Submitted:
22 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
MSC: 42B35; 42B25; 42B20
1. Introduction
- (i)
- , ,
- (ii)
- ,
- (iii)
- for all , for some bounded constant .
- (iv)
- For , ; and for , .
- (a)
- The space is dense in ,
- (b)
- If , then ,
- (c)
- For , ,
- (1)
- For , we have ,
- (2)
- If , then a number exists such that ,
- (3)
- If , then there exists a positive number satisfying and .
- (4)
- For , if and only if , where denotes to the exponent conjugate of p.
2. Auxiliary Estimates
3. Proof of Theorem 1
4. Conclusions
Author Contributions
References
- Ding, Y. L2-boundedness of Marcinkiewicz integral with rough kernel. Hokkaido Math. J. 1998, 27, 105–115. [Google Scholar] [CrossRef]
- Al-Qassem, A.; Al-Salman, A.; Cheng, L.; Pan, Y. Marcinkiewicz integrals on product spaces. Studia Math. 2005, 167, 227–234. [Google Scholar] [CrossRef]
- Walsh, T. On the function of Marcinkiewicz. Studia Math. 1972, 44, 203–217. [Google Scholar] [CrossRef]
- Al-Qassem, H. Rough Marcinkiewicz integral operators on product spaces. Collec. Math. 2005, 36, 275–297. [Google Scholar]
- Wu, H. On multiple Marcinkiewicz integrals related to block spaces. Acta Math Sinica 2005, 48, 1233–1250. [Google Scholar]
- Wu, H. Boundedness of multiple Marcinkiewicz integral operators with rough kernels. J. Korean Math. Soc. 2006, 43, 635–658. [Google Scholar] [CrossRef]
- Chen, J.; Ding, Y.; Fan, D. Lp boundedness of the rough Marcinkiewicz integral on product domains. Chinese J. Contemp Math. 2000, 21, 47–54. [Google Scholar]
- Wu, H.; Xu, J. Rough Marcinkiewicz integrals associated to surfaces of revolution on product domains. Acta Math. Sci. 2009, 29, 294–304. [Google Scholar] [CrossRef]
- Choi, Y. Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains. J. Math. Anal. Appl. 2001, 261, 53–60. [Google Scholar] [CrossRef]
- Chen, J.; Fan, D.; Ying, Y. Rough Marcinkiewicz integrals with L(logL)2 kernels. Adv. Math. 2001, 30, 179–181. [Google Scholar]
- Fan, D.; Wu, H. On the generalized Marcinkiewicz integral operators with rough kernels. Can. Math. Bull. 2011, 54, 100–112. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Cheng, L.; Pan, Y. Generalized Littlewood-Paley functions on product spaces. Turk. J. Math. 2021, 45, 319–345. [Google Scholar] [CrossRef]
- Yano, S. Notes on Fourier analysis. XXIX. An extrapolation theorem. J. Math. Soc. Japan. 1951, 3, 296–305. [Google Scholar] [CrossRef]
- Chen, P.; Sung, S. Generalized Marcinkiewicz-Zygmund type inequalities for random variables and applications. J. Math. Ineq. 2016, 10, 837–848. [Google Scholar] [CrossRef]
- Liu, F.; Fu, Z.; Wang, L. Inequalities for generalized parametric Marcinkiewicz integrals along polynomial compound curves. J. Math. Ineq. 2020, 14, 187–209. [Google Scholar] [CrossRef]
- Ali, M.; Al-Qassem, H. On rough generalized Marcinkiewicz integrals along surfaces of revolution on product spaces. AIMS Mathematics 2024, 9, 4816–4829. [Google Scholar] [CrossRef]
- Liu, F. A note on generalized parametric Marcinkiewicz integrals. Bull. Korean Math. Soc. 2019, 56, 1099–1115. [Google Scholar]
- Ali, M.; Al-Qassem, H. A class of rough generalized Marcinkiewicz integrals along twisted surfaces. AIMS Mathematics 2025, 10, 14459–14471. [Google Scholar] [CrossRef]
- Kurtz, D. Littlewood-Paley and multiplier theorems on weighted Lp spaces. Trans. Amer. Math. Soc. 1980, 259, 235–254. [Google Scholar]
- Fan, D.; Pan, Y.; Yang, D. A weighted norm inequality for rough singular integrals. Tohoku Math. J. 1999, 51, 141–161. [Google Scholar] [CrossRef]
- Duoandikoetxea, J. Weighted norm inequalities for homogeneous singular integrals. T. Am. Math. Soc. 1993, 336, 869–880. [Google Scholar] [CrossRef]
- Al-Azri, B.; Al-Salman, A. Weighted Lp norms of Marcinkiewicz functions on product domains along surfaces. AIMS Mathematics 2024, 9, 8386–8405. [Google Scholar] [CrossRef]
- Sato, S. Estimates for singular integrals and extrapolation. Studia Math. 2009, 192, 219–233. [Google Scholar] [CrossRef]
- Qli, M.; Al-Senjlawi, A. Boundedness of Marcinkiewicz integrals on product spaces and extrapolation. Inter. J. Pure Appl. Math. 2014, 97, 49–66. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).