Submitted:
23 December 2025
Posted:
25 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Strategies for Creating Nanostructures and Nanosized Materials
2.1. Top–Down Approaches
2.2. Bottom–Up Approaches
2.3. Green or Bio-Inspired Synthesis
2.4. Hybrid Approaches
2.5. Emerging Approaches
3. Unique Properties and Main Challenges of Nanoparticles Compared to Bulk Materials
- Antimicrobial coatings – Silver, zinc oxide and Titanium Dioxide nanoparticles incorporated into adhesives or composites inhibit bacterial growth at restoration margins [5].
- Reinforcement of restorative materials – Nanofillers enhance mechanical durability and improve esthetics in resin composites [5].
- Bioactive systems – Nano-hydroxyapatite and amorphous calcium phosphate promote remineralization of enamel and dentin [38].
- Smart materials – Quantum dot–based systems and pH-responsive nanoparticles are being developed for caries detection and targeted therapeutic release [39].
4. Dental Restorative Materials Modified with Nanotechnology
4.1. Dental Composites Modified with Nanotechnology
| Reference | Objective | Nanoparticles / Additives | Main Findings |
| [52] | To determine how incorporating nanoclay as a filler influences the flexural strength of fiber-reinforced composites (FRCs). | nanoclay fillers | nanoclay filler loading may enhance the flexural strength of FRCs. |
| [53] | To examine how silicon dioxide (SiO2) nanofibers affect the overall performance of dental composite materials. | silicon dioxide (SiO2) nanofibers | SiO2 nanofiber-containing Bis-GMA composite resins were envisioned as a promising choice to achieve long-term durable restorations in clinical therapies. |
| [54] | To compare and assess the mechanical properties of an experimental composite resin containing 2.5% titanium dioxide nanoparticles (TiO2 NPs) as a filler. | titanium dioxide nanoparticle (TiO2 NP) | the 2.5% TiO2 NP incorporated as filler in an experimental composite resin demonstrated higher mechanical properties compared to the conventional material. |
| [55] | To assess how adding zinc oxide nanoparticles to dental composites impacts their antimicrobial activity. | zinc oxide nanoparticles (ZnO-NPs) | zinc oxide nanoparticles (ZnO-NPs) blended at 10% (w/w) fraction into dental composites display antimicrobial activity . |
| [56] | To enhance the use and applicability of single-walled carbon nanotubes (SWCNTs) within dental resin-based composites (RBCs). | single-walled carbon nanotubes | The addition of modified SWCNTs improves the flexural strength of dental RBCs. |
| [57] | To investigate the antibacterial performance of a resin composite formulated with cross-linked quaternised polyethyleneimine (QPEI) nanoparticles. | cross-linked quaternised polyethyleneimine (QPEI) nanoparticles | PEI nanoparticles are highly promising in preventing bacterial recontamination when restoring teeth. |
| [58] | To employ a polylactic acid nanoscaffold loaded with CaO nanoparticles as a bioactive polymer component for dental resin composite applications. | CaO/polylactic acid nano scaffold | Nanotechnology as a novel technique has contributed to the use of nanoparticles in the organic resin matrix of dental composites at a nano-scale. |
| [59] | To examine how hydroxyapatite, zirconia, and glass nanoparticles affect wear behavior and microhardness of the organic matrix in an experimental dental composite resin. | nanoparticles of hydroxyapatite, zirconia, and glass | The inclusion of 32% nanohydroxyapatite, 27% of zirconia, and 19% of glass as filler into the experimental dental composite resin decreased the wear and increased the hardness. |
| [60] | To investigate mesoporous silica (MCM-41) coated with cerium oxide nanoparticles, and to evaluate its antibacterial effects and mechanical properties after incorporation into dental composite resin. | mesoporous silica coated with cerium oxide nanoparticles | The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite. |
| [61] | To determine the antibacterial efficacy of an experimental dental composite resin containing cerium oxide nanoparticles as filler particles. | cerium oxide nanoparticles | Integrating cerium oxide nanoparticles as fillers into dental composite resin can be promising in terms of antibacterial activity, provided furthermore study has to be conducted to examine other properties. |
| [62] | To evaluate how silver and calcium fluoride nanoparticles influence the antibacterial activity of composite resin against Streptococcus mutans. | silver and calcium fluoride nanoparticles | Composite resins containing 0.5% of AgNPs s and 15% of CaF2NPs exhibited a significantly lower antibacterial activity compared to the 1.5% and 1% of AgNPs s with 15% of CaF2NPs |
| [63] | To fabricate an experimental composite resin modified with grapefruit seed extract-mediated titanium dioxide nanoparticles (GSE-TiO2NPs), and to assess its antibacterial activity along with its mechanical and physical properties. | Green TiO2 nanoparticles | Incorporating GSE-TiO2NPs into composite resins enhances antibacterial activity, improves mechanical properties, and reduces polymerization shrinkage, suggesting a promising approach for developing advanced dental materials with integrated natural bioactive components. |
4.2. Glass Ionomer Cements (GICs) Modified with Nanotechnology
4.3. Dental Adhesive Systems Modified with Nanotechnology
5. Future Directions
- Multifunctional Nanofillers and Smart Materials
- Green and Sustainable Nanomaterial Synthesis
- Digital Integration and 3D Printing
- Long-Term Clinical Validation and Safety Assessment
- Overcoming Manufacturing and Translational Challenges
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feynman RP: There’s plenty of room at the bottom—An invitation to enter a new field of physics. Caltech Engineering and Science 1960, 23:5.
