Preprint
Article

This version is not peer-reviewed.

Patient-Level Classification of Rotator Cuff Tears on Shoulder MRI Using an Explainable Vision Transformer Framework

Submitted:

18 December 2025

Posted:

19 December 2025

You are already at the latest version

Abstract
Background/Objectives: Diagnosing Rotator Cuff Tears (RCTs) via Magnetic Resonance Imaging (MRI) is clinically challenging due to complex 3D anatomy and significant in-terobserver variability. Traditional slice-centric Convolutional Neural Networks (CNNs) often fail to capture the necessary volumetric context for accurate grading. This study aims to develop and validate the Patient-Aware Vision Transformer (Pa-ViT), an explainable deep learning framework designed for the automated, patient-level classification of RCTs (Normal, Partial-Thickness, and Full-Thickness). Methods: A large-scale retrospective dataset comprising 2,447 T2-weighted coronal shoulder MRI examinations was utilized. The proposed Pa-ViT framework employs a Vision Transformer (ViT-Base) backbone within a Weakly-Supervised Multiple Instance Learning (MIL) paradigm to aggregate slice-level semantic features into a unified patient diagnosis. The model was trained using a weighted cross-entropy loss to address class imbalance and was benchmarked against widely used CNN architectures and traditional machine learning classifiers. Results: The Pa-ViT model achieved a high overall accuracy of 91% and a macro-averaged F1-score of 0.91, significantly outperforming the standard VGG-16 baseline (87%). Notably, the model demonstrated superior discriminative power for the challenging Partial-Thickness Tear class (ROC AUC: 0.903). Furthermore, Attention Rollout visualizations confirmed the model’s reliance on genuine anatomical features, such as the supraspinatus footprint, rather than artifacts. Conclusions: By effectively modeling long-range dependencies, the Pa-ViT framework provides a robust alternative to traditional CNNs. It offers a clinically viable, explainable decision support tool that enhances diagnostic sensitivity, particularly for subtle partial-thickness tears.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated