Submitted:
01 December 2025
Posted:
03 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Selection of ICTV-Listed Gammaretroviruses to be Included in the Review
Selection of ICTV-Listed Betaretroviruses with a Gamma-Type Env Gene
Replication-Compentent ERVs not Listed by ICTV
Search Strategy
3. Results
3.1. Germline Gammaretrovirus Infections in Humans in the Past
3.2. Ancient Gammaretroviruses in OW Primates with no Evidence of Human Infection
3.3. Gammaretrovirus Detection in Human Samples in the Recent Past
3.3.1. Cell Culture-Associated Gammaretrovirus Detection in the 1970s
3.3.2. MSRV is an Endogenous Retrovirus, HERV-W
3.3.3. The XMRV Case, 2006-2012
3.3.4. Human Retrovirus-5 Turned out to be a Rabbit Endogenous Retrovirus
3.4. Retroviruses Currently Infecting Humans
3.4.1. The Human Deltaretroviruses
3.4.2. The Human Lentiviruses, HIV-1 and HIV-2
3.4.3. Spumaviruses in Humans
3.4.4. Unresolved Human Retrovirus Infections
3.5. Current Infectious Gammaretrovirus Species
3.5.1. Infectious Avian Gammaretroviruses
3.5.2. Infectious Mammalian Gammaretroviruses
3.5.3. Replication-Competent ERVs and the Type D Retroviruses
3.6. Genetic and Immune Factors Associated with –Gamma–Retrovirus Resistance in Humans
3.7. Exposure Risk and Gammaretrovirus Infections in Humans
3.7.1. Natural Exposure to Gammaretroviruses
3.7.2. Man-Made Exposure to Gammaretroviruses
3.8. Consequences of Novel Human Gammaretrovirus Infections
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| APOBEC3 | Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 |
| DNA | Deoxyribonucleic acid |
| HUSH | Human silencing hub |
| PBMC | Peripheral blood mononuclear cells |
| PCR | Polymerase Chain Reaction |
| RNA | Ribonucleic acid |
| SAMHD1 | SAM domain and HD domain-containing protein 1 |
| SERINC5 | Serine incorporator 5 |
| TRIM5α | Tripartite motif-containing protein 5α |
| ZAP | Zinc finger antiviral protein |
References
- Coffin, J.; Blomberg, J.; Fan, H.; Gifford, R.; Hatziioannou, T.; Lindemann, D.; Mayer, J.; Stoye, J.; Tristem, M.; Johnson, W.; et al. ICTV Virus Taxonomy Profile: Retroviridae 2021. The Journal of general virology 2021, 102. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses: Retroviridae. Available online: https://ictv.global/report/chapter/retroviridae/retroviridae (accessed on 24 February 2025).
- Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America 1980, 77, 7415–7419. [Google Scholar] [CrossRef]
- Lasfargues, E.Y.; Moore, D.H. Proceedings: Search for a viral etiology of human breast cancer. J Invest Dermatol 1974, 63, 125–132. [Google Scholar] [CrossRef]
- Lessi, F.; Grandi, N.; Mazzanti, C.M.; Civita, P.; Scatena, C.; Aretini, P.; Bandiera, P.; Fornaciari, A.; Giuffra, V.; Fornaciari, G.; et al. A human MMTV-like betaretrovirus linked to breast cancer has been present in humans at least since the copper age. Aging (Albany NY) 2020, 12, 15978–15994. [Google Scholar] [CrossRef]
- Goubran, M.; Wang, W.; Indik, S.; Faschinger, A.; Wasilenko, S.T.; Bintner, J.; Carpenter, E.J.; Zhang, G.; Nuin, P.; Macintyre, G.; et al. Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis. Viruses 2022, 14. [Google Scholar] [CrossRef]
- Bevilacqua, G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Glenn, W.K. Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer-The Value of Bradford Hill Criteria. Viruses 2022, 14. [Google Scholar] [CrossRef]
- Brantley, K.D.; Tamimi, R.M. The association between infectious agents and breast cancer: a review of the epidemiologic evidence. Breast Cancer Res Treat 2024, 207, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Martinez Cuesta, L.; Lendez, P.A.; Nieto Farias, M.V.; Dolcini, G.L.; Ceriani, M.C. Can Bovine Leukemia Virus Be Related to Human Breast Cancer? A Review of the Evidence. J Mammary Gland Biol Neoplasia 2018, 23, 101–107. [Google Scholar] [CrossRef]
- Hayward, A.; Cornwallis, C.K.; Jern, P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proceedings of the National Academy of Sciences of the United States of America 2015, 112, 464–469. [Google Scholar] [CrossRef]
- van der Kuyl, A.C.; Berkhout, B. Viruses in the reproductive tract: On their way to the germ line? Virus research 2020, 286, 198101. [Google Scholar] [CrossRef]
- Wang, J.; Han, G.Z. Genome mining shows that retroviruses are pervasively invading vertebrate genomes. Nature communications 2023, 14, 4968. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Cui, J. Origin and Deep Evolution of Human Endogenous Retroviruses in Pan-Primates. Viruses 2022, 14. [Google Scholar] [CrossRef]
- Gifford, R.; Kabat, P.; Martin, J.; Lynch, C.; Tristem, M. Evolution and distribution of class II-related endogenous retroviruses. Journal of virology 2005, 79, 6478–6486. [Google Scholar] [CrossRef]
- van der Kuyl, A.C.; Mang, R.; Dekker, J.T.; Goudsmit, J. Complete nucleotide sequence of simian endogenous type D retrovirus with intact genome organization: evidence for ancestry to simian retrovirus and baboon endogenous virus. Journal of virology 1997, 71, 3666–3676. [Google Scholar] [CrossRef]
- Henzy, J.E.; Johnson, W.E. Pushing the endogenous envelope. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2013, 368, 20120506. [Google Scholar] [CrossRef] [PubMed]
- Hogan, V.; Johnson, W.E. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Cordonnier, A.; Casella, J.F.; Heidmann, T. Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. Journal of virology 1995, 69, 5890–5897. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R.J.; Katzourakis, A.; Tristem, M.; Pybus, O.G.; Winters, M.; Shafer, R.W. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 20362–20367. [Google Scholar] [CrossRef]
- Gilbert, C.; Maxfield, D.G.; Goodman, S.M.; Feschotte, C. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS genetics 2009, 5, e1000425. [Google Scholar] [CrossRef]
- Katzourakis, A.; Aiewsakun, P.; Jia, H.; Wolfe, N.D.; LeBreton, M.; Yoder, A.D.; Switzer, W.M. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology 2014, 11, 61. [Google Scholar] [CrossRef]
- Hron, T.; Elleder, D.; Gifford, R.J. Deltaretroviruses have circulated since at least the Paleogene and infected a broad range of mammalian species. Retrovirology 2019, 16, 33. [Google Scholar] [CrossRef]
- Herniou, E.; Martin, J.; Miller, K.; Cook, J.; Wilkinson, M.; Tristem, M. Retroviral diversity and distribution in vertebrates. Journal of virology 1998, 72, 5955–5966. [Google Scholar] [CrossRef]
- Martin, J.; Herniou, E.; Cook, J.; O’Neill, R.W.; Tristem, M. Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. Journal of virology 1999, 73, 2442–2449. [Google Scholar] [CrossRef]
- Barbacid, M.; Hunter, E.; Aaronson, S.A. Avian reticuloendotheliosis viruses: evolutionary linkage with mammalian type C retroviruses. Journal of virology 1979, 30, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomska, A.M.; Gifford, R.J. The extraordinary evolutionary history of the reticuloendotheliosis viruses. PLoS biology 2013, 11, e1001642. [Google Scholar] [CrossRef]
- van der Kuyl, A.C.; Dekker, J.T.; Goudsmit, J. Distribution of baboon endogenous virus among species of African monkeys suggests multiple ancient cross-species transmissions in shared habitats. Journal of virology 1995, 69, 7877–7887. [Google Scholar] [CrossRef] [PubMed]
- Jern, P.; Sperber, G.O.; Blomberg, J. Divergent patterns of recent retroviral integrations in the human and chimpanzee genomes: probable transmissions between other primates and chimpanzees. Journal of virology 2006, 80, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.; Feschotte, C. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS pathogens 2015, 11, e1005279. [Google Scholar] [CrossRef]
- Alfano, N.; Michaux, J.; Morand, S.; Aplin, K.; Tsangaras, K.; Löber, U.; Fabre, P.H.; Fitriana, Y.; Semiadi, G.; Ishida, Y.; et al. Endogenous Gibbon Ape Leukemia Virus Identified in a Rodent (Melomys burtoni subsp.) from Wallacea (Indonesia). Journal of virology 2016, 90, 8169–8180. [Google Scholar] [CrossRef]
- Sinha, A.; Johnson, W.E. Retroviruses of the RDR superinfection interference group: ancient origins and broad host distribution of a promiscuous Env gene. Current opinion in virology 2017, 25, 105–112. [Google Scholar] [CrossRef]
- Greenwood, A.D.; Ishida, Y.; O’Brien, S.P.; Roca, A.L.; Eiden, M.V. Transmission, evolution, and endogenization: lessons learned from recent retroviral invasions. Microbiology and molecular biology reviews : MMBR 2018, 82, e00044–00017. [Google Scholar] [CrossRef]
- van der Kuyl, A.C. Contemporary distribution, estimated age, and prehistoric migrations of Old World monkey retroviruses. Epidemiologia 2021, 2, 46–67. [Google Scholar] [CrossRef]
- Williams, Z.H.; Imedio, A.D.; Gaucherand, L.; Lee, D.C.; Mostafa, S.M.; Phelan, J.P.; Coffin, J.M.; Johnson, W.E. Recombinant origin and interspecies transmission of a HERV-K(HML-2)-related primate retrovirus with a novel RNA transport element. eLife 2024, 13. [Google Scholar] [CrossRef] [PubMed]
- Piraino, F.; Krumbiegel, E.R.; Wisniewski, H.J. Serologic survey of man for avian leukosis virus infection. Journal of immunology (Baltimore, Md. : 1950) 1967, 98, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, S.A.; Schlom, J. The search for RNA tumor viruses in human cancer. Prog Clin Cancer 1975, 6, 51–63. [Google Scholar]
- Szakacs, J.E.; Szakacs, M.R. Search for C-type particles in human neoplasia. Ann Clin Lab Sci 1975, 5, 14–22. [Google Scholar]
- Aoki, T.; Walling, M.J.; Bushar, G.S.; Liu, M.; Hsu, K.C. Natural antibodies in sera from healthy humans to antigens on surfaces of type C RNA viruses and cells from primates. Proceedings of the National Academy of Sciences of the United States of America 1976, 73, 2491–2495. [Google Scholar] [CrossRef]
- Ohtsuki, Y.; Seman, G.; Maruyama, K.; Bowen, J.M.; Johnson, D.E.; Dmochowski, L. Ultrastructural studies of human prostatic neoplasia. Cancer 1976, 37, 2295–2305. [Google Scholar] [CrossRef]
- Stephenson, J.R.; Aaronson, S.A. Search for antigens and antibodies crossreactive with type C viruses of the woolly monkeys and gibbon ape in animal models and in humans. Proceedings of the National Academy of Sciences of the United States of America 1976, 73, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Charman, H.P.; Rahman, R.; White, M.H.; Kim, N.; Gilden, R.V. Radioimmunoassay for the major structural protein of Mason-Pfizer monkey virus: Attempts to detect the presence of antigen or antibody in humans. Int J Cancer 1977, 19, 498–504. [Google Scholar] [CrossRef]
- Lerche, N.W.; Heneine, W.; Kaplan, J.E.; Spira, T.; Yee, J.L.; Khabbaz, R.F. An expanded search for human infection with simian type D retrovirus. AIDS research and human retroviruses 1995, 11, 527–529. [Google Scholar] [CrossRef]
- Morozov, V.A.; Lagaye, S.; Lyakh, L.; ter Meulen, J. Type D retrovirus markers in healthy Africans from Guinea. Research in virology 1996, 147, 341–351. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses: ICTV gammaretroviruses. Available online: https://ictv.global/report/chapter/retroviridae/retroviridae/gammaretrovirus (accessed on 11 January 2025).