- Jandt, K.D.; Watts, D.C. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent. Mater. 2020, 36, 1365–1378. [CrossRef]
- Foss Hansen S, Maynard A, Baun A, Tickner JA: Late lessons from early warnings for nanotechnology. Nat Nanotechnol 2008, 3(8):444-447.
- Benko, H. ISO Technical Committee 229 Nanotechnologies. In: Metrology and Standardization of Nanotechnology. edn.; 2017: 259-268.
- Ezzat, D.; Sheta, M.S.; Kenawy, E.-R.; Eid, M.A.; Elkafrawy, H. Synthesis, characterization and evaluation of experimental dental composite resin modified by grapefruit seed extract-mediated TiO₂ nanoparticles: green approach. Odontology 2025, 113, 1148–1164. [CrossRef]
- Kumar, U.; Kumar, D.; Gosai, K.N.; Dalal, D.; Pragnya, B.; Nagarajan, S. Effectiveness of Nanoparticles in Enhancing Bond Strength in Adhesive Dentistry. J. Pharm. Bioallied Sci. 2024, 16, S3772–S3774. [CrossRef]
- Mukhtar, M.; Shen, B.; Yang, H.; Sheinerman, A.; Wang, Y.; Gleiter, H.; Dong, Y.; Li, J. Toughening of alumina ceramics by nanograin refinement. Ceram. Int. 2025, 51, 24348–24353. [CrossRef]
- Yadav, L.; Sihmar, A.; Kumar, S.; Dhaiya, H.; Vishwakarma, R. Review of nano-based smart coatings for corrosion mitigation: mechanisms, performance, and future prospects. Environ. Sci. Pollut. Res. 2024, 32, 17032–17058. [CrossRef]
- Chen F, Yan T-H, Bashir S, Liu JL: Chapter 2 - Synthesis of nanomaterials using top-down methods. In: Advanced Nanomaterials and Their Applications in Renewable Energy (Second Edition). edn. Edited by Liu JL, Yan T-H, Bashir S: Elsevier; 2022: 37-60.
- Kugarajah V, Hadem H, Ojha AK, Ranjan S, Dasgupta N, Mishra BN, Dharmalingam S: Chapter 1 - Fabrication of nanomaterials. In: Food, Medical, and Environmental Applications of Nanomaterials. edn. Edited by Pal K, Sarkar A, Sarkar P, Bandara N, Jegatheesan V: Elsevier; 2022: 1-39.
- Basu, P.; Verma, J.; Abhinav, V.; Ratnesh, R.K.; Singla, Y.K.; Kumar, V. Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication. Int. J. Mol. Sci. 2025, 26, 3027. [CrossRef]
- Wang, Y.; Zhang, M.; Lai, Y.; Chi, L. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36–61. [CrossRef]
- Abdalameer, N.K.; Majeed, N.F.; Buraihi, A.K.; Ali, S.H. Optical nanoparticle synthesis: a comprehensive laser ablation review. J. Opt. 2024, 1–15. [CrossRef]
- Xu, Z.; Fu, Y.; Han, W.; Wei, D.; Jiao, H.; Gao, H. Recent Developments in Focused Ion Beam and its Application in Nanotechnology. Curr. Nanosci. 2016, 12, 696–711. [CrossRef]
- Anders, A. Physics of arcing, and implications to sputter deposition. Thin Solid Films 2006, 502, 22–28. [CrossRef]
- Labunet, A.; Tonea, A.; Kui, A.; Sava, S. The Use of Laser Energy for Etching Enamel Surfaces in Dentistry—A Scoping Review. Materials 2022, 15, 1988. [CrossRef]
- Cardinaud, C.; Peignon, M.-C.; Tessier, P.-Y. Plasma etching: principles, mechanisms, application to micro- and nano-technologies. Appl. Surf. Sci. 2000, 164, 72–83. [CrossRef]
- George, M.; Jose, R.; Anju, T.R. Bottom Up Approaches in Nanomaterial Synthesis. In: Nanomaterial Green Synthesis. edn. Edited by Al-Khayri JM, Anju TR, Jain SM. Cham: Springer Nature Switzerland; 2025: 453-481.
