The rapid mobilization of sediment stored behind dams, in amounts that are large relative to mean annual sediment loads can jump start river restoration but can also adversely impact habitat, infrastructure, land, and water use upstream of, within, and downstream of the former impoundment. A wide range of geomorphic and engineering assessment tools were applied to help manage sediment-related risks associated with the removal of two dams from the Elwha River in Washington State and the release of roughly 21 million m3 of sediment. Each of these tools had their strengths and weaknesses, which are explored here. The processes of sediment erosion, transport and deposition were complex. No one model was able to fully simulate all these with the accuracy necessary for predicting the magnitude and timing of coarse and fine sediment release from the reservoir. Collectively, however, the model outputs provided enough information to guide the adaptive sediment management process during dam removal. When the complexity of the morphodynamic responses to dam removal and the associated risks exceeded the capacity of any one tool to adequately assess, synoptic forecasting proved useful. The lessons learned on the Elwha have provided insights into how to use a variety of modeling techniques to address sediment management issues such as dam removal scale, complexity and risk increase.