- van Zaane, D.; Bloemers, H.P. The genome of the mammalian sarcoma viruses. Biochim Biophys Acta 1978, 516, 249–268. [Google Scholar] [CrossRef]
- Robbins, K.C.; Hill, R.L.; Aaronson, S.A. Primate origin of the cell-derived sequences of simian sarcoma virus. Journal of virology 1982, 41, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.K. Retroviral oncogenes: a historical primer. Nat Rev Cancer 2012, 12, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV). Viruses 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Hayward, J.A.; Tian, S.; Tachedjian, G. GALV-KoRV-related retroviruses in diverse Australian and African rodent species. Virus Evol 2024, 10, veae061. [Google Scholar] [CrossRef]
- Alfano, N.; Kolokotronis, S.O.; Tsangaras, K.; Roca, A.L.; Xu, W.; Eiden, M.V.; Greenwood, A.D. Episodic Diversifying Selection Shaped the Genomes of Gibbon Ape Leukemia Virus and Related Gammaretroviruses. Journal of virology 2016, 90, 1757–1772. [Google Scholar] [CrossRef]
- Denner, J. Co-Cultivation Assays for Detecting Infectious Human-Tropic Porcine Endogenous Retroviruses (PERVs). International journal of molecular sciences 2025, 26. [Google Scholar] [CrossRef]
- Sherwin, S.A.; Todaro, G.J. A new endogenous primate type C virus isolated from the Old World monkey Colobus polykomos. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 5041–5045. [Google Scholar] [CrossRef]
- Todaro, G.J.; Benveniste, R.E.; Sherwin, S.A.; Sherr, C.J. MAC-1, a new genetically transmitted type C virus of primates: “low frequency” activation from stumptail monkey cell cultures. Cell 1978, 13, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Rein, A.; Stephens, R.M.; O’Connell, C.; Gilden, R.V.; Shure, M.; Nicolson, M.O.; McAllister, R.M.; Davidson, N. Baboon endogenous virus genome: molecular cloning and structural characterization of nondefective viral genomes from DNA of a baboon cell strain. Proceedings of the National Academy of Sciences of the United States of America 1981, 78, 5207–5211. [Google Scholar] [CrossRef] [PubMed]
- Rice, N.R.; Bonner, T.I.; Gilden, R.V. Nucleic acid homology between avian and mammalian type C viruses: relatedness of reticuloendotheliosis virus cdna to cloned proviral DNA of the endogenous Colobus virus CPC-1. Virology 1981, 114, 286–290. [Google Scholar] [CrossRef]
- PubMed database. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 19 April 2025).
- Google Scholar. Available online: https://scholar.google.nl (accessed on January 22 2025).
- Tavaré, S.; Marshall, C.R.; Will, O.; Soligo, C.; Martin, R.D. Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 2002, 416, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, H.; Gong, Z.; Han, G.Z. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses. PLoS pathogens 2018, 14, e1007072. [Google Scholar] [CrossRef]
- Sverdlov, E.D. Retroviruses and primate evolution. BioEssays : news and reviews in molecular, cellular and developmental biology 2000, 22, 161–171. [Google Scholar] [CrossRef]
- Diehl, W.E.; Patel, N.; Halm, K.; Johnson, W.E. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals. eLife 2016, 5, e12704. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.S.; Huh, J.W.; Ahn, K.; Yi, J.M.; Lee, J.R.; Hirai, H. Molecular characterization of the HERV-W env gene in humans and primates: expression, FISH, phylogeny, and evolution. Mol Cells 2008, 26, 53–60. [Google Scholar] [CrossRef]
- Mager, D.L.; Freeman, J.D. HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage. Virology 1995, 213, 395–404. [Google Scholar] [CrossRef]
- Seifarth, W.; Baust, C.; Schön, U.; Reichert, A.; Hehlmann, R.; Leib-Mösch, C. HERV-IP-T47D, a novel type C-related human endogenous retroviral sequence derived from T47D particles. AIDS research and human retroviruses 2000, 16, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Blaise, S.; de Parseval, N.; Bénit, L.; Heidmann, T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 13013–13018. [Google Scholar] [CrossRef]
- Aagaard, L.; Villesen, P.; Kjeldbjerg, A.L.; Pedersen, F.S. The approximately 30-million-year-old ERVPb1 envelope gene is evolutionarily conserved among hominoids and Old World monkeys. Genomics 2005, 86, 685–691. [Google Scholar] [CrossRef]
- Yi, J.M.; Kim, H.S. Molecular evolution of the HERV-E family in primates. Archives of virology 2006, 151, 1107–1116. [Google Scholar] [CrossRef]
- Kjeldbjerg, A.L.; Villesen, P.; Aagaard, L.; Pedersen, F.S. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC evolutionary biology 2008, 8, 266. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Gifford, R.J.; Bieniasz, P.D. Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. eLife 2017, 6. [Google Scholar] [CrossRef]
- Kim, H.S.; Yi, J.M.; Hirai, H.; Huh, J.W.; Jeong, M.S.; Jang, S.B.; Kim, C.G.; Saitou, N.; Hyun, B.H.; Lee, W.H. Human Endogenous Retrovirus (HERV)-R family in primates: chromosomal location, gene expression, and evolution. Gene 2006, 370, 34–42. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, H.S. Endogenous retrovirus HERV-I LTR family in primates: sequences, phylogeny, and evolution. Archives of virology 2006, 151, 1651–1658. [Google Scholar] [CrossRef]
- Magiorkinis, G.; Blanco-Melo, D.; Belshaw, R. The decline of human endogenous retroviruses: extinction and survival. Retrovirology 2015, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Marchi, E.; Kanapin, A.; Magiorkinis, G.; Belshaw, R. Unfixed endogenous retroviral insertions in the human population. Journal of virology 2014, 88, 9529–9537. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, C.M.; Badge, R.M. Genome-wide amplification of proviral sequences reveals new polymorphic HERV-K(HML-2) proviruses in humans and chimpanzees that are absent from genome assemblies. Retrovirology 2015, 12, 35. [Google Scholar] [CrossRef]
- Mi, S.; Lee, X.; Li, X.; Veldman, G.M.; Finnerty, H.; Racie, L.; LaVallie, E.; Tang, X.Y.; Edouard, P.; Howes, S.; et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000, 403, 785–789. [Google Scholar] [CrossRef]
- Esnault, C.; Cornelis, G.; Heidmann, O.; Heidmann, T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV syncytin, captured for a function in placentation. PLoS genetics 2013, 9, e1003400. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, J.; Sugimoto, M.; Bernstein, H.; Jinno, Y.; Schust, D. A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep 2013, 3, 1462. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.A.; Singh, M.; Cullen, H.B.; Kirou, R.A.; Benkaddour-Boumzaouad, M.; Cortes, J.L.; Garcia Pérez, J.; Coyne, C.B.; Feschotte, C. Evolution and antiviral activity of a human protein of retroviral origin. Science (New York, N.Y.) 2022, 378, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Mang, R.; Goudsmit, J.; van der Kuyl, A.C. Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. Journal of virology 1999, 73, 7021–7026. [Google Scholar] [CrossRef]
- Todaro, G.J.; Sherr, C.J.; Benveniste, R.E.; Lieber, M.M.; Melnick, J.L. Type C viruses of baboons: isolation from normal cell cultures. Cell 1974, 2, 55–61. [Google Scholar] [CrossRef]
- Benveniste, R.E.; Lieber, M.M.; Livingston, D.M.; Sherr, C.J.; Todaro, G.J.; Kalter, S.S. Infectious C-type virus isolated from a baboon placenta. Nature 1974, 248, 17–20. [Google Scholar] [CrossRef]
- Bonner, T.I.; Birkenmeier, E.H.; Gonda, M.A.; Mark, G.E.; Searfoss, G.H.; Todaro, G.J. Molecular cloning of a family of retroviral sequences found in chimpanzee but not human DNA. Journal of virology 1982, 43, 914–924. [Google Scholar] [CrossRef]
- Ma, H.; Ma, Y.; Ma, W.; Williams, D.K.; Galvin, T.A.; Khan, A.S. Chemical induction of endogenous retrovirus particles from the vero cell line of African green monkeys. Journal of virology 2011, 85, 6579–6588. [Google Scholar] [CrossRef]
- Sommerfelt, M.A.; Weiss, R.A. Receptor interference groups of 20 retroviruses plating on human cells. Virology 1990, 176, 58–69. [Google Scholar] [CrossRef]