- Yanguas-Gil, A. Physical and Chemical Vapor Deposition Techniques. In: Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD, And ALD. edn. Edited by Yanguas-Gil A. Cham: Springer International Publishing; 2017: 19-37.
- Kajihara, K. Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J. Asian Ceram. Soc. 2013, 1, 121–133. [CrossRef]
- Feng S, Guanghua L: Chapter 4 - Hydrothermal and Solvothermal Syntheses. In: Modern Inorganic Synthetic Chemistry. edn. Edited by Xu R, Pang W, Huo Q. Amsterdam: Elsevier; 2011: 63-95.
- Hsu, C.-Y.; Mahmoud, Z.H.; Abdullaev, S.; Ali, F.K.; Naeem, Y.A.; Mizher, R.M.; Karim, M.M.; Abdulwahid, A.S.; Ahmadi, Z.; Habibzadeh, S.; et al. Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Stud. Chem. Environ. Eng. 2024, 9. [CrossRef]
- Tian, Q.; Jing, L.; Chen, Y.; Su, P.; Tang, C.; Wang, G.; Liu, J. Micelle-templating interfacial self-assembly of two-dimensional mesoporous nanosheets for sustainable H2O2 electrosynthesis. Sustain. Mater. Technol. 2022, 32. [CrossRef]
- Simila, H.O.; Boccaccini, A.R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dent. Mater. 2022, 38, 725–747. [CrossRef]
- Gavinho SR, Graça MPF: Implant Surface: Advanced Coating Materials and Techniques to Improve Osseointegration. In: Nanotechnological Advances in Environmental, Cyber and CBRN Security: 2025// 2025; Dordrecht: Springer Netherlands; 2025: 521-531.
- Sheershwal, A.; Singh, A.; Sharma, V.; Trivedi, B. Microbial synthesis of nanoparticles for sustainable agricultural advancements: a comprehensive review. Nanotechnol. Environ. Eng. 2025, 10, 1–29. [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26. [CrossRef]
- Kim, Y.H.; Sting, F.J.; Loch, C.H. Top-down, bottom-up, or both? Toward an integrative perspective on operations strategy formation. J. Oper. Manag. 2014, 32, 462–474. [CrossRef]
- Povolotckaia A, Povolotskiy A, Man’shina A: Hybrid nanostructures: Synthesis, morphology and functional properties. Russian Chemical Reviews 2015, 84.
- Follmann, H.D.M.; Naves, A.F.; Araujo, R.A.; Dubovoy, V.; Huang, X.; Asefa, T.; Silva, R.; Oliveira, O.N. Hybrid Materials and Nanocomposites as Multifunctional Biomaterials. Curr. Pharm. Des. 2017, 23, 3794–3813. [CrossRef]
- Jaafar, A.; Schimpf, C.; Mandel, M.; Hecker, C.; Rafaja, D.; Krüger, L.; Arki, P.; Joseph, Y. Sol–gel derived hydroxyapatite coating on titanium implants: Optimization of sol–gel process and engineering the interface. J. Mater. Res. 2022, 37, 2558–2570. [CrossRef]
- Saeed, M.M.; Carthy, E.; Dunne, N.; Kinahan, D. Advances in nanoparticle synthesis assisted by microfluidics. Lab a Chip 2025, 25, 3060–3093. [CrossRef]
- Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials 2020, 10, 2317. [CrossRef]
- Siripongpreda, T.; Hoven, V.P.; Narupai, B.; Rodthongkum, N. Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. Eur. Polym. J. 2022, 184. [CrossRef]
- Alli, Y.A.; Anuar, H.; Manshor, M.R.; Bankole, O.M.; Rahman, N.A.A.; Olatunde, S.K.; Omotola, E.O.; Oladoye, P.O.; Ejeromedoghene, O.; Suhr, J.; et al. Influence of nanocomposites in extrusion-based 3D printing: A review. Hybrid Adv. 2023, 3. [CrossRef]
- Sajid, M. Nanomaterials: types, properties, recent advances, and toxicity concerns. Curr. Opin. Environ. Sci. Heal. 2022, 25. [CrossRef]
- Jandt, K.D.; Watts, D.C. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent. Mater. 2020, 36, 1365–1378. [CrossRef]
