Submitted:
16 December 2025
Posted:
17 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
| Diets Indoor and Extensive | ||
|---|---|---|
| OC | WOC | |
| Olive cake | 20 | 0 |
| Barley grain | 41.20 | 41.20 |
| Wheat grain | 20.40 | 20.40 |
| Soybean meal 47 | 11.60 | 11.60 |
| Rice bran | 4.50 | 4.50 |
| Corn grain | 2.20 | 2.20 |
| DDG´s corn | 4.50 | 4.50 |
| Beet molasses | 3.60 | 3.60 |
| Minerals and vitamins | 1.70 | 1.70 |
| Supplement min+vit+fitase | 0.30 | 0.30 |
| Chemical composition of diet | ||
| DM | 98.15 | 98.15 |
| OM | 94.16 | 94.16 |
| NDF | 24.04 | 24.04 |
| ADF | 10.50 | 10.50 |
| ADL | 3.09 | 3.09 |
| Cellulose | 7.41 | 7.41 |
| PB | 14.39 | 14.39 |
| GB | 4.30 | 4.30 |
2.2. Chemical Composition and Physicochemical Analysis
2.3. Fatty Acid Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical Analysis
3.2. Chemical Composition
3.3. Fatty Acid Profile
4. Conclusions
References
- Patsios, I. S., Kontogiannopoulos, N. K., Banias, F.G. Chapter 5 – Environmental impact assessment in agri-production: a comparative study of olive oil production in two European countries. Bio Econ. Agric. Prod. 2021, 83-116, ISBN 9780128197745.
- Ponnampalam, E. N., Holman, B. W. B. Chapter 22 – Sustainability II: Sustainavle animal production and meat processing. In F. Toldrá (Ed.), Lawrie´s meat science (9th ed., pp. 727-798). Woodhead Publishing.
- Safitri, R. A.; Asselt, E. D. Comparison of food safety hazards in pigs and broilers from intensive and extensive production systems: A Literature Review. J. Food Prot. 2024, 87, 100389.
- Echegaray, N., Domínguez, Cadavez, V. A.P.; Bermúdez, R.; Purriños, L.; Gonzales-Barron, U.; Hoffman, E.; Lorenzo. Influence of the production system (Intensive vs. Extensive) at farm level on proximate composition and volatile compounds of Portuguese lamb meat. Foods. 2021, 10, 10071450.
- Álvarez-Rodríguez, J.; Teixeira, A. Slaughter weight rather than sex affects carcass cuts and tissue composition of Bísaro pigs. Meat Sci. 2019, 154, 54-60.
- Council Regulation (EC)—Official Journal of the European Communities No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. 2009, pp. 1–30. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex: 32009R1099 (accessed on 10 October 2025).
- NP-3441/2008; Determinação do pH (Método de Referência). Portuguese Institute of Quality, Ministry of Economy and Innovation: Caparica, Portugal, 2008.
- Leite, A.; Domínguez, R.; Vasconcelos, L.; Ferreira, I.; Pereira, E.; Pinheiro, V.; Outor-Monteiro, D.; Rodrigues, S.; Lorenzo, J. M.; Santos, E. M.; Andrés, S. C.; Campagnol, P. C. B.; Teixeira, A. Can the Introduction of different olive cakes affect the carcass, meat and fat quality of Bísaro pork? Foods 2022, 1650. [Google Scholar] [CrossRef]
- Honikel, K. O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Rosmini, M.; Pateiro, M.; Domínguez, R.; Munekata, P.E.; Lorenzo, J.M.; Santos, E.M.; Bermúndez, R. Texture Analysis. In Methods to Assess the Quality of Meat Products;Methods and Protocols in Food Science; Lorenzo, J.M., Domínguez, R., Pateiro, M., Munekata, P.E., Eds.; Humana: New York, NY, USA, 2022; pp. 29–40. [Google Scholar]
- NP-1614/2002; Determination of Moisture Content. Reference Method (ISO 1442: 1197). In Portuguese Norm–Meat and Meat Products. Portuguese Institute of Quality, Ministry of Economy and Innovation: Caparica, Portugal, 2002.
- NP-ISO-1615/2002; Determination of Total Ashes. Reference Method. In Portuguese Norm–Meat and Meat Products. Portuguese Institute of Quality, Ministry of Economy and Innovation: Caparica, Portugal, 2002.
- NP1612/2002; Determination of Total Nitrogen Content. Reference Method (ISO 937: 1978). In Portuguese Norm–Meat and Meat Products. Portuguese Institute of Quality, Ministry of Economy and Innovation: Caparica, Portugal, 2002.
- AOAC International; Cunniff, P. AOAC Official Methods of Analysis of AOAC International, 16th ed.; The Association: Washington, DC, USA, 1995; ISBN 9780935584547.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Dominguez, R.; Borrajo, P.; Lorenzo, J.M. The effect of cooking methods on nutritional value of foal meat. J. Food Compos. Anal. 2015, 43, 61–67. [Google Scholar] [CrossRef]
- Vieira, C.; Sarmiento-García, A.; García, J.J.; Rubio, B.; Martínez, B. Quality and Shelf Life of Fresh Meat from Iberian Pigs as Affected by a New Form of Presentation of Oleic Acid and an Organic-Acid Mix in the Diet. Foods 2021, 10, 985. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet. 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Caparra, P.; Chies, L.; Scerra, M.; Foti, F.; Bognanno, M.; Cilione, C.; Caria, P.; Claps, S.; Cifuni, G. F. Effect of dietary ensiled olive cake supplementation on performance and meat quality of Apulo-Calabrese pigs. Animals. 2023, 13, 2022. [Google Scholar] [CrossRef] [PubMed]
- Dorleku, J. B.; Tayengwa, T.; Bohrer, B. M.; Juárez, M. Measuring pH of pork at specific temperatures postmortem to predict quality traits. Meat Muscle Biol. 2025, 9(1), 1–11. [Google Scholar] [CrossRef]
- Tsala, A.; Mpekelis, V.; Karvelis, G.; Tsikakis, P.; Goliomytis, M.; Smitzis, P. Effects of dried olive pulp dietary supplementation on quality characteristics and antioxidant capacity of pig meat. Foods 2020, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A.; Lee, S. J.; Lee, E. Y.; Sabikum, N.; Hwang, Y.; Joo, S. T. A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods 2021, 10, 560. [Google Scholar] [CrossRef]
- Vasconcelos, L.; Dias, L. G.; Leite, A.; Ferreira, I.; Pereira, E.; Silva, S.; Rodrigues, S.; Teixeira, A. SVM regression to assess meat characteristics of Bísaro pig loins using NIRS methodology. Foods 2023, 12, 470. [Google Scholar] [CrossRef]
- Kim, G. W.; Kim, H. Y. Comparison of physicochemical properties between standard and sow pork. Korean J. Food Sci. An. 2018, 38(5), 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczak, A.; Potocka, M. K.; Zakrzewska, A. Z.; Baryza, J. S.; Rodriguea-Estevez, V.; Sanz-Fernandez, S.; Díaz-Gaona, C.; Ferrari, P.; Pedersen, L. J.; Couto, M. Y. R.; Revilla, I.; Sell-Kubiak, E. Husbandry practices associated with extensification in European pig production and their effects on pork quality. Meat Sci. 2023, 206, 109339. [Google Scholar] [CrossRef]
- Migdal, W.; Rozycki, M.; Mucha, A.; Tyra, M.; Natonek, M.; Walezycka, M.; Kulawik, P.; Wesierska, E.; Zajac, M.; Tkaczewska, J.; Migdal, L.; Krepa-Stefanik, K. Meat texture profile and cutting strength analyses of pork depending on breed and age. Ann. Anim. Sci. 2020, 20(2), 677–692. [Google Scholar] [CrossRef]
- Juárez, M.; Clemente, I.; Polvillo, O.; Molina, A. Meat quality of tenderloin from Iberian pigs as affected by breed strain and crossbreeding. Meat Sci. 2009, 81(4), 573–579. [Google Scholar] [CrossRef]
- Aboagye, F.; Zappaterra, M.; Pasini, F.; Dall´Olio, S.; Davoli, R.; Costa, N. L. Fatty acid composition of the intramuscular fat in the longissimus thoracis muscle of Apulo-Calabrese and crossbreed pigs. Livestock Sci. 2020, 232, 103878. [Google Scholar] [CrossRef]
- Serra, X.; Gil, F.; Pérez-Enciso, M.; Oliver, M. A.; Vázquez, J. M.; Gispert, M.; Díaz, I.; Moreno, F.; Latorre, R.; Noguera, J. L. A comparison of carcass, meat quality and histochemical characteristics of Iberian (Guadyerbas line) and Landrace pigs. Livestock Production Sci. 1998, 56, 215–223. [Google Scholar] [CrossRef]
- Cebulska, A.; Václavková, E.; Bocina, M.; Dybala, J.; Wisniewska, J.; Kapelanski, W. Quality and dietary value of pork meat of the pulawska and slotnicha spotted breeds, and commercial fattening pigs. Annals of Animal Sci. 2017, 18(1), 281–291. [Google Scholar] [CrossRef]
- Debrecéni, O.; Lípová, P.; Bucko, O.; Cebulska, A.; Kapelánski, W. Effect of pig genotypes from Slovak and polish breeds on meat quality. Archives Animal Breeding 2018, 61(1), 99–107. [Google Scholar] [CrossRef]
- Nevrkla, P.; Václavková, E.; Rozkot, M. The indigenous prestice black-pied pig breed differs from a commercial hybrid in growth intensity, carcass value and meat quality. Agriculture (Switzerland) 2021, 11(4). [Google Scholar] [CrossRef]
- Franco, D.; Vázquez, J. A.; Lorenzo, J.M. Growth performance, carcass and meat quality of the Celta pig crossbred with Duroc and Landrance genotypes. Meat Sci. 2014, 96(1), 195–202. [Google Scholar] [CrossRef]
- Martins, J. M.; Fialho, R.; Albuquerque, A.; Neves, J.; Freitas, A.; Nunes, J. T.; Charneca, R. Portuguese local pig breeds: Genotype effects on meat and fat quality traits. Animals 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sringarm, K.; Chaiwang, N.; Wattanakul, W.; Mahinchai, P.; Satsook, A.; Norkeaw, R.; Seel-audom, M.; Moonmanee, T.; Mekchay, S.; Sommano, S.R.; et al. Improvement of Intramuscular Fat in longissimus Muscle of Finishing Thai Crossbred Black Pigs by Perilla Cake Supplementation in a Low-Lysine Diet. Foods. 2022, 11, 907. [Google Scholar] [CrossRef]
- Dostálová, A.; Koucký, M.; Valis, L.; Simeckova, M. Evaluation of fattening performance, carcass traits and meat characteristics of prestice black-pied in the organic free-range and conventional system. Research in pig breeding 2012, 6. [Google Scholar]
- Olsson, V.; Andersson, K.; Hansson, I.; Lundstrom, K. Differences in meat quality between organically and conventionally produced pigs. Meat Sci. 2003, 64, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, F.A.A.; Trnková, M.; Dordevic, D. Physiochemical Properties and Oxidation Status of Pork from Three Rearing Systems. Appl. Sci. 2023, 13, 9731. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Yang, S. Effect of organic and conventional rearing system on the mineral content of pork. Meat Sci. 2016, 118, 103–107. [Google Scholar] [CrossRef]
- Rahman, M.; Bora, J. R.; Sarma, A. K.; Roychoudhury, R.; Borgohain, A. Effect of deep litter housing and fermented feed on carcass characteristics and meat quality of crossbred Hampshire pigs. Veterinary World EISSN, 2231–0916. [CrossRef]
- Teixeira, A.; Rodrigues, S. Pork meat quality of Preto Alentejano and Commercial Largewhite Landrace Cross. J. Integr. Agric. 2013, 12, 1961–1971. [Google Scholar] [CrossRef]
- Madeira, M.S.; Lopes, P.A.; Costa, P.; Coelho, D.; Alfaia, C.M.; Prates, J.A.M. Reducing protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes. Animals. 2017, 11, 2094–2102. [Google Scholar]
- Xing, Y.; Wu, X.; Xie, C.; Xiao, C.; Zhang, B. Meat Quality and fatty acid profiles of Chinese Ningxiang pigs following supplemen tation with N-Carbamyglutamate. Animals. 2020, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, K.; Roslewska, A.; Stanek, M.; Jankowiak, H.; Cygan-Szczegielniak, D.; Bocian, M. Comparison of the fatty acid profile in the meat of pigs and wild boars. Ital. J. Food Sci. 2018, 30, 707. [Google Scholar]
- Liotta, L.; Chiofalo, V.; Presti, L. V.; Chiofalo, B. In vivo performances, carcass traits, and meat quality of pigs fed olive cake processing waste. Animals 2020, 14, 426–434. [Google Scholar] [CrossRef]
- Serrano, M.P.; Valencia, D.G.; Nieto, M.; Lázaro, R.; Mateos, G.G. Influence of sex and terminal sire line on performance and carcass and meat quality of Iberian pigs reared under intensive production systems. Meat Sci. 2008, 78, 420–428. [Google Scholar] [CrossRef]
- Zumbo, A.; Sutera, A.M.; Tardiolo, G.; D’Alessandro, E. Sicilian Black pig: Ana overview. Animals 2020, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- Kusec, G.; Komlenic, M.; Gvozdanovic, K.; Sili, V.; Kravavica, M.; Radisic, Z.; Kusec, I.D. Carcass Composition and Phisicochemical characteristics of meat from Pork Chains Based on Native and Hybrid Pigs. Animals 2022, 10, 370. [Google Scholar]
- Venn-Watson, S.; Schork, N.J. Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients 2023, 15, 4607. [Google Scholar] [CrossRef]
- Turpeinen, O. Effect of cholesterol-lowering diet on mortality from coronary heart disease and other causes. Circulation. An official Journal of the American Heart Association, Inc. 1979, 59, 1. [Google Scholar] [CrossRef] [PubMed]
- Liput, K.P.; Lepczy ´nski, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Slaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of Dietary n–3 and n–6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef] [PubMed]
- British Department of Health. Nutritional aspects of cardiovascular disease. Report of the Cardiovascular Review group Committee on Medical Aspects of Food Policy. Rep. Health Soc. Subj. 1994, 46, 1–186. [Google Scholar]
- Cava, R.; Estévez, M.; Ruiz, J.; Morcuende, D. Physicochemical characteristics of three muscles from free-range reared Iberian pigs slaughtered at 90 kg live weight. Meat Sci. 2003, 63, 533–541. [Google Scholar] [CrossRef]
| Sig | |||||||||
| WOC | OC | SEM | Extensive | Indoor | SEM | Farming | Diet | Farming*Diet | |
| BW | 124.536 | 127.278 | 1.146 | 127.838 | 123.967 | 1.468 | 0.063 | 0.182 | 0.981 |
| CW | 96.810 | 99.181 | 1.388 | 99.644 | 96.347 | 1.215 | 0.056 | 0.165 | 0.996 |
| pH (1h) | 6.18 | 6.19 | 0.190 | 6.181 | 6.194 | 0.061 | 0.624 | 0.524 | 0.895 |
| pH (24h) | 5.76 | 5.83 | 0.084 | 5.76 | 5.82 | 0.074 | 0.535 | 0.483 | 0.916 |
| WHC (%) | 11.959 | 10.220 | 0.921 | 10.674 | 11.504 | 0.834 | 0.133 | 0.469 | 0.874 |
| SF (Kgf) | 3.671 | 3.689 | 0.229 | 3.873 | 3.487 | 0.207 | 0.949 | 0.179 | 0.858 |
| Color parameters | |||||||||
| L* | 53.424 | 52.035 | 0.928 | 52.314 | 53.145 | 0.813 | 0.464 | 0.224 | 0.710 |
| a* | 12.327 | 11.627 | 0.571 | 11.891 | 12.063 | 0.500 | 0.805 | 0.317 | 0.891 |
| b* | 11.290 | 10.484 | 0.505 | 10.732 | 11.042 | 0.442 | 0.614 | 0.194 | 0.940 |
| H* | 42.479 | 42.061 | 0.522 | 42.067 | 42.473 | 0.457 | 0.525 | 0.512 | 0.876 |
| C* | 16.722 | 15.666 | 0.749 | 16.022 | 16.366 | 0.656 | 0.706 | 0.251 | 0.964 |
| LTL | Significance | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| WOC | OC | SEM | Extensive | Indoor | SEM | Farming | Diet | Farming*Diet | |
| Total Fat | 6.752 | 7.563 | 0.838 | 7.224 | 7.091 | 7.330 | 0.899 | 0.437 | 0.456 |
| Ash | 1.339 | 1.313 | 0.062 | 1.216 | 1.436 | 0.057 | 0.007 | 0.743 | 0.789 |
| Moisture | 68.412 | 68.675 | 0.635 | 68.303 | 68.784 | 0.575 | 0.542 | 0.739 | 0.708 |
| Protein | 23.004 | 22.762 | 0.256 | 22.857 | 22.909 | 0.232 | 0.871 | 0.448 | 0.745 |
| Fatty Acid | LTL | Significance | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| WOC | OC | SEM | Extensive | Indoor | SEM | Farming | Diet | Farming*Diet | |||||||
| C12:0 | 0.043 | 0.041 | 0.003 | 0.041 | 0.042 | 0.003 | 0.685 | 0.663 | 0.235 | ||||||
| C14:0 | 1.078 | 1.097 | 0.032 | 1.116 | 1.059 | 0.029 | 0.157 | 0.624 | 0.442 | ||||||
| C14:1 | 0.026 | 0.022 | 0.003 | 0.022 | 0.026 | 0.003 | 0.402 | 0.385 | 0.335 | ||||||