- Girard-Gagnepain, A.; Amirache, F.; Costa, C.; Lévy, C.; Frecha, C.; Fusil, F.; Nègre, D.; Lavillette, D.; Cosset, F.L.; Verhoeyen, E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014, 124, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Bernadin, O.; Amirache, F.; Girard-Gagnepain, A.; Moirangthem, R.D.; Lévy, C.; Ma, K.; Costa, C.; Nègre, D.; Reimann, C.; Fenard, D.; et al. Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2019, 3, 461–475. [Google Scholar] [CrossRef]
- Ikeda, M.; Satomura, K.; Sekizuka, T.; Hanada, K.; Endo, T.; Osada, N. Comprehensive phylogenomic analysis reveals a novel cluster of simian endogenous retroviral sequences in Colobinae monkeys. American journal of primatology 2018, 80, e22882. [Google Scholar] [CrossRef] [PubMed]
- Power, M.D.; Marx, P.A.; Bryant, M.L.; Gardner, M.B.; Barr, P.J.; Luciw, P.A. Nucleotide sequence of SRV-1, a type D simian acquired immune deficiency syndrome retrovirus. Science (New York, N.Y.) 1986, 231, 1567–1572. [Google Scholar] [CrossRef]
- Heidecker, G.; Lerche, N.W.; Lowenstine, L.J.; Lackner, A.A.; Osborn, K.G.; Gardner, M.B.; Marx, P.A. Induction of simian acquired immune deficiency syndrome (SAIDS) with a molecular clone of a type D SAIDS retrovirus. Journal of virology 1987, 61, 3066–3071. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.; Keele, B.; Kuller, L.; Watanabe, R.; Perret, A.; Smedley, J. Identification of novel simian endogenous retroviruses that are indistinguishable from simian retrovirus (SRV) on current SRV diagnostic assays. Journal of medical primatology 2017, 46, 158–161. [Google Scholar] [CrossRef]
- Sakuma, C.; Sekizuka, T.; Kuroda, M.; Kasai, F.; Saito, K.; Ikeda, M.; Yamaji, T.; Osada, N.; Hanada, K. Novel endogenous simian retroviral integrations in Vero cells: implications for quality control of a human vaccine cell substrate. Sci Rep 2018, 8, 644. [Google Scholar] [CrossRef]
- Kiesslich, S.; Kamen, A.A. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020, 44, 107608. [Google Scholar] [CrossRef]
- Yohn, C.T.; Jiang, Z.; McGrath, S.D.; Hayden, K.E.; Khaitovich, P.; Johnson, M.E.; Eichler, M.Y.; McPherson, J.D.; Zhao, S.; Pääbo, S.; et al. Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. PLoS biology 2005, 3, e110. [Google Scholar] [CrossRef]
- Polavarapu, N.; Bowen, N.J.; McDonald, J.F. Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses. Genome biology 2006, 7, R51. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, K. Endogenous retrovirus-mediated genomic variations in chimpanzees. Mob Genet Elements 2014, 4, 1–4. [Google Scholar] [CrossRef]
- AbuEed, L.; Miyake, A.; Wanjala, N.; Pramono, D.; Abdillah, D.; Imamura, M.; Shimojima, M.; Denner, J.; Kawasaki, J.; Nishigaki, K. Riboflavin transporter: evidence of a role as entry receptor for chimpanzee endogenous retrovirus. Virus Evol 2025, 11, veaf031. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.M.; Malik, H.S.; Emerman, M. Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science (New York, N.Y.) 2007, 316, 1756–1758. [Google Scholar] [CrossRef] [PubMed]
- Rous, P. A sarcoma of the fowl transmissable by an agent separable from the tumor cells. The Journal of experimental medicine 1911, 13, 397–411. [Google Scholar] [CrossRef]
- Bittner, J.J. The preservation by freezing and drying in vacuo of the milk-influence for the development of breast cancer in mice. Science (New York, N.Y.) 1941, 93, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Duran-Reynals, F.; Shrigley, E.W. A study of five transplantable chicken sarcomas induced by viruses. Cancer Res 1946, 6, 535–544. [Google Scholar]
- Kunii, A.; Furth, J. Mammary carcinoma in mice bearing a transplantable mammotropic tumor, carrying the Bittner virus. Proc Soc Exp Biol Med 1963, 114, 709–714. [Google Scholar] [CrossRef]
- McAllister, R.M.; Nicolson, M.; Gardner, M.B.; Rongey, R.W.; Rasheed, S.; Sarma, P.S.; Huebner, R.J.; Hatanaka, M.; Oroszlan, S.; Gilden, R.V.; et al. C-type virus released from cultured human rhabdomyosarcoma cells. Nat New Biol 1972, 235, 3–6. [Google Scholar] [CrossRef]
- Fischinger, P.J.; Peebles, P.T.; Nomura, S.; Haapala, D.K. Isolation of RD-114-like oncornavirus from a cat cell line. Journal of virology 1973, 11, 978–985. [Google Scholar] [CrossRef]
- Okabe, H.; Gilden, R.V.; Hatanaka, M. RD 114 virus-specific sequences in feline cellular RNA: detection and characterization. Journal of virology 1973, 12, 984–994. [Google Scholar] [CrossRef]
- Ruprecht, R.M.; Goodman, N.C.; Spiegelman, S. Determination of natural host taxonomy of RNA tumor viruses by molecular hybridization: application to RD-114, a candidate human virus. Proceedings of the National Academy of Sciences of the United States of America 1973, 70, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.E.; Gallo, R.C. Type C RNA tumor virus isolated from cultured human acute myelogenous leukemia cells. Science (New York, N.Y.) 1975, 187, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Teich, N.M.; Weiss, R.A.; Salahuddin, S.Z.; Gallagher, R.E.; Gillespie, D.H.; Gallo, R.C. Infective transmission and characterisation of a C-type virus released by cultured human myeloid leukaemia cells. Nature 1975, 256, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Reitz, M.S.; Miller, N.R.; Wong-Staal, F.; Gallagher, R.E.; Gallo, R.C.; Gillespie, D.H. Primate type-C virus nucleic acid sequences (woolly monkey and baboon types) in tissues from a patient with acute myelogenous leukemia and in viruses isolated from cultured cells of the same patient. Proceedings of the National Academy of Sciences of the United States of America 1976, 73, 2113–2117. [Google Scholar] [CrossRef]
- Sahagan, B.G.; Haseltine, W.A. Relationship of retroviruses isolated from human leukemia tissues to the woolly monkey-gibbon ape leukemia viruses. Journal of virology 1980, 34, 390–401. [Google Scholar] [CrossRef]
- Okabe, H.; Gilden, R.V.; Hatanaka, M.; Stephenson, J.R.; Gallagher, R.E.; Aaronson, S.A.; Gallo, R.C.; Tronick, S.R. Immunological and biochemical characterisation of type C viruses isolated from cultured human AML cells. Nature 1976, 260, 264–266. [Google Scholar] [CrossRef]
- Mishra, L.; Hong, D.; Baluda, M.A. Homology between HL-23V and primate viruses and search for proviral DNA sequences of simian sarcoma associated virus and baboon endogenous virus in DNA from human leukemic cells. Leuk Res 1979, 3, 285–296. [Google Scholar] [CrossRef]
- Bergholz, C.M.; Wolfe, L.G.; Schulz, G.A.; Deinhardt, F.; Miller, N.R.; Reitz, M.S. Isolation of a virus closely related to gibbon ape leukaemia virus from cells infected with virus (HL-23V) released by human leukaemic cells. The Journal of general virology 1980, 48, 111–121. [Google Scholar] [CrossRef]
- Wong-Staal, F.; Gillespie, D.; Gallo, R.C. Proviral sequences of baboon endogenous type C RNA virus in DNA of human leukaemic tissues. Nature 1976, 262, 190–195. [Google Scholar] [CrossRef]
- Aulakh, G.S.; Gallo, R.C. Rauscher-leukemia-virus-related sequences in human DNA: presence in some tissues of some patients with hemotopoietic neoplasias and absence in DNA from other tissues. Proceedings of the National Academy of Sciences of the United States of America 1977, 74, 353–357. [Google Scholar] [CrossRef]
- Perron, H.; Lalande, B.; Gratacap, B.; Laurent, A.; Genoulaz, O.; Geny, C.; Mallaret, M.; Schuller, E.; Stoebner, P.; Seigneurin, J.M. Isolation of retrovirus from patients with multiple sclerosis. Lancet (London, England) 1991, 337, 862–863. [Google Scholar] [CrossRef]
- Perron, H.; Gratacap, B.; Lalande, B.; Genoulaz, O.; Laurent, A.; Geny, C.; Mallaret, M.; Innocenti, P.; Schuller, E.; Stoebner, P.; et al. In vitro transmission and antigenicity of a retrovirus isolated from a multiple sclerosis patient. Research in virology 1992, 143, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Perron, H.; Garson, J.A.; Bedin, F.; Beseme, F.; Paranhos-Baccala, G.; Komurian-Pradel, F.; Mallet, F.; Tuke, P.W.; Voisset, C.; Blond, J.L.; et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, 7583–7588. [Google Scholar] [CrossRef] [PubMed]
- Garson, J.A.; Tuke, P.W.; Giraud, P.; Paranhos-Baccala, G.; Perron, H. Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet (London, England) 1998, 351, 33. [Google Scholar] [CrossRef]
- Komurian-Pradel, F.; Paranhos-Baccala, G.; Bedin, F.; Ounanian-Paraz, A.; Sodoyer, M.; Ott, C.; Rajoharison, A.; Garcia, E.; Mallet, F.; Mandrand, B.; et al. Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology 1999, 260, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Morandi, E.; Tanasescu, R.; Tarlinton, R.E.; Constantinescu, C.S.; Zhang, W.; Tench, C.; Gran, B. The association between human endogenous retroviruses and multiple sclerosis: A systematic review and meta-analysis. PloS one 2017, 12, e0172415. [Google Scholar] [CrossRef]
- Coffin, J.M.; Kearney, M.F. False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome. Annual review of virology 2024, 11, 261–281. [Google Scholar] [CrossRef]
- Paprotka, T.; Delviks-Frankenberry, K.A.; Cingöz, O.; Martinez, A.; Kung, H.J.; Tepper, C.G.; Hu, W.S.; Fivash, M.J., Jr.; Coffin, J.M.; Pathak, V.K. Recombinant origin of the retrovirus XMRV. Science (New York, N.Y.) 2011, 333, 97–101. [Google Scholar] [CrossRef]
- Alberts, B. Retraction. Science (New York, N.Y.) 2011, 334, 1636. [Google Scholar] [CrossRef]
- Urisman, A.; Molinaro, R.J.; Fischer, N.; Plummer, S.J.; Casey, G.; Klein, E.A.; Malathi, K.; Magi-Galluzzi, C.; Tubbs, R.R.; Ganem, D.; et al. Retraction. Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS pathogens 2012, 8. [Google Scholar] [CrossRef]
- Deichmann, M.; Huder, J.B.; Kleist, C.; Näher, H.; Schüpbach, J.; Böni, J. Detection of reverse transcriptase activity in human melanoma cell lines and identification of a murine leukemia virus contaminant. Arch Dermatol Res 2005, 296, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Burtonboy, G.; Delferriere, N.; Mousset, B.; Heusterspreute, M. Isolation of a C-type retrovirus from an HIV infected cell line. Archives of virology 1993, 130, 289–300. [Google Scholar] [CrossRef]
- Parent, I.; Qin, Y.; Vandenbroucke, A.T.; Walon, C.; Delferrière, N.; Godfroid, E.; Burtonboy, G. Characterization of a C-type retrovirus isolated from an HIV infected cell line: complete nucleotide sequence. Archives of virology 1998, 143, 1077–1092. [Google Scholar] [CrossRef]
- Takeuchi, Y.; McClure, M.O.; Pizzato, M. Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. Journal of virology 2008, 82, 12585–12588. [Google Scholar] [CrossRef]
- Stang, A.; Petrasch-Parwez, E.; Brandt, S.; Dermietzel, R.; Meyer, H.E.; Stühler, K.; Liffers, S.T.; Uberla, K.; Grunwald, T. Unintended spread of a biosafety level 2 recombinant retrovirus. Retrovirology 2009, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Ikeda, S.; Watanabe, S.; Hatsushika, M.; Akiyama, K.; Mitsunobu, F. Molecular cloning, complete nucleotide sequence, and gene structure of the provirus genome of a retrovirus produced in a human lymphoblastoid cell line. Virology 1988, 167, 468–476. [Google Scholar] [CrossRef]
- Uphoff, C.C.; Denkmann, S.A.; Steube, K.G.; Drexler, H.G. Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines. J Biomed Biotechnol 2010, 2010, 904767. [Google Scholar] [CrossRef]
- Uphoff, C.C.; Lange, S.; Denkmann, S.A.; Garritsen, H.S.; Drexler, H.G. Prevalence and characterization of murine leukemia virus contamination in human cell lines. PloS one 2015, 10, e0125622. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Voisset, C.; Venables, P.J.; Weiss, R.A. Novel endogenous retrovirus in rabbits previously reported as human retrovirus 5. Journal of virology 2002, 76, 7094–7102. [Google Scholar] [CrossRef] [PubMed]
- Forsman, A.; Uzameckis, D.; Rönnblom, L.; Baecklund, E.; Aleskog, A.; Bindra, A.; Pipkorn, R.; Lejniece, S.; Kozireva, S.; Murovska, M.; et al. Single-tube nested quantitative PCR: a rational and sensitive technique for detection of retroviral DNA. Application to RERV-H/HRV-5 and confirmation of its rabbit origin. Journal of virological methods 2003, 111, 1–11. [Google Scholar] [CrossRef]
- Garry, R.F.; Fermin, C.D.; Hart, D.J.; Alexander, S.S.; Donehower, L.A.; Luo-Zhang, H. Detection of a human intracisternal A-type retroviral particle antigenically related to HIV. Science (New York, N.Y.) 1990, 250, 1127–1129. [Google Scholar] [CrossRef]
- Yamano, S.; Renard, J.N.; Mizuno, F.; Narita, Y.; Uchida, Y.; Higashiyama, H.; Sakurai, H.; Saito, I. Retrovirus in salivary glands from patients with Sjögren’s syndrome. J Clin Pathol 1997, 50, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Sipsas, N.V.; Gamaletsou, M.N.; Moutsopoulos, H.M. Is Sjögren’s syndrome a retroviral disease? Arthritis Res Ther 2011, 13, 212. [Google Scholar] [CrossRef]
- Borghol, A.H.; Bitar, E.R.; Hanna, A.; Naim, G.; Rahal, E.A. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2025, 51, 296–316. [Google Scholar] [CrossRef]
- Voisset, C.; Weiss, R.A.; Griffiths, D.J. Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. Microbiology and molecular biology reviews : MMBR 2008, 72, 157–196. [Google Scholar] [CrossRef]
- Betsem, E.; Rua, R.; Tortevoye, P.; Froment, A.; Gessain, A. Frequent and recent human acquisition of simian foamy viruses through apes’ bites in central Africa. PLoS pathogens 2011, 7, e1002306. [Google Scholar] [CrossRef]
- Mouinga-Ondémé, A.; Kazanji, M. Simian foamy virus in non-human primates and cross-species transmission to humans in Gabon: an emerging zoonotic disease in central Africa? Viruses 2013, 5, 1536–1552. [Google Scholar] [CrossRef]
- Van Dooren, S.; Salemi, M.; Vandamme, A.M. Dating the origin of the African human T-cell lymphotropic virus type-i (HTLV-I) subtypes. Molecular biology and evolution 2001, 18, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Calattini, S.; Chevalier, S.A.; Duprez, R.; Bassot, S.; Froment, A.; Mahieux, R.; Gessain, A. Discovery of a new human T-cell lymphotropic virus (HTLV-3) in Central Africa. Retrovirology 2005, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, N.D.; Heneine, W.; Carr, J.K.; Garcia, A.D.; Shanmugam, V.; Tamoufe, U.; Torimiro, J.N.; Prosser, A.T.; Lebreton, M.; Mpoudi-Ngole, E.; et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 7994–7999. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wolfe, N.D.; Sintasath, D.M.; Tamoufe, U.; Lebreton, M.; Djoko, C.F.; Diffo Jle, D.; Pike, B.L.; Heneine, W.; Switzer, W.M. Emergence of a novel and highly divergent HTLV-3 in a primate hunter in Cameroon. Virology 2010, 401, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Mahieux, R.; Gessain, A. HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. Viruses 2011, 3, 1074–1090. [Google Scholar] [CrossRef]
- Ferreira, O.C., Jr.; Planelles, V.; Rosenblatt, J.D. Human T-cell leukemia viruses: epidemiology, biology, and pathogenesis. Blood Rev 1997, 11, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Korber, B.T.; Nahmias, A.J.; Hooper, E.; Sharp, P.M.; Ho, D.D. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 1998, 391, 594–597. [Google Scholar] [CrossRef]
- Gao, F.; Bailes, E.; Robertson, D.L.; Chen, Y.; Rodenburg, C.M.; Michael, S.F.; Cummins, L.B.; Arthur, L.O.; Peeters, M.; Shaw, G.M.; et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999, 397, 436–441. [Google Scholar] [CrossRef]
- Worobey, M.; Gemmel, M.; Teuwen, D.E.; Haselkorn, T.; Kunstman, K.; Bunce, M.; Muyembe, J.J.; Kabongo, J.M.; Kalengayi, R.M.; Van Marck, E.; et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 2008, 455, 661–664. [Google Scholar] [CrossRef]
- Faria, N.R.; Rambaut, A.; Suchard, M.A.; Baele, G.; Bedford, T.; Ward, M.J.; Tatem, A.J.; Sousa, J.D.; Arinaminpathy, N.; Pépin, J.; et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science (New York, N.Y.) 2014, 346, 56–61. [Google Scholar] [CrossRef]
- Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011, 1, a006841. [Google Scholar] [CrossRef]
- Peeters, M.; Koumare, B.; Mulanga, C.; Brengues, C.; Mounirou, B.; Bougoudogo, F.; Ravel, S.; Bibollet-Ruche, F.; Delaporte, E. Genetic subtypes of HIV type 1 and HIV type 2 strains in commercial sex workers from Bamako, Mali. AIDS research and human retroviruses 1998, 14, 51–58. [Google Scholar] [CrossRef]
- van der Loeff, M.F.; Awasana, A.A.; Sarge-Njie, R.; van der Sande, M.; Jaye, A.; Sabally, S.; Corrah, T.; McConkey, S.J.; Whittle, H.C. Sixteen years of HIV surveillance in a West African research clinic reveals divergent epidemic trends of HIV-1 and HIV-2. Int J Epidemiol 2006, 35, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- da Silva, Z.J.; Oliveira, I.; Andersen, A.; Dias, F.; Rodrigues, A.; Holmgren, B.; Andersson, S.; Aaby, P. Changes in prevalence and incidence of HIV-1, HIV-2 and dual infections in urban areas of Bissau, Guinea-Bissau: is HIV-2 disappearing? AIDS (London, England) 2008, 22, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Heitzinger, K.; Sow, P.S.; Dia Badiane, N.M.; Gottlieb, G.S.; N’Doye, I.; Toure, M.; Kiviat, N.B.; Hawes, S.E. Trends of HIV-1, HIV-2 and dual infection in women attending outpatient clinics in Senegal, 1990-2009. Int J STD AIDS 2012, 23, 710–716. [Google Scholar] [CrossRef]
- Yuan, Z.; Kang, G.; Ma, F.; Lu, W.; Fan, W.; Fennessey, C.M.; Keele, B.F.; Li, Q. Recapitulating Cross-Species Transmission of Simian Immunodeficiency Virus SIVcpz to Humans by Using Humanized BLT Mice. Journal of virology 2016, 90, 7728–7739. [Google Scholar] [CrossRef]
- Sato, K.; Misawa, N.; Takeuchi, J.S.; Kobayashi, T.; Izumi, T.; Aso, H.; Nagaoka, S.; Yamamoto, K.; Kimura, I.; Konno, Y.; et al. Experimental Adaptive Evolution of Simian Immunodeficiency Virus SIVcpz to Pandemic Human Immunodeficiency Virus Type 1 by Using a Humanized Mouse Model. Journal of virology 2018, 92. [Google Scholar] [CrossRef]
- Sauter, D.; Kirchhoff, F. Key Viral Adaptations Preceding the AIDS Pandemic. Cell host & microbe 2019, 25, 27–38. [Google Scholar] [CrossRef]
- Khan, A.S.; Bodem, J.; Buseyne, F.; Gessain, A.; Johnson, W.; Kuhn, J.H.; Kuzmak, J.; Lindemann, D.; Linial, M.L.; Löchelt, M.; et al. Spumaretroviruses: Updated taxonomy and nomenclature. Virology 2018, 516, 158–164. [Google Scholar] [CrossRef]
- Kehl, T.; Tan, J.; Materniak, M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013, 5, 2169–2209. [Google Scholar] [CrossRef]
- Butera, S.T.; Brown, J.; Callahan, M.E.; Owen, S.M.; Matthews, A.L.; Weigner, D.D.; Chapman, L.E.; Sandstrom, P.A. Survey of veterinary conference attendees for evidence of zoonotic infection by feline retroviruses. J Am Vet Med Assoc 2000, 217, 1475–1479. [Google Scholar] [CrossRef]
- Pinto-Santini, D.M.; Stenbak, C.R.; Linial, M.L. Foamy virus zoonotic infections. Retrovirology 2017, 14, 55. [Google Scholar] [CrossRef]
- Heneine, W.; Switzer, W.M.; Sandstrom, P.; Brown, J.; Vedapuri, S.; Schable, C.A.; Khan, A.S.; Lerche, N.W.; Schweizer, M.; Neumann-Haefelin, D.; et al. Identification of a human population infected with simian foamy viruses. Nat Med 1998, 4, 403–407. [Google Scholar] [CrossRef]
- Stenbak, C.R.; Craig, K.L.; Ivanov, S.B.; Wang, X.; Soliven, K.C.; Jackson, D.L.; Gutierrez, G.A.; Engel, G.; Jones-Engel, L.; Linial, M.L. New World simian foamy virus infections in vivo and in vitro. Journal of virology 2014, 88, 982–991. [Google Scholar] [CrossRef]
- Santos, A.F.; Cavalcante, L.T.F.; Muniz, C.P.; Switzer, W.M.; Soares, M.A. Simian foamy viruses in Central and South America: A new world of discovery. Viruses 2019, 11. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Lavenda, N.; Siegel, D. Viral particles in human breast cancer. Oncologia 1965, 19, 341–348. [Google Scholar] [CrossRef]
- Dmochowski, L.; Seman, G.; Gallager, H.S. Viruses as possible etiologic factors in human breast cancer. Cancer 1969, 24, 1241–1249. [Google Scholar] [CrossRef]
- Schlom, J.; Spiegelman, S.; Moore, D. RNA-dependent DNA polymerase activity in virus-like particles isolated from human milk. Nature 1971, 231, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Dion, A.S.; Sarkar, N.H.; Moore, D.H. An attempt to correlate RNA-templated DNA polymerase activity with virus-like particles in human milk: murine mammary tumor virus (MuMTV) as a model system. Johns Hopkins Med J Suppl 1973, 2, 267–281. [Google Scholar] [PubMed]
- Das, M.R.; Mink, M.M. Sequence homology of nucleic acids from human breast cancer cells and complementary DNA’s from murine mammary tumor virus and Mason-Pfizer monkey virus. Cancer Res 1979, 39, 5106–5113. [Google Scholar]
- Xu, L.; Shen, Z.; Guo, L.; Fodera, B.; Keogh, A.; Joplin, R.; O’Donnell, B.; Aitken, J.; Carman, W.; Neuberger, J.; et al. Does a betaretrovirus infection trigger primary biliary cirrhosis? Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 8454–8459. [Google Scholar] [CrossRef]
- Amarante, M.K.; de Sousa Pereira, N.; Vitiello, G.A.F.; Watanabe, M.A.E. Involvement of a mouse mammary tumor virus (MMTV) homologue in human breast cancer: Evidence for, against and possible causes of controversies. Microb Pathog 2019, 130, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.C.; Ferrer, J.F. In vitro transmission and propagation of the bovine leukemia virus in monolayer cell cultures. Cancer Res 1976, 36, 4152–4159. [Google Scholar]
- Saeedi-Moghaddam, F.; Mohammaditabar, M.; Mozhgani, S.H. Bovine leukemia virus (BLV) and risk of breast cancer; a systematic review and meta-analysis. Retrovirology 2024, 21, 20. [Google Scholar] [CrossRef]
- Blanco, R.; Quezada-Romegialli, C.; Muñoz, J.P. Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Purchase, H.G.; Ludford, C.; Nazerian, K.; Cox, H.W. A new group of oncogenic viruses: reticuloendotheliosis, chick syncytial, duck infectious anemia, and spleen necrosis viruses. J Natl Cancer Inst 1973, 51, 489–499. [Google Scholar] [PubMed]
- Purchase, H.G.; Witter, R.L. The reticuloendotheliosis viruses. Curr Top Microbiol Immunol 1975, 71, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Gautier, R.; Jiang, A.; Rousseau, V.; Dornburg, R.; Jaffredo, T. Avian reticuloendotheliosis virus strain A and spleen necrosis virus do not infect human cells. Journal of virology 2000, 74, 518–522. [Google Scholar] [CrossRef]
- Schat, K.A.; Erb, H.N. Lack of evidence that avian oncogenic viruses are infectious for humans: a review. Avian diseases 2014, 58, 345–358. [Google Scholar] [CrossRef]
- Koo, H.M.; Brown, A.M.; Ron, Y.; Dougherty, J.P. Spleen necrosis virus, an avian retrovirus, can infect primate cells. Journal of virology 1991, 65, 4769–4776. [Google Scholar] [CrossRef]
- Awad, A.M.; Abd El-Hamid, H.S.; Abou Rawash, A.A.; Ibrahim, H.H. Detection of reticuloendotheliosis virus as a contaminant of fowl pox vaccines. Poult Sci 2010, 89, 2389–2395. [Google Scholar] [CrossRef]
- Fadly, A.; Garcia, M.C. Detection of reticuloendotheliosis virus in live virus vaccines of poultry. Dev Biol (Basel) 2006, 126, 301–305; discussion 327. [Google Scholar]
- Chacón, R.D.; Astolfi-Ferreira, C.S.; Valdeiglesias Ichillumpa, S.; Lage Hagemann, H.; Furlan Rocha, M.; Fernandes Magalhães, L.; Freitas Raso, T.; Ferreira, A.J.P. First Complete Genome of Reticuloendotheliosis Virus in a Mallard Duck from Brazil: Phylogenetic Insights and Evolutionary Analysis. Pathogens 2025, 14. [Google Scholar] [CrossRef]
- Baxby, D.; Paoletti, E. Potential use of non-replicating vectors as recombinant vaccines. Vaccine 1992, 10, 8–9. [Google Scholar] [CrossRef]
- Kozak, C.A. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 2014, 7, 1–26. [Google Scholar] [CrossRef]