- Rao, A.; Sharma, A.; Shenoy, R.; Suprabha, B.S. Comparative evaluation of Nano-hydroxyapatite and casein Phosphopeptide-amorphous calcium phosphate on the remineralization potential of early enamel lesions: An in vitro study. J. Orofac. Sci. 2017, 9, 28. [CrossRef]
- Hu, X.; Zhang, Y.; Li, H.; Cao, J.; Pan, J.; Li, C.; Zheng, Y. pH response mechanism of bifunctional fluorescent carbon quantum dots and application in cancer detection and bioself-targeting imaging. J. Mol. Struct. 2024, 1308. [CrossRef]
- Khurshid, Z.; Zafar, M.; Qasim, S.; Shahab, S.; Naseem, M.; AbuReqaiba, A. Advances in Nanotechnology for Restorative Dentistry. Materials 2015, 8, 717–731. [CrossRef]
- Malhotra N, Mala K, Shashirashmi A: Strategies to Overcome Polymerization Shrinkage − Materials and Techniques. A Review. Dental update 2010, 37:115-118, 120.
- Ramesh M, Tamil Selvan M, Saravanakumar A: 4 - Evolution and recent advancements of composite materials in structural applications. In: Applications of Composite Materials in Engineering. edn. Edited by Puttegowda M, Gowda T.G Y, J.S B, Rangappa SM, Siengchin S: Elsevier Science Ltd.; 2025: 97-117.
- Afolabi, O.A.; Ndou, N. Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review. Polymers 2024, 16, 1907. [CrossRef]
- Bin Rashid, A.; Haque, M.; Islam, S.M.M.; Labib, K.R.U. Retraction notice to "Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications" [Heliyon 10 (2024) e24692]. Heliyon 2025. [CrossRef]
- Azmy, E.; Al-Kholy, M.R.Z.; Fattouh, M.; Kenawi, L.M.M.; Helal, M.A. Impact of Nanoparticles Additions on the Strength of Dental Composite Resin. Int. J. Biomater. 2022, 2022, 1–9. [CrossRef]
- Njuguna, J.; Ansari, F.; Sachse, S.; Rodriguez, V.M.; Siqqique, S.; Zhu, H. 1 - Nanomaterials, nanofillers, and nanocomposites: types and properties. In: Health and Environmental Safety of Nanomaterials (Second Edition). edn. Edited by Njuguna J, Pielichowski K, Zhu H: Woodhead Publishing; 2021: 3-37.
- McLean B, Yarovsky I: Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions. Small 2024, 20(51):e2405299.
- Gao, Y.; Cheng, D.; Wang, Z. Introduction to nanoclusters: from theory to application. Nanoscale Adv. 2024, 6, 3474–3475. [CrossRef]
- Nitodas, S.(.; Shah, R.; Das, M. Research Advancements in the Mechanical Performance and Functional Properties of Nanocomposites Reinforced with Surface-Modified Carbon Nanotubes: A Review. Appl. Sci. 2025, 15, 374. [CrossRef]
- Bakti, I.; Santosa, A.S.; Irawan, B.; Damiyanti, M. Chameleon effect of nano-filled composite resin restorations in artificial acrylic teeth of various shades.CONFERENCE NAME, LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE; p. 052011.
- Lopes, I.A.D.; Monteiro, P.J.V.C.; Mendes, J.J.B.; Gonçalves, J.M.R.; Caldeira, F.J.F. The effect of different finishing and polishing techniques on surface roughness and gloss of two nanocomposites. Saudi Dent. J. 2018, 30, 197–207. [CrossRef]
- Mortazavi, V.; Atai, M.; Fathi, M.; Keshavarzi, S.; Khalighinejad, N.; Badrian, H. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites. 2012, 9, 273–280.
- Wang, X.; Cai, Q.; Zhang, X.; Wei, Y.; Xu, M.; Yang, X.; Ma, Q.; Cheng, Y.; Deng, X. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO 2 nanofiber fillers. Mater. Sci. Eng. C 2016, 59, 464–470. [CrossRef]
- Sihivahanan, D.; Nandini, V.V. Comparative Evaluation of Mechanical Properties of Titanium Dioxide Nanoparticle Incorporated in Composite Resin as a Core Restorative Material. J. Contemp. Dent. Pr. 2021, 22, 686–690. [CrossRef]
- Aydin Sevinç B, Hanley L: Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2010, 94(1):22-31.
