Preprint
Article

This version is not peer-reviewed.

Weighted Lp Estimates for Multiple Generalized Marcinkiewicz Functions

Submitted:

22 December 2025

Posted:

24 December 2025

You are already at the latest version

Abstract
In this paper we investigate the weighted $L^p$ boundedness of generalized Marcinkiewicz integrals $\mathcal{M}^{(\varepsilon)}_{\mathbf{K}}$ over multiple symmetric domains. Under the conditions $\mathbf{K}\in L^{q}( \mathbb{B}^{{{m}}-1}\times \mathbb{B}% ^{{{n}}-1})$, $q>1$, we stablish suitable weighted $L^p$ bounds for the integrals $\mathcal{M}^{(\varepsilon)}_{\mathbf{K}}$. These bounds are combined with an extrapolation argument of Yano so we obtain the weighted $L^p$ boundedness of $\mathcal{M}^{(\varepsilon)}_{\mathbf{K}}$ from the Triebel-Lizorkin space $\overset{.}{F}_{p}^{0,\varepsilon}(\omega_1,\omega_2)$ to the space $L^p(\omega_1,\omega_2)$ under the weak conditions $\mathbf{K}$ lie in the space $ B_q^{(0,\frac{2}{\varepsilon}-1)}(\mathbb{B}^{m-1}\times\mathbb{B}% ^{n-1})$ or in the space $L(\log L)^{2/\varepsilon}(\mathbb{B}^{m-1}\times\mathbb{B}% ^{n-1})$. Our findings are essential improvements and extension of several known findings in the literature.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated