Submitted:
14 December 2025
Posted:
15 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Solution of the Equation
3. The Case of Euclidian Space
3.1. The Kepler Potential with Constant Damping in
3.2. Kepler Motion with Time Dependent Damping
4. Relation of a Linearly Damped Dynamical System and a Time Dependent Harmonic Oscillator
Appendix A
References
- E. Kanai, “On the Quantization of the Dissipative Systems”. Prog. Theor. Phys. 3, 440 (1950).
- Chandrasekar V. K. , et all “On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator” J. Math. Phys. 48, 032701 (2007). [CrossRef]
- Arhfken G B,Weber H J “Mathematical Methods for physicists” Elsevier, New Delhi,India (2004).
- L. Karpathopoulos, A. Paliathanasis and M. Tsamparlis Lie and Noether point Symmetries for a Class of Nonautonomous Dynamical Systems, J. Math. Phys. 58, 082901 (2017) DOI:10.1063/1.4998715, [arXiv:1708.00619].
- M. Tsamparlis and A. Mitsopoulos, `Quadratic first integrals of autonomous conservative dynamical systems’, J. Math. Phys. 61, 072703 (2020).
- M. Tsamparlis and A. Mitsopoulos, `First integrals of holonomic systems without Noether symmetries’, J. Math. Phys. 61, 122701 (2020).
- Mitsopoulos, A.;Tsamparlis, M. “Quadratic First Integrals of Time-Dependent Dynamical Systems of the Formq¨a=-Γbcaq˙bq˙c-ω(t)Qa(q)′′ Mathematics 9, 1503 (2021) . [CrossRef]
- Prelle M and Singer M “Elementary first integrals of differential equations” Trans. Am. Math. Soc. 279215–29 (1983).
- Duarte L G S, Duarte S E S , da Mota L A C P and Skea J E F “Solving second-order ordinary differential equations by extending the Prelle–Singer method” J. Phys. A: Math. Gen. 34 3015 (2001). [CrossRef]
- V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan “Unusual Liénard-type nonlinear oscillator” Phs. Rev E 72, 066203 (2005).
- Katzin G H, Levine J (1974)Dynamical symmetries and constants of motion for classical particle systemsJ.Math.Phys 15, 1460. [CrossRef]
- Katzin G H, Levine J (1976)A gauge invariant formulation of time dependent dynamical symmetry mappings and associated consant of motion for Lagrangian particle mechanics I,J.Math.Phys17, 1345.
- Katzin G H, Levine J (1981)Geodesic first integrals with explicit path-parameter dependence in Riemannian space-times,J.Math.Phys 22,1878.
- H. Bateman “On dissipative systems and related variational principles” Phys. Rev. 38, 815 - 819 (1931). [CrossRef]
- Leach P.G.L., ”The first integrals and orbit equation for the Kepler problem with drag”, J. Phys. A: Math Gen. 20,1997-2002 (1987).
- Grandati Y, Berard A, Mohrbach H “Duality properties of Gorringe-Leach equations” arXiv: 0712.3338 V2 6 December 2007. [CrossRef]
- Margheri A, Ortega R and Rebelo C “Dynamics of Kepler problem with linear drag” Celest. Mech. Dyn. Astron. 120 19–38 (2014). [CrossRef]
- Margheri A, Ortega R and Rebelo C “On a family of Kepler problems with linear dissipation” Rend. Istit. Mat. Univ. Trieste 49 265–86.
- Margheri A, Misquero M “A dissipative Kepler problem with a family of singular drags” Celest. Mech. Dyn. Astron. 132,17 (2020). [CrossRef]
- Harikumar E, Panja S K “Regularization of central forces with damping in two and three-dimensions” arXiv: 2106.12134V1, 23 June 2021.
- Kristiansen K U “Revisiting the Kepler problem with linear drag using the blowup method and normal form theory” Nonnlinearity 37 035014 (2024). [CrossRef]
- Cervero J M, Villarroel “SL(3R) realizations of the dampted harmonic oscillator” J. Phys. A Math. Gen. 17,1777 - 1786 (1984).
- Choudhuri A., Ghosh S.,Talukdar B “Symmetries and conservation laws of the damped harmonic oscillator” Prasana J. Phys. 4(70) ,657 -667 (2008).
- Sinclair A J, Hurdtado J E, Betsch G B P “On Noether’s Theorem and the various integrals of the Damped Linear Oscillator” J. Astronaut. Sci., 60, 396 -407 (2013).
- Farooq M U, Safdar M “Noether symmetries and first integrals of damped harmonic oscillator” arXiv:2205.10525v1.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