- Xia, Y.; Zhang, F.; Xu, L.; Gu, N. [Surface modification and microstructure of single-walled carbon nanotubes for dental composite resin].. 2006, 23, 1279–83.
- Shvero, D.K.; Zatlsman, N.; Hazan, R.; Weiss, E.I.; Beyth, N. Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. J. Dent. 2015, 43, 287–294. [CrossRef]
- Ranjbar, M.; Pardakhty, A.; Tahmipour, B.; Mohamadzadeh, I. Novel CaO/polylactic acid nanoscaffold as dental resin nanocomposites and the investigation of physicochemical properties. Luminescence 2019, 34, 360–367. [CrossRef]
- Winnier, J.; Hambire, C.; Hambire, U. Effect of Nanohydroxyapatite, Zirconia and Glass Filler Particles on the Wear and Microhardness of Experimental Dental Composite Resin. Int. J. Clin. Pediatr. Dent. 2023, 16, S81–S84. [CrossRef]
- Byun, S.-Y.; Han, A.R.; Kim, K.-M.; Kwon, J.-S. Antibacterial properties of mesoporous silica coated with cerium oxide nanoparticles in dental resin composite. Sci. Rep. 2024, 14, 1–11. [CrossRef]
- Varghese, E.J.; Sihivahanan, D.; Venkatesh, K.V. Development of Novel Antimicrobial Dental Composite Resin with Nano Cerium Oxide Fillers. Int. J. Biomater. 2022, 2022, 1–7. [CrossRef]
- Fathi, M.; Hosseinali, Z.; Molaei, T.; Hekmatfar, S. The effect of silver and calcium fluoride nanoparticles on antibacterial activity of composite resin against Streptococcus mutans: An in vitro study. Dent. Res. J. 2024, 21, 58. [CrossRef]
- Ezzat, D.; Sheta, M.S.; Kenawy, E.-R.; Eid, M.A.; Elkafrawy, H. Synthesis, characterization and evaluation of experimental dental composite resin modified by grapefruit seed extract-mediated TiO₂ nanoparticles: green approach. Odontology 2025, 113, 1148–1164. [CrossRef]
- Ezzat, D.; Azab, A.; Kamel, I.S.; Abdelmonem, M.; Ibrahim, M.A.; Ayad, A.; Soomro, R.; Wagdy, M.; Eldebawy, M. Phytomedicine and green nanotechnology: enhancing glass ionomer cements for sustainable dental restorations: a comprehensive review. Beni-Suef Univ. J. Basic Appl. Sci. 2025, 14, 1–22. [CrossRef]
- Lohbauer, U. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends. Materials 2009, 3, 76–96. [CrossRef]
- Ghilotti, J.; Mayorga, P.; Sanz, J.L.; Forner, L.; Llena, C. Remineralizing Ability of Resin Modified Glass Ionomers (RMGICs): A Systematic Review. J. Funct. Biomater. 2023, 14, 421. [CrossRef]
- Dionysopoulos, D.; Gerasimidou, O.; Papadopoulos, C. Modifications of Glass Ionomer Cements Using Nanotechnology: Recent Advances. Recent Prog. Mater. 2022, 04, 1–22. [CrossRef]
- Murugan R, Yazid F, Nasruddin NS, Anuar NNM: Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC). Minerals 2022, 12(1):9.
