Water supply and drainage networks are essential components of urban infrastructure, directly influencing both residents' quality of life and the efficiency of city operations through their safety and stability. Over time, these networks often develop non-structural turbid water conditions, which present challenges for traditional maintenance methods. Leveraging the advantages of spatial visualization, three-dimensional environmental reconstruction technology has emerged as a promising solution to address these issues, while also advancing the use of intelligent maintenance technologies within water supply and drainage systems. This paper focuses on the causes of non-structural turbid water in these networks, and evaluates the optimization, effectiveness, and limitations of turbid water imaging, image feature recognition, and 3D environmental reconstruction technologies. Additionally, it re-views the current technical challenges and outlines potential future research directions, aiming to support the development and application of 3D reconstruction technologies for pipeline networks under non-structural turbid water conditions.