| C15:0 | 0.193 | 0.191 | 0.018 | 0.169 | 0.216 | 0.016 | 0.038 | 0.929 | 0.088 | ||||||
| C16:0 | 26.068 | 25.543 | 0.189 | 25.693 | 25.918 | 0.237 | 0.491 | 0.112 | 0.915 | ||||||
| C16:1n-7 | 3.014 | 2.776 | 0.083 | 2.898 | 2.892 | 0.075 | 0.951 | 0.024 | 0.545 | ||||||
| C17:0 | 0.108 | 0.097 | 0.01 | 0.098 | 0.101 | 0.009 | 0.416 | 0.369 | 0.319 | ||||||
| C17:1n-7 | 0.176 | 0.184 | 0.024 | 0.195 | 0.165 | 0.022 | 0.320 | 0.773 | 0.643 | ||||||
| C18:0 | 11.126 | 11.162 | 0.204 | 11.030 | 11.257 | 0.185 | 0.374 | 0.886 | 0.298 | ||||||
| 9t-C18:1 | 0.161 | 0.171 | 0.006 | 0.175 | 0.157 | 0.008 | 0.095 | 0.377 | 0.379 | ||||||
| C18:1n-9 | 49.883 | 50.300 | 0.413 | 50.362 | 49.821 | 0.374 | 0.293 | 0.417 | 0.237 | ||||||
| 9t,12t-C18:2 | 0.002 | 0.003 | 0.001 | 0.003 | 0.003 | 0.001 | 0.721 | 0.702 | 0.810 | ||||||
| C18:2n-6 | 6.059 | 6.302 | 0.185 | 6.130 | 6.231 | 0.168 | 0.661 | 0.294 | 0.096 | ||||||
| Fatty Acid | LTL | Significance | |||||||||||||
| WOC | OC | SEM | Extensive | Indoor | SEM | Farming | Diet | Farming*Diet | |||||||
| C20:0 | 0.149 | 0.163 | 0.008 | 0.152 | 0.160 | 0.008 | 0.426 | 0.169 | 0.964 | ||||||
| C18:3n-3 | 0.684 | 0.724 | 0.018 | 0.698 | 0.710 | 0.016 | 0.587 | 0.084 | 0.736 | ||||||
| C20:1n-9 | 0.205 | 0.228 | 0.016 | 0.212 | 0.220 | 0.014 | 0.672 | 0.237 | 0.319 | ||||||
| C21:0 | 0.024 | 0.019 | 0.005 | 0.019 | 0.024 | 0.004 | 0.364 | 0.392 | 0.321 | ||||||
| C20:2n-6 | 0.194 | 0.216 | 0.016 | 0.203 | 0.208 | 0.014 | 0.815 | 0.265 | 0.492 | ||||||
| C22:0 | 0.026 | 0.025 | 0.003 | 0.025 | 0.025 | 0.003 | 0.976 | 0.868 | 0.342 | ||||||
| C20:3n-6 | 0.036 | 0.037 | 0.009 | 0.032 | 0.041 | 0.008 | 0.398 | 0.865 | 0.463 | ||||||
| C22:1n-9 | 0.013 | 0.021 | 0.004 | 0.012 | 0.021 | 0.004 | 0.095 | 0.125 | 0.904 | ||||||
| C20:3n-3 | 0.525 | 0.519 | 0.038 | 0.521 | 0.523 | 0.035 | 0.973 | 0.900 | 0.686 | ||||||
| C24:1n-9 | 0.101 | 0.088 | 0.01 | 0.093 | 0.096 | 0.009 | 0.756 | 0.296 | 0.221 | ||||||
| C22:6n-3 | 0.050 | 0.040 | 0.006 | 0.044 | 0.046 | 0.005 | 0.840 | 0.155 | 0.639 | ||||||
| Fatty Acid | LTL | Significance | |||||||||||||
| WOC | OC | SEM | Extensive | Indoor | SEM | Farming | Diet | Farming*Diet | |||||||
| SFA | 38.841 | 38.361 | 0.428 | 38.368 | 38.834 | 0.388 | 0.381 | 0.369 | 0.692 | ||||||
| MUFA | 53.599 | 53.791 | 0.427 | 53.992 | 53.399 | 0.387 | 0.267 | 0.717 | 0.226 | ||||||
| PUFA | 7.560 | 7.847 | 0.226 | 7.641 | 7.767 | 0.205 | 0.654 | 0.310 | 0.124 | ||||||
| n-6/n-3 | 12.548 | 13.905 | 0.995 | 13.294 | 13.159 | 0.902 | 0.913 | 0.245 | 0.472 | ||||||
| IA | 0.498 | 0.487 | 0.009 | 0.491 | 0.494 | 0.008 | 0.725 | 0.332 | 0.741 | ||||||
| IT | 1.193 | 1.174 | 0.024 | 1.173 | 1.194 | 0.022 | 0.493 | 0.534 | 0.680 | ||||||
| h/H | 2.082 | 2.152 | 0.039 | 2.132 | 2.103 | 0.035 | 0.545 | 0.155 | 0.904 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