- Utama, M.D.; Ariani, N.; Machmud, E.; Mude, A.H.; Dharma, M.A.T.; Taqwim, A.; Risnawati, R. Synthesis and Application of Sol-Gel-Derived Nano-Silica in Glass Ionomer Cement for Dental Cementation. Biomimetics 2025, 10, 235. [CrossRef]
- Rangel-Coelho, J.P.; Gogolla, P.V.; Meyer, M.D.; Simão, L.C.; Costa, B.C.; Casarin, R.C.V.; Santamaria, M.P.; Teixeira, L.N.; Peruzzo, D.C.; Lisboa-Filho, P.N.; et al. Titanium dioxide nanotubes applied to conventional glass ionomer cement influence the expression of immunoinflammatory markers: An in vitro study. Heliyon 2024, 10, e30834. [CrossRef]
- Porter, G.; Tompkins, G.; Schwass, D.; Li, K.; Waddell, J.; Meledandri, C. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent. Mater. 2020, 36, 1096–1107. [CrossRef]
- Safa, S.; Panahandeh, N.; Torabzadeh, H.; Aghaee, M.; Hasani, E. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements. J. Conserv. Dent. 2018, 21, 130–135. [CrossRef]
- Abozaid, D.; Azab, A.; Bahnsawy, M.A.; Eldebawy, M.; Ayad, A.; Soomro, R.; Elwakeel, E.; Mohamed, M.A. Bioactive restorative materials in dentistry: a comprehensive review of mechanisms, clinical applications, and future directions. Odontology 2025. [CrossRef]
- Mansoor, A.; Mansoor, E.; Mansoor, E.; Mansoor, E.; Shah, A.U.; Asjid, U.; Martins, J.F.B.; Khan, S.; Palma, P.J. Synthesis of novel titania nanoparticles using corn silky hair fibres and their role in developing a smart restorative material in dentistry. Comput. Struct. Biotechnol. J. 2025, 29, 29–40. [CrossRef]
- Piati, G.C.; Silva, D.B.G.; Delbem, A.C.B.; Martorano, A.S.; Raucci, L.M.S.d.C.; de Oliveira, P.T.; Zucolotto, V.; Dias, B.J.M.; Brighenti, F.L.; de Oliveira, A.B.; et al. Phosphorylated chitosan and nano-sized TMP: Enhancing strength, antibiofilm action, and biocompatibility of restorative glass ionomer cements. J. Dent. 2025, 156, 105675. [CrossRef]
- Khan, A.S.; Khan, R.S.; Khan, M.; Rehman, I.U. Incorporation of nanoparticles in glass ionomer cements: Clinical applications, properties, and future perspectives. In Nanobiomaterials in Clinical Dentistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–138. [CrossRef]
- Saddique, H.; Aasim, M.; Khan, T.; Khan, A.; Ali, H.M.; Aziz, U. Surface energetics of antibiofilm property of dental material added with green synthesized copper nanoparticles. AMB Express 2025, 15, 1–17. [CrossRef]
- Paulraj, J.; Maiti, S.; Palani, H.; M, K.G. Evaluating the Biocompatibility of Novel Green-synthesized Nano-modified Glass Ionomer Cement: A Biochemical and Histopathological Analysis Study in Wistar Albino Rats. J. Contemp. Dent. Pr. 2025, 26, 192–199. [CrossRef]
- Ekrikaya, S.; Karatas, O.; Yilmaz, E.; Ildiz, N.; Dadi, S.; Sahin, D.G.; Ucar, M.; Ocsoy, I. Evaluation of the antibacterial activity, surface microhardness, and color change of glass ionomer cement containing green synthesized Ag@MoS2 nanocomposite after thermal aging. Clin. Oral Investig. 2025, 29, 1–16. [CrossRef]
- Amin, F.; Moin, S.F.; Kumar, N.; Asghar, M.A.; Mahmood, S.J.; Palma, P.J. The Impact of Zirconium Oxide Nanoparticles on the Mechanical and Physical Properties of Glass Ionomer Dental Materials. Int. J. Mol. Sci. 2025, 26, 5382. [CrossRef]
- Vinagre A, Ramos J: Adhesion in Restorative Dentistry. In., edn.; 2016.
- Bourgi, R.; Doumandji, Z.; Cuevas-Suárez, C.E.; Ben Ammar, T.; Laporte, C.; Kharouf, N.; Haikel, Y. Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. Coatings 2025, 15, 33. [CrossRef]
- Almosa, N. Impact of Incorporating Nanoparticles to Adhesive Resin on the Demineralization of Enamel: A Systematic Review. Dent. J. 2025, 13, 89. [CrossRef]
- Askar, H.; Krois, J.; Göstemeyer, G.; Schwendicke, F. Secondary caries risk of different adhesive strategies and restorative materials in permanent teeth: Systematic review and network meta-analysis. J. Dent. 2021, 104, 103541. [CrossRef]
- Dong, S.; Li, X.; Pan, Q.; Wang, K.; Liu, N.; Yutao, W.; Zhang, Y. Nanotechnology-based approaches for antibacterial therapy. Eur. J. Med. Chem. 2024, 279, 116798. [CrossRef]
- Jin, S.-E.; Jin, H.-E. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects. Nanomaterials 2021, 11, 263. [CrossRef]
- Adepu S, Ramakrishna S: Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26(19).