- Specke, V.; Rubant, S.; Denner, J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001, 285, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Moalic, Y.; Blanchard, Y.; Félix, H.; Jestin, A. Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. Journal of virology 2006, 80, 10980–10988. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, N.Y.; Bae, G.E.; Lee, H.J.; Kwon, M.; Kim, S.S.; Lee, H.T.; Yang, J.M.; Kim, Y.B. Transmissible infection of human 293T cells with porcine endogenous retroviruses subgroup a from NIH-miniature pig. Transplant Proc 2008, 40, 3742–3745. [Google Scholar] [CrossRef]
- Denner, J. Monitoring for PERV Following Xenotransplantation. Transpl Int 2024, 37, 13491. [Google Scholar] [CrossRef]
- Lamers, C.H.; Willemsen, R.A.; van Elzakker, P.M.; Gratama, J.W.; Debets, R. Gibbon ape leukemia virus poorly replicates in primary human T lymphocytes: implications for safety testing of primary human T lymphocytes transduced with GALV-pseudotyped vectors. J Immunother 2009, 32, 272–279. [Google Scholar] [CrossRef]
- Fiebig, U.; Hartmann, M.G.; Bannert, N.; Kurth, R.; Denner, J. Transspecies transmission of the endogenous koala retrovirus. Journal of virology 2006, 80, 5651–5654. [Google Scholar] [CrossRef]
- Shojima, T.; Hoshino, S.; Abe, M.; Yasuda, J.; Shogen, H.; Kobayashi, T.; Miyazawa, T. Construction and characterization of an infectious molecular clone of Koala retrovirus. Journal of virology 2013, 87, 5081–5088. [Google Scholar] [CrossRef] [PubMed]
- Renner, A.; Stahringer, A.; Ruppel, K.E.; Fricke, S.; Koehl, U.; Schmiedel, D. Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells. Gene therapy 2024, 31, 378–390. [Google Scholar] [CrossRef]
- Hayward, J.A.; Tachedjian, M.; Kohl, C.; Johnson, A.; Dearnley, M.; Jesaveluk, B.; Langer, C.; Solymosi, P.D.; Hille, G.; Nitsche, A.; et al. Infectious KoRV-related retroviruses circulating in Australian bats. Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 9529–9536. [Google Scholar] [CrossRef]
- Simmons, G.; Clarke, D.; McKee, J.; Young, P.; Meers, J. Discovery of a novel retrovirus sequence in an Australian native rodent (Melomys burtoni): a putative link between gibbon ape leukemia virus and koala retrovirus. PloS one 2014, 9, e106954. [Google Scholar] [CrossRef]
- Gregory Stewart, S.; Gervais, H. The Origins of Gibbon Ape Leukaemia Virus. In Primates, Mark, B., Maurice, P., Eds.; IntechOpen: London, 2017. [Google Scholar]
- McMichael, L.; Smith, C.; Gordon, A.; Agnihotri, K.; Meers, J.; Oakey, J. A novel Australian flying-fox retrovirus shares an evolutionary ancestor with Koala, Gibbon and Melomys gamma-retroviruses. Virus genes 2019, 55, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Siegal-Willott, J.L.; Jensen, N.; Kimi, D.; Taliaferro, D.; Blankenship, T.; Malinsky, B.; Murray, S.; Eiden, M.V.; Xu, W. Evaluation of captive gibbons (Hylobates spp., Nomascus spp., Symphalangus spp.) in North American Zoological Institutions for Gibbon Ape Leukemia Virus (GALV). J Zoo Wildl Med 2015, 46, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Tarlinton, R.E. Is gibbon ape leukaemia virus still a threat? Mammal Review 2017, 47, 53–61. [Google Scholar] [CrossRef]
- Kawakami, T.G.; Sun, L.; McDowell, T.S. Infectious primate type-C virus shed by healthy gibbons. Nature 1977, 268, 448–450. [Google Scholar] [CrossRef]
- Krakower, J.M.; Tronick, S.R.; Gallagher, R.E.; Gallo, R.C.; Aaronson, S.A. Antigenic characterization of a new gibbon ape leukemia virus isolate: seroepidemiologic assessment of an outbreak of gibbon leukemia. Int J Cancer 1978, 22, 715–720. [Google Scholar] [CrossRef]
- Cornetta, K.; Yao, J.; House, K.; Duffy, L.; Adusumilli, P.S.; Beyer, R.; Booth, C.; Brenner, M.; Curran, K.; Grilley, B.; et al. Replication competent retrovirus testing (RCR) in the National Gene Vector Biorepository: No evidence of RCR in 1,595 post-treatment peripheral blood samples obtained from 60 clinical trials. Molecular therapy : the journal of the American Society of Gene Therapy 2023, 31, 801–809. [Google Scholar] [CrossRef]
- McKee, J.; Clark, N.; Shapter, F.; Simmons, G. A new look at the origins of gibbon ape leukemia virus. Virus genes 2017, 53, 165–172. [Google Scholar] [CrossRef]
- Sato, K.; Kobayashi, T.; Misawa, N.; Yoshikawa, R.; Takeuchi, J.S.; Miura, T.; Okamoto, M.; Yasunaga, J.; Matsuoka, M.; Ito, M.; et al. Experimental evaluation of the zoonotic infection potency of simian retrovirus type 4 using humanized mouse model. Sci Rep 2015, 5, 14040. [Google Scholar] [CrossRef]
- Terry, A.; Kilbey, A.; Naseer, A.; Levy, L.S.; Ahmad, S.; Watts, C.; Mackay, N.; Cameron, E.; Wilson, S.; Neil, J.C. Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis. Journal of virology 2017, 91. [Google Scholar] [CrossRef]
- Mendoza, R.; Anderson, M.M.; Overbaugh, J. A putative thiamine transport protein is a receptor for feline leukemia virus subgroup A. Journal of virology 2006, 80, 3378–3385. [Google Scholar] [CrossRef]
- Brown, M.A.; Cunningham, M.W.; Roca, A.L.; Troyer, J.L.; Johnson, W.E.; O’Brien, S.J. Genetic characterization of feline leukemia virus from Florida panthers. Emerging infectious diseases 2008, 14, 252–259. [Google Scholar] [CrossRef]
- Meli, M.L.; Cattori, V.; Martínez, F.; López, G.; Vargas, A.; Simón, M.A.; Zorrilla, I.; Muñoz, A.; Palomares, F.; López-Bao, J.V.; et al. Feline leukemia virus and other pathogens as important threats to the survival of the critically endangered Iberian lynx (Lynx pardinus). PloS one 2009, 4, e4744. [Google Scholar] [CrossRef] [PubMed]
- Petch, R.J.; Gagne, R.B.; Chiu, E.; Mankowski, C.; Rudd, J.; Roelke-Parker, M.; Vickers, T.W.; Logan, K.A.; Alldredge, M.; Clifford, D.; et al. Feline Leukemia Virus Frequently Spills Over from Domestic Cats to North American Pumas. Journal of virology 2022, 96, e0120122. [Google Scholar] [CrossRef] [PubMed]
- Sommerfelt, M.A.; Harkestad, N.; Hunter, E. The endogenous langur type D retrovirus PO-1-Lu and its exogenous counterparts in macaque and langur monkeys. Virology 2003, 315, 275–282. [Google Scholar] [CrossRef]
- Todaro, G.J.; Benveniste, R.E.; Lieber, M.M.; Livingston, D.M. Infectious type C viruses released by normal cat embryo cells. Virology 1973, 55, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Filbert, J.E.; McAllister, R.M.; Nicolson, M.O.; Gilden, R.V.; Lennette, E.H. RD-114 virus infectivity assay by measurements of DNA polymerase activity and virus group specific antigen. Proc Soc Exp Biol Med 1974, 145, 366–370. [Google Scholar] [CrossRef]
- Birkenmeier, E.H.; Bonner, T.I.; Reynolds, K.; Searfoss, G.H.; Todaro, G.J. Colobus type C virus: molecular cloning of unintegrated viral DNA and characterization of the endogenous viral genomes of Colobus. Journal of virology 1982, 41, 842–854. [Google Scholar] [CrossRef]
- Bohannon, R.C.; Donehower, L.A.; Ford, R.J. Isolation of a type D retrovirus from B-cell lymphomas of a patient with AIDS. Journal of virology 1991, 65, 5663–5672. [Google Scholar] [CrossRef] [PubMed]
- Krause, H.; Wunderlich, V.; Uckert, W. Molecular cloning of a type D retrovirus from human cells (PMFV) and its homology to simian acquired immunodeficiency type D retroviruses. Virology 1989, 173, 214–222. [Google Scholar] [CrossRef]
- Asikainen, K.; Vesanen, M.; Kuittinen, T.; Vaheri, A. Identification of human type D retrovirus as a contaminant in a neuroblastoma cell line. Archives of virology 1993, 129, 357–361. [Google Scholar] [CrossRef]
- Lerche, N.W.; Switzer, W.M.; Yee, J.L.; Shanmugam, V.; Rosenthal, A.N.; Chapman, L.E.; Folks, T.M.; Heneine, W. Evidence of infection with simian type D retrovirus in persons occupationally exposed to nonhuman primates. Journal of virology 2001, 75, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- WHO. Public Health Emergencies of International Concern. Available online: www.who.int/publications/m/item/pathogens-prioritization-a-scientific-framework-for-epidemic-and-pandemic-research-preparedness (accessed on 22 May 2025).
