lett. 2014 Oct 17;582:133-8. [CrossRef]
- Sands SA, Leung-Toung R, Wang Y, Connelly J, LeVine SM. Enhanced Histochemical Detection of Iron in Paraffin Sections of Mouse Central Nervous System Tissue: Application in the APP/PS1 Mouse Model of Alzheimer's Disease. ASN Neuro. 2016 Sep 28;8(5):1759091416670978. [CrossRef]
- Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP) mRNA. Front Aging. 2021 Aug 11;2:721579. [CrossRef]
- Senejani AG, Maghsoudlou J, El-Zohiry D, Gaur G, Wawrzeniak K, Caravaglia C, Khatri VA, MacDonald A, Sapi E. Borrelia burgdorferi Co-Localizing with Amyloid Markers in Alzheimer's Disease Brain Tissues. J Alzheimers Dis. 2022;85(2):889-903. [CrossRef]
- Sharman MJ, Morici M, Hone E, Berger T, Taddei K, Martins IJ, Lim WL, Singh S, Wenk MR, Ghiso J, Buxbaum JD, Gandy S, Martins RN. APOE genotype results in differential effects on the peripheral clearance of amyloid-beta42 in APOE knock-in and knock-out mice. J Alzheimers Dis. 2010;21(2):403-9. [CrossRef]
- Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000 Dec;106(12):1489-99. [CrossRef]
- Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE. Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010 Oct;69(10):1034-43. [CrossRef]
- Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9866-8. [CrossRef]
- Sohn YS, Ghoti H, Breuer W, Rachmilewitz E, Attar S, Weiss G, Cabantchik ZI. The role of endocytic pathways in cellular uptake of plasma non-transferrin iron. Haematologica. 2012 May;97(5):670-8. [CrossRef]
- Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010 Mar 3;5(3):e9505. [CrossRef]
- Storck SE, Meister S, Nahrath J, Meißner JN, Schubert N, Di Spiezio A, Baches S, Vandenbroucke RE, Bouter Y, Prikulis I, Korth C, Weggen S, Heimann A, Schwaninger M, Bayer TA, Pietrzik CU. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest. 2016 Jan;126(1):123-36. [CrossRef]
- Storck SE, Hartz AMS, Bernard J, Wolf A, Kachlmeier A, Mahringer A, Weggen S, Pahnke J, Pietrzik CU. The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM. Brain Behav Immun. 2018 Oct;73:21-33. [CrossRef]
- Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol. 1995 Nov;5(11):424-8. [CrossRef]
- Swerdlow RH. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview. J Alzheimers Dis. 2023;92(3):751-768. [CrossRef]
- Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, Terasaki T. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res. 2006 Jul;23(7):1407-16. [CrossRef]
- Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015 Aug;11(8):457-70. [CrossRef]
- Tharp WG, Sarkar IN. Origins of amyloid-β. BMC Genomics. 2013 Apr 30;14:290. [CrossRef]
- Theurl I, Theurl M, Seifert M, Mair S, Nairz M, Rumpold H, Zoller H, Bellmann-Weiler R, Niederegger H, Talasz H, Weiss G. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008 Feb 15;111(4):2392-9. [CrossRef]
- Thomas DD, Espey MG, Vitek MP, Miranda KM, Wink DA. Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12691-6. [CrossRef]
- Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J, Moos T. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis. 2015 Sep;81:108-18. [CrossRef]
- Thomson AM, Cahill CM, Cho HH, Kassachau KD, Epis MR, Bridges KR, Leedman PJ, Rogers JT. The acute box cis-element in human heavy ferritin mRNA 5'-untranslated region is a unique translation enhancer that binds poly(C)-binding proteins. J Biol Chem. 2005 Aug 26;280(34):30032-45. [CrossRef]
- Thorwald MA, Sta Maria NS, Chakhoyan A, O'Day PA, Jacobs RE, Zlokovic B, Finch CE. Iron chelation by oral deferoxamine treatment decreased brain iron and iron signaling proteins. J Alzheimers Dis. 2025 Feb;103(4):1180-1190. [CrossRef]
- Tripathi AK, Karmakar S, Asthana A, Ashok A, Desai V, Baksi S, Singh N. Transport of Non-Transferrin Bound Iron to the Brain: Implications for Alzheimer's Disease. J Alzheimers Dis. 2017;58(4):1109-1119. [CrossRef]
- Tummala H, Li X, Homayouni R. Interaction of a novel mitochondrial protein, 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1), with the amyloid precursor protein family. Eur J Neurosci. 2010 Jun;31(11):1926-34. [CrossRef]
- Ueno M, Chiba Y, Matsumoto K, Nakagawa T, Miyanaka H. Clearance of beta-amyloid in the brain. Curr Med Chem. 2014;21(35):4085-90. [CrossRef]
- Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol. 2023 Aug 31;32(4):216-246. [CrossRef]
- Urmoneit B, Prikulis I, Wihl G, D'Urso D, Frank R, Heeren J, Beisiegel U, Prior R. Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy. Lab Invest. 1997 Aug;77(2):157-66.
- Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, González-Billault C, Núñez MT. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013 Aug;126(4):541-9. [CrossRef]
- van Duijn S, Nabuurs RJ, van Duinen SG, Natté R. Comparison of histological techniques to visualize iron in paraffin-embedded brain tissue of patients with Alzheimer's disease. J Histochem Cytochem. 2013 Nov;61(11):785-92. [CrossRef]
- Varga E, Pap R, Jánosa G, Sipos K, Pandur E. IL-6 Regulates Hepcidin Expression Via the BMP/SMAD Pathway by Altering BMP6, TMPRSS6 and TfR2 Expressions at Normal and Inflammatory Conditions in BV2 Microglia. Neurochem Res. 2021 May;46(5):1224-1238. [CrossRef]
- Vijaya Kumar DK, Mitchell TA, Tailor BA, Moir AP, Navalpur Shanmugam NK, Eimer WA, Ghelichi J, Choi SH, Su C, Rodriguez AS, Kim E, Moir RD, Tanzi RE. Human amylin is a potent antimicrobial peptide that exhibits antimicrobial synergism with the amyloid beta protein. Alzheimers Dement. 2025 Aug;21(8):e70490. [CrossRef]
- Visanji NP, Collingwood JF, Finnegan ME, Tandon A, House E, Hazrati LN. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson's disease and multiple system atrophy. J Parkinsons Dis. 2013;3(4):523-37. [CrossRef]
- Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, Kunert-Keil C, Walker LC, Warzok RW. Deposition of Alzheimer's beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics. 2002 Oct;12(7):535-41. [CrossRef]
- Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ. Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci. 2010 Jan;67(1):123-33. [CrossRef]
- Wang CY, Babitt JL. Liver iron sensing and body iron homeostasis. Blood. 2019 Jan 3;133(1):18-29. [CrossRef]
- Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005 Mar 10;352(10):1011-23. [CrossRef]
- Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010 Aug 21;30:105-22. [CrossRef]
- White MR, Kandel R, Hsieh IN, De Luna X, Hartshorn KL. Critical role of C-terminal residues of the Alzheimer's associated β-amyloid protein in mediating antiviral activity and modulating viral and bacterial interactions with neutrophils. PLoS One. 2018 Mar 16;13(3):e0194001. [CrossRef]
- Williams GC. Pleiotropy, Natural Selection, and the Evolution of Senescence: Evolution 1957;11:398-411. [CrossRef]
- Wisniewski HM, Wegiel J. Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol. 1994;87(3):233-41. [CrossRef]
- Wisniewski HM, Frackowiak J, Mazur-Kolecka B. In vitro production of beta-amyloid in smooth muscle cells isolated from amyloid angiopathy-affected vessels. Neurosci Lett. 1995 Jan 2;183(1-2):120-3. [CrossRef]
- Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One. 2014 Dec 2;9(12):e114174. [CrossRef]
- Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett. 2007 Dec 18;429(2-3):95-100. [CrossRef]
- Wu J, Li S, Li C, Cui L, Ma J, Hui Y. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress. Redox Biol. 2021 Nov;47:102170. [CrossRef]
- Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res. 2025 Mar 1;20(3):695-714. [CrossRef]
- Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener. 2015 Nov 2;10:58. [CrossRef]
- Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA. Iron Regulates Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. J Alzheimers Dis. 2016;51(2):471-87. [CrossRef]
- Yanatori I, Tabuchi M, Kawai Y, Yasui Y, Akagi R, Kishi F. Heme and non-heme iron transporters in non-polarized and polarized cells. BMC Cell Biol. 2010 Jun 4;11:39. [CrossRef]
- Yen CC, Shen CJ, Hsu WH, Chang YH, Lin HT, Chen HL, Chen CM. Lactoferrin: an iron-binding antimicrobial protein against Escherichia coli infection. Biometals. 2011 Aug;24(4):585-94. [CrossRef]
- Yugay D, Goronzy DP, Kawakami LM, Claridge SA, Song TB, Yan Z, Xie YH, Gilles J, Yang Y, Weiss PS. Copper Ion Binding Site in β-Amyloid Peptide. Nano Lett. 2016 Oct 12;16(10):6282-6289. [CrossRef]
- Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z. Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid β accumulation after Porphyromonas gingivalis infection. J Neurochem. 2021 Aug;158(3):724-736. [CrossRef]
- Zerbinatti CV, Bu G. LRP and Alzheimer's disease. Rev Neurosci. 2005;16(2):123-35. [CrossRef]
- Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016 Nov 29;87(22):2324-2332. [CrossRef]
- Zhao Z. Hydroxyl radical generations form the physiologically relevant Fenton-like reactions. Free Radic Biol Med. 2023 Nov 1;208:510-515. [CrossRef]
- Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012 Feb;133(2):177-88. [CrossRef]
- Zou K, Gong JS, Yanagisawa K, Michikawa M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci. 2002 Jun 15;22(12):4833-41. [CrossRef]
- Zou Z, Cai J, Zhong A, Zhou Y, Wang Z, Wu Z, Yang Y, Li X, Cheng X, Tan J, Fan Y, Zhang X, Lu Y, Zhou Y, Yang L, Zhang C, Zhao Q, Fu D, Shen Q, Chen J, Bai S, Wu L, Chen Y, Chen X, Chen J, Zheng H, Wang H, Lou Y, Ding Y, Shen S, Ye Y, Chen L, Lin Y, Huang J, Zou K, Zhang J, Bian B, Huang C, Rong C, Dai L, Xu Y, Cheng L, Chen Y, Luo Y, Zhang S, Li L. Using the synthesized peptide HAYED (5) to protect the brain against iron catalyzed radical attack in a naturally senescence Kunming mouse model. Free Radic Biol Med. 2019a Jan;130:458-470. [CrossRef]
- Zou Z, Shao S, Zou R, Qi J, Chen L, Zhang H, Shen Q, Yang Y, Ma L, Guo R, Li H, Tian H, Li P, Yu M, Wang L, Kong W, Li C, Yu Z, Huang Y, Chen L, Shao Q, Gao X, Chen X, Zhang Z, Yan J, Shao X, Pan R, Xu L, Fang J, Zhao L, Huang Y, Li A, Zhang Y, Huang W, Tian K, Hu M, Xie L, Wu L, Wu Y, Luo Z, Xiao W, Ma S, Wang J, Huang K, He S, Yang F, Zhou S, Jia M, Zhang H, Lu H, Wang X, Tan J. Linking the low-density lipoprotein receptor-binding segment enables the therapeutic 5-YHEDA peptide to cross the blood-brain barrier and scavenge excess iron and radicals in the brain of senescent mice. Alzheimers Dement (N Y). 2019b Nov 6;5:717-731. [CrossRef]
| Supporting evidence2 | Comment |
| Amyloid β binds both ferrous and ferric iron | An oxidase is not required for binding |
| Amyloid β has a relatively high affinity for iron | Would keep iron bound to it during export and may limit iron-catalyzed redox reactions |
| Amyloid β is regularly produced from multiple sites and enters the interstitial fluid | Provides a surveillance function to rapidly capture labile iron |
| Amyloid β is cleared by a variety of mechanisms | Ensures that labile iron is removed from the interstitial fluid and facilitate the delivery of iron for use by other cells |
| Amyloid β is relatively small | Enables it to access sites unavailable to larger proteins |
| Amyloid β can bind multiple atoms of iron | Can transport more iron than some other iron transport proteins. This could be advantageous during infections or disease, when there could be localized areas of relatively high concentrations of liberated iron |
| Amyloid β expression can increase during infection, inflammation, or high iron levels | This response can reduce the availability of labile iron during times of need |
| Amyloid β is conserved among vertebrates | The benefits of amyloid β outweigh its negative potential for neuropathology |
| Work Remaining | |
| Demonstrate that soluble amyloid β in the interstitial fluid has bound iron | Only a very small fraction of amyloid β would be expected to have iron bound during normal states, but this fraction may increase when the liberation of iron is increased, e.g., during tissue injury |
| Demonstrate that amyloid β with bound iron can undergo clearance | For in vitro studies, iron and amyloid β concentrations and time in culture can affect amyloid β aggregation, which can influence transport |
| Demonstrate that failing to clear labile iron causes increased tissue damage and risk of infections | Experimental conditions may not reflect natural circumstances, or redundant protective mechanisms could counter effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).