- Amin, F.; Fareed, M.A.; Zafar, M.S.; Khurshid, Z.; Palma, P.J.; Kumar, N. Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. Coatings 2022, 12, 1094. [CrossRef]
- Liu, Y.; Zhang, L.; Niu, L.-N.; Yu, T.; Xu, H.H.; Weir, M.D.; Oates, T.W.; Tay, F.R.; Chen, J.-H. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J. Dent. 2018, 72, 53–63. [CrossRef]
- Allende, J.B.; Nascimento, F.D.; Chiari, M.D.e.S.; Aliaga-Galvez, R.; Ñaupari-Villasante, R.; Miranda, C.B.; Pardo-Díaz, C.; Gutiérrez, M.F.; Covarrubias, C.; Loguercio, A.D.; et al. Evaluation of adhesive properties and enzymatic activity at the hybrid layer of a simplified adhesive loaded with 0.2 % Cu and 5 % ZnO nanoparticles: A Randomized Clinical Trial and ex vivo analysis. J. Dent. 2024, 149, 105283. [CrossRef]
- Niazi, F.H.; Alotaibi, B.; Abdulla, A.M.; AlTowayan, S.A.; Ahmed, S.Z.; Alshehri, D.; Samran, A.; Alsuwayyigh, N.; Luddin, N. Modified experimental adhesive with sepiolite nanoparticles on caries dentin treated with femtosecond laser and photodynamic activated erythrosine. An in vitro study. Photodiagnosis Photodyn. Ther. 2024, 49, 104306. [CrossRef]
- Alanazi, A.M.; Khan, A.A.; Siddiqui, Y.T.S.; Leemani, M.J.; Shabbir, T.; Ali, S. Photoactivated rose bengal-doped TiO2 nanoparticles modified fifth-generation adhesive on the survival rate of Streptococcus mutants and mechanical properties of tooth-colored restorative material to carious dentin. Microsc. Res. Tech. 2024, 87, 2943–2953. [CrossRef]
- Prasad, T.; Pawar, R.; Ganiger, C.; Ronad, Y.; Phaphe, S.; Mane, P.; Patil, S. The Impact of Orthodontic Adhesive Containing Resveratrol, Silver, and Zinc Oxide Nanoparticles on Shear Bond Strength: An In Vitro Study. Cureus 2024, 16. [CrossRef]
- A Alnazeh, A. Pretreatment of enamel with Riboflavin activated photodynamic therapy and Er, Cr: YSGG laser for bonding of orthodontic bracket with adhesive modified with cerium oxide nanoparticles. Photodiagnosis Photodyn. Ther. 2024, 49, 104285. [CrossRef]
| Strategy | Definition | Techniques | Advantages | Limitations | Examples in Dentistry |
| Top–down approach | Breaking down bulk materials into nanosized structures. | Ball milling, attrition, lithography, focused ion beam (FIB), etching (chemical/plasma), laser ablation, arc discharge. | Produces large quantities; relatively fast; well-defined patterns possible. | Limited control over particle size/shape may introduce defects; high energy cost. | Nanofillers for composites via milling; nanopatterned implant surfaces; plasma-treated enamel/dentin for bonding. |
| Bottom–up approach | Building nanostructures atom by atom or molecule by molecule. | Sol–gel, chemical vapor deposition (CVD), atomic layer deposition (ALD), hydrothermal/solvothermal, spray pyrolysis, flame synthesis, micelle/templating, self-assembly. | High precision; better control over size, morphology, and surface chemistry; scalable. | Requires precise control of conditions; equipment can be expensive. | Sol–gel bioactive glasses; CVD coatings on implants; templated porous hydroxyapatite scaffolds. |
| Green synthesis (bio-inspired) | Eco-friendly synthesis using plant extracts, microorganisms, or biomolecules as reducing and capping agents. | Plant extract–mediated synthesis, microbial-assisted synthesis, enzyme-mediated synthesis. | Non-toxic, biocompatible, sustainable, cost-effective. | Less control over uniformity; stability and reproducibility can vary. | AgNPs synthesized using Miswak or propolis extracts for antimicrobial composites; aloe vera–mediated ZnO nanoparticles; plant-extract hydroxyapatite for remineralization. |
| Hybrid approach | Combination of top-down and bottom-up techniques for optimized properties. | Etching + sol–gel coating; lithography + CVD; ball milling + surface functionalization. | Flexible; tailored structures with synergistic advantages. | More complex and costly; integration challenges. | Hybrid nanocomposites with high strength and bioactivity; surface-engineered implants with sol–gel derived nanocoatings. |