- Welsh, R.M., Jr.; Cooper, N.R.; Jensen, F.C.; Oldstone, M.B. Human serum lyses RNA tumour viruses. Nature 1975, 257, 612–614. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, H.; Tanaka, H.; Miwa, M.; Okada, H. Human T-cell leukaemia virus is not lysed by human serum. Nature 1984, 310, 324–325. [Google Scholar] [CrossRef]
- Banapour, B.; Sernatinger, J.; Levy, J.A. The AIDS-associated retrovirus is not sensitive to lysis or inactivation by human serum. Virology 1986, 152, 268–271. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Cosset, F.L.; Lachmann, P.J.; Okada, H.; Weiss, R.A.; Collins, M.K. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. Journal of virology 1994, 68, 8001–8007. [Google Scholar] [CrossRef]
- Galili, U. Mutations Inactivating Biosynthesis of Dispensable Carbohydrate-Antigens Prevented Extinctions in Primate/Human Lineage Evolution. Journal of molecular evolution 2025. [Google Scholar] [CrossRef]
- Rother, R.P.; Fodor, W.L.; Springhorn, J.P.; Birks, C.W.; Setter, E.; Sandrin, M.S.; Squinto, S.P.; Rollins, S.A. A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. The Journal of experimental medicine 1995, 182, 1345–1355. [Google Scholar] [CrossRef]
- Moscoso, I.; Hermida-Prieto, M.; Mañez, R.; Lopez-Pelaez, E.; Centeno, A.; Diaz, T.M.; Domenech, N. Lack of cross-species transmission of porcine endogenous retrovirus in pig-to-baboon xenotransplantation with sustained depletion of anti-alphagal antibodies. Transplantation 2005, 79, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Lavillette, D.; Marin, M.; Ruggieri, A.; Mallet, F.; Cosset, F.L.; Kabat, D. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. Journal of virology 2002, 76, 6442–6452. [Google Scholar] [CrossRef]
- Nethe, M.; Berkhout, B.; van der Kuyl, A.C. Retroviral superinfection resistance. Retrovirology 2005, 2, 52. [Google Scholar] [CrossRef]
- Ponferrada, V.G.; Mauck, B.S.; Wooley, D.P. The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Archives of virology 2003, 148, 659–675. [Google Scholar] [CrossRef]
- Gesemann, M.; Lesslauer, A.; Maurer, C.M.; Schönthaler, H.B.; Neuhauss, S.C. Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC evolutionary biology 2010, 10, 117. [Google Scholar] [CrossRef]
- Green, R.; Ireton, R.C.; Gale, M., Jr. Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 2018, 29, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? Annual review of virology 2019, 6, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Kassiotis, G.; Stoye, J.P. Evolution of antiviral host defenses against a backdrop of endogenous retroelements. Science (New York, N.Y.) 2025, 389, 588–593. [Google Scholar] [CrossRef]
- Nchioua, R.; Kmiec, D.; Krchlikova, V.; Mattes, S.; Noettger, S.; Bibollet-Ruche, F.; Russell, R.M.; Sparrer, K.M.J.; Charpentier, T.; Tardy, F.; et al. Host ZAP activity correlates with the levels of CpG suppression in primate lentiviruses. Proceedings of the National Academy of Sciences of the United States of America 2025, 122, e2419489122. [Google Scholar] [CrossRef]
- Jin, M.J.; Rogers, J.; Phillips-Conroy, J.E.; Allan, J.S.; Desrosiers, R.C.; Shaw, G.M.; Sharp, P.M.; Hahn, B.H. Infection of a yellow baboon with simian immunodeficiency virus from African green monkeys: evidence for cross-species transmission in the wild. Journal of virology 1994, 68, 8454–8460. [Google Scholar] [CrossRef]
- Mang, R.; Maas, J.; van Der Kuyl, A.C.; Goudsmit, J. Papio cynocephalus endogenous retrovirus among old world monkeys: evidence for coevolution and ancient cross-species transmissions. Journal of virology 2000, 74, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Nyamota, R.; Owino, V.; Murungi, E.K.; Villinger, J.; Otiende, M.; Masiga, D.; Thuita, J.; Lekolool, I.; Jeneby, M. Broad diversity of simian immunodeficiency virus infecting Chlorocebus species (African green monkey) and evidence of cross-species infection in Papio anubis (olive baboon) in Kenya. Journal of medical primatology 2020, 49, 165–178. [Google Scholar] [CrossRef]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiology and molecular biology reviews : MMBR 2008, 72, 457–470. [Google Scholar] [CrossRef]
- Kreuder Johnson, C.; Hitchens, P.L.; Smiley Evans, T.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci Rep 2015, 5, 14830. [Google Scholar] [CrossRef]
- Greenspoon, L.; Ramot, N.; Moran, U.; Roll, U.; Phillips, R.; Noor, E.; Milo, R. The global biomass of mammals since 1850. Nature communications 2025, 16, 8338. [Google Scholar] [CrossRef]
- Sikora, M.; Canteri, E.; Fernandez-Guerra, A.; Oskolkov, N.; Ågren, R.; Hansson, L.; Irving-Pease, E.K.; Mühlemann, B.; Holtsmark Nielsen, S.; Scorrano, G.; et al. The spatiotemporal distribution of human pathogens in ancient Eurasia. Nature 2025, 643, 1011–1019. [Google Scholar] [CrossRef]
- Mang, R.; Maas, J.; Chen, X.; Goudsmit, J.; van Der Kuyl, A.C. Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. The Journal of general virology 2001, 82, 1829–1834. [Google Scholar] [CrossRef]
- Miyazawa, T.; Yoshikawa, R.; Golder, M.; Okada, M.; Stewart, H.; Palmarini, M. Isolation of an infectious endogenous retrovirus in a proportion of live attenuated vaccines for pets. Journal of virology 2010, 84, 3690–3694. [Google Scholar] [CrossRef]
- Shimode, S.; Sakuma, T.; Yamamoto, T.; Miyazawa, T. Establishment of CRFK cells for vaccine production by inactivating endogenous retrovirus with TALEN technology. Sci Rep 2022, 12, 6641. [Google Scholar] [CrossRef] [PubMed]
- Narushima, R.; Horiuchi, N.; Usui, T.; Ogawa, T.; Takahashi, T.; Shimazaki, T. Experimental infection of dogs with a feline endogenous retrovirus RD-114. Acta veterinaria Scandinavica 2011, 53, 3. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, R.; Yasuda, J.; Kobayashi, T.; Miyazawa, T. Canine ASCT1 and ASCT2 are functional receptors for RD-114 virus in dogs. The Journal of general virology 2012, 93, 603–607. [Google Scholar] [CrossRef]
- Victoria, J.G.; Wang, C.; Jones, M.S.; Jaing, C.; McLoughlin, K.; Gardner, S.; Delwart, E.L. Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus. Journal of virology 2010, 84, 6033–6040. [Google Scholar] [CrossRef]
- Fukumoto, H.; Hishima, T.; Hasegawa, H.; Saeki, H.; Kuroda, M.; Katano, H. Evaluation of Vero-cell-derived simian endogenous retrovirus infection in humans by detection of viral genome in clinicopathological samples and commercialized vaccines and by serology of Japanese general population. Vaccine 2016, 34, 2700–2706. [Google Scholar] [CrossRef]
- Tsang, S.X.; Switzer, W.M.; Shanmugam, V.; Johnson, J.A.; Goldsmith, C.; Wright, A.; Fadly, A.; Thea, D.; Jaffe, H.; Folks, T.M.; et al. Evidence of avian leukosis virus subgroup E and endogenous avian virus in measles and mumps vaccines derived from chicken cells: investigation of transmission to vaccine recipients. Journal of virology 1999, 73, 5843–5851. [Google Scholar] [CrossRef]
- Hussain, A.I.; Shanmugam, V.; Switzer, W.M.; Tsang, S.X.; Fadly, A.; Thea, D.; Helfand, R.; Bellini, W.J.; Folks, T.M.; Heneine, W. Lack of evidence of endogenous avian leukosis virus and endogenous avian retrovirus transmission to measles, mumps, and rubella vaccine recipients. Emerging infectious diseases 2001, 7, 66–72. [Google Scholar] [CrossRef]
- Hussain, A.I.; Johnson, J.A.; Da Silva Freire, M.; Heneine, W. Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients. Journal of virology 2003, 77, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.O.; Cullinan, J.L.; Basria, I.; Fuentes-Arias, M.; Osuna-Najarro, A.; Johnson, S.; Faison, T.; Lute, S. Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development. PDA J Pharm Sci Technol 2025, 79, 252–273. [Google Scholar] [CrossRef]
- Chin, P.J.; Lambert, C.; Beurdelay, P.; Charlebois, R.L.; Colinet, A.S.; Eloit, M.; Gilchrist, S.; Gilleece, M.; Hess, M.; Leimbach, A.; et al. Virus detection by short read high throughput sequencing in a high virus low cellular background. NPJ Vaccines 2025, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.S.; Broussard, S.R.; Michaels, M.G.; Starzl, T.E.; Leighton, K.L.; Whitehead, E.M.; Comuzzie, A.G.; Lanford, R.E.; Leland, M.M.; Switzer, W.M.; et al. Amplification of simian retroviral sequences from human recipients of baboon liver transplants. AIDS research and human retroviruses 1998, 14, 821–824. [Google Scholar] [CrossRef]
- Michaels, M.G.; Kaufman, C.; Volberding, P.A.; Gupta, P.; Switzer, W.M.; Heneine, W.; Sandstrom, P.; Kaplan, L.; Swift, P.; Damon, L.; et al. Baboon bone-marrow xenotransplant in a patient with advanced HIV disease: case report and 8-year follow-up. Transplantation 2004, 78, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Jhelum, H.; Ban, J.; Krabben, L.; Kaufer, B.B. How to Detect Porcine Endogenous Retrovirus (PERV) Infections in Patients After Transplantation of Pig Organs. Xenotransplantation 2025, 32, e70028. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.P.; Layer, J.V.; Heja, D.; Hirose, T.; Lassiter, G.; Firl, D.J.; Paragas, V.B.; Akkad, A.; Chhangawala, S.; Colvin, R.B.; et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 2023, 622, 393–401. [Google Scholar] [CrossRef]
- Kawai, T.; Williams, W.W.; Elias, N.; Fishman, J.A.; Crisalli, K.; Longchamp, A.; Rosales, I.A.; Duggan, M.; Kimura, S.; Morena, L.; et al. Xenotransplantation of a Porcine Kidney for End-Stage Kidney Disease. The New England journal of medicine 2025, 392, 1933–1940. [Google Scholar] [CrossRef]
- The organ farm. Available online: www.science.org/content/article/can-gene-edited-pigs-solve-organ-transplant-shortage (accessed on 7 november 2025).