| Emerging approaches | Advanced synthesis strategies combining nanotechnology with modern fabrication. | Microfluidic-assisted synthesis, laser-assisted synthesis in liquids, nanomaterial-enhanced 3D printing. | Highly precise; reproducible; compatible with digital dentistry. | Still in early stages; limited large-scale adoption. | Customized nanocomposite prosthetics via 3D printing; microfluidic AgNPs for antimicrobial dental adhesives. |
| Reference | Objective | Nanoparticles / Additives | Main Findings |
| [77] | Synthesized CuNPs using Mentha longifolia extract and incorporated into GIC | Green-synthesized CuNPs | Inhibited biofilm formation on dental implants |
| [74] | Produced low-cost TiO2 NPs from biowaste corn silky hair fibre and added to GIC | Biowaste-derived TiO2 NPs | 5% addition significantly increased shear bond strength to enamel (4.93 ± 0.74 MPa, p < 0.05); confirmed sustainable elemental profile |
| [75] | Evaluated ChiPh and TMPnano incorporation into RMGIC | Nano-sized sodium trimetaphosphate (TMPnano) | 0.25% ChiPh + 14% TMPnano improved mechanical strength, fluoride release, and antibacterial properties while maintaining cytocompatibility |
| [78] | Tested biocompatibility of green-synthesized nano-modified GIC in rats | Chitosan, TiO2, ZrO2, and nHAp | Demonstrated satisfactory biocompatibility with enhanced tissue repair and no systemic toxicity |
| [79] | Compared antibacterial, microhardness, and color stability of GIC with AgNPs and Ag@MoS2 nanocomposites after thermal aging | Green-synthesized Ag@MoS2 NC | Maintained antibacterial activity without compromising color or microhardness after aging |
| [80] | Assessed the effect of nano-ZrO2 on physical and mechanical properties of commercial GICs | Zirconium oxide nanoparticles | 7 wt% improved flexural strength/modulus and water sorption; 2 wt% enhanced Vickers hardness |
| Reference | Objective | Nanoparticles / Additives | Main Findings |
| [90] | Evaluate effect of adhesive loaded with 0.2% Cu and 5% ZnO NPs on adhesive properties and enzymatic activity at the hybrid layer in an ex vivo randomized clinical model. | 0.2% Copper (Cu) NPs + 5% Zinc Oxide (ZnO) NPs | Reduced nanoleakage and gelatinolytic activity at the hybrid layer without compromising adhesive properties. |
| [91] | Assess CAD surface conditioners and effect of 1% Sep-NPs in experimental adhesive on Ra, SBS, DC, and rheological properties. | Sepiolite NPs (1%) | CAD conditioning with PA and FS laser improved surface roughness and adhesion. Modified adhesive (1% Sep-NPs) decreased DC and rheological properties. |
| [92] | Assess antimicrobial activity, μTBS, and DC of adhesive modified with photoactivated RB (0.5%) and RB-doped TiO2NPs (2% and 5%) on CAD. | Photoactivated Rose Bengal (RB)-doped TiO2 NPs (2%, 5%) | 5% RB-TiO2NP adhesive showed lowest S. mutans survival and highest bond strength. DC decreased with higher NP concentration. |
| [93] | Evaluate dentin bonding agents incorporated with AgNPs, ZnONPs, and RSVNPs on shear bond strength. | Silver NPs, Zinc Oxide NPs, Resveratrol NPs | RSV-NPs provided anti-cariogenic effects without significantly affecting mechanical properties. AgNPs and ZnONPs maintained bond strength. Further optimization required. |
| [94] | To evaluate the degree of conversion (DC) and shear bond strength (SBS) of an experimental adhesive (EA), either unmodified or supplemented with 1% cerium oxide (CeO2) nanoparticles, for bonding metallic brackets to enamel prepared using three distinct conditioning protocols: riboflavin activated photodynamic therapy (RF), Er,Cr:YSGG laser treatment (ECY), and phosphoric acid etching (PA). | Cerium oxide (CeO2)-NPs | Riboflavin activated photodynamic therapy (RF activated PDT) may serve as an alternative to 37% phosphoric acid (PA) for enamel conditioning during metallic bracket bonding. Incorporating 1% CeO2 nanoparticles into the experimental adhesive enhances shear bond strength (SBS) regardless of the conditioning method used. However, adding 1% CeO2 nanoparticles does not produce a statistically significant change in the degree of conversion (DC) compared with the unmodified experimental adhesive. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