- Study to Evaluate the Safety and Efficacy of the 10 GE Xenokidney in Patients With ESRD (EXPAND). Available online: https://clinicaltrials.gov/study/NCT06878560 (accessed on October 27 2025).
- Ban, J.; Krabben, L.; Kaufer, B.B.; Denner, J. Neutralizing Antibodies Against the Porcine Endogenous Retroviruses (PERVs). Viruses 2025, 17. [Google Scholar] [CrossRef]
- Maetzig, T.; Galla, M.; Baum, C.; Schambach, A. Gammaretroviral vectors: biology, technology and application. Viruses 2011, 3, 677–713. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; McKenna, M.K. Generation of CAR T-cells using γ-retroviral vector. Methods Cell Biol 2022, 167, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.L.K.; Heinzel, T.; Iyer-Bierhoff, A. Protocol for ecotropic pseudotyped lentiviral transduction of “murinized” human cells while decreasing risk of infection for laboratory personnel. STAR Protoc 2025, 6, 103708. [Google Scholar] [CrossRef]
- Taghdiri, M.; Mussolino, C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. International journal of molecular sciences 2024, 25. [Google Scholar] [CrossRef]
- Koppers-Lalic, D.; Hoeben, R.C. Non-human viruses developed as therapeutic agent for use in humans. Rev Med Virol 2011, 21, 227–239. [Google Scholar] [CrossRef]
- Lu, Y.C.; Luo, Y.P.; Wang, Y.W.; Tai, C.K. Highly efficient gene transfer to solid tumors in vivo by tumor-selective replicating retrovirus vectors. Int J Mol Med 2010, 25, 769–775. [Google Scholar] [CrossRef]
- Lu, Y.C.; Chen, Y.J.; Yu, Y.R.; Lai, Y.H.; Cheng, J.C.; Li, Y.F.; Shen, C.H.; Tai, C.K. Replicating retroviral vectors for oncolytic virotherapy of experimental hepatocellular carcinoma. Oncol Rep 2012, 28, 21–26. [Google Scholar] [CrossRef]
- Collins, S.A.; Shah, A.H.; Ostertag, D.; Kasahara, N.; Jolly, D.J. Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer. Expert Opin Biol Ther 2021, 21, 1199–1214. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.J.; Zhu, J.J.; Diago, O.R.; Gammon, D.; Haghighi, A.; Lu, G.; Das, A.; Gruber, H.E.; Jolly, D.J.; Ostertag, D. Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients. Clin Cancer Res 2018, 24, 4680–4693. [Google Scholar] [CrossRef]
- Donahue, R.E.; Kessler, S.W.; Bodine, D.; McDonagh, K.; Dunbar, C.; Goodman, S.; Agricola, B.; Byrne, E.; Raffeld, M.; Moen, R.; et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. The Journal of experimental medicine 1992, 176, 1125–1135. [Google Scholar] [CrossRef]
- Vanin, E.F.; Kaloss, M.; Broscius, C.; Nienhuis, A.W. Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. Journal of virology 1994, 68, 4241–4250. [Google Scholar] [CrossRef] [PubMed]
- Purcell, D.F.; Broscius, C.M.; Vanin, E.F.; Buckler, C.E.; Nienhuis, A.W.; Martin, M.A. An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. Journal of virology 1996, 70, 887–897. [Google Scholar] [CrossRef]
- Farley, D.; Stockdale, S.; Moore-Kelly, C.; Miskin, J.; Reiser, J.; Mitrophanous, K. Risks of replication-competent retro/lentivirus from associated vector systems: Is it time for a roadmap toward reduced testing? Molecular Therapy Methods & Clinical Development 2025, 33, 101601. [Google Scholar] [CrossRef]
- Wilson, C.A.; Wong, S.; Muller, J.; Davidson, C.E.; Rose, T.M.; Burd, P. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. Journal of virology 1998, 72, 3082–3087. [Google Scholar] [CrossRef]
- Lerche, N.W.; Marx, P.A.; Gardner, M.B. Elimination of type D retrovirus infection from group-housed rhesus monkeys using serial testing and removal. Lab Anim Sci 1991, 41, 123–127. [Google Scholar]
- Westman, M.E.; Coggins, S.J.; van Dorsselaer, M.; Norris, J.M.; Squires, R.A.; Thompson, M.; Malik, R. Feline leukaemia virus (FeLV) infection in domestic pet cats in Australia and New Zealand: Guidelines for diagnosis, prevention and management. Aust Vet J 2025, 103, 617–635. [Google Scholar] [CrossRef]
- Olagoke, O.; Miller, D.; Hemmatzadeh, F.; Stephenson, T.; Fabijan, J.; Hutt, P.; Finch, S.; Speight, N.; Timms, P. Induction of neutralizing antibody response against koala retrovirus (KoRV) and reduction in viral load in koalas following vaccination with recombinant KoRV envelope protein. NPJ Vaccines 2018, 3, 30. [Google Scholar] [CrossRef]
- Francis, D.P.; Essex, M.; Hardy, W.D., Jr. Excretion of feline leukaemia virus by naturally infected pet cats. Nature 1977, 269, 252–254. [Google Scholar] [CrossRef]
- Kawakami, T.G.; Sun, L.; McDowell, T.S. Natural transmission of gibbon leukemia virus. J Natl Cancer Inst 1978, 61, 1113–1115. [Google Scholar]
- Gomes-Keller, M.A.; Tandon, R.; Gönczi, E.; Meli, M.L.; Hofmann-Lehmann, R.; Lutz, H. Shedding of feline leukemia virus RNA in saliva is a consistent feature in viremic cats. Veterinary microbiology 2006, 112, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Cattori, V.; Tandon, R.; Riond, B.; Pepin, A.C.; Lutz, H.; Hofmann-Lehmann, R. The kinetics of feline leukaemia virus shedding in experimentally infected cats are associated with infection outcome. Veterinary microbiology 2009, 133, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.C.; Gallagher, R.E.; Wong-Staal, F.; Aoki, T.; Markham, P.D.; Schetters, H.; Ruscetti, F.; Valerio, M.; Walling, M.J.; O’Keeffe, R.T.; et al. Isolation and tissue distribution of type-C virus and viral components from a gibbon ape (Hylobates lar) with lymphocytic leukemia. Virology 1978, 84, 359–373. [Google Scholar] [CrossRef]
- Kawakami, T.G.; Huff, S.D.; Buckley, P.M.; Dungworth, D.L.; Synder, S.P.; Gilden, R.V. C-type virus associated with gibbon lymphosarcoma. Nat New Biol 1972, 235, 170–171. [Google Scholar] [CrossRef]
- Oliveira, N.M.; Farrell, K.B.; Eiden, M.V. In vitro characterization of a koala retrovirus. Journal of virology 2006, 80, 3104–3107. [Google Scholar] [CrossRef]
- Hanger, J.J.; Bromham, L.D.; McKee, J.J.; O’Brien, T.M.; Robinson, W.F. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. Journal of virology 2000, 74, 4264–4272. [Google Scholar] [CrossRef]
- Blyton, M.D.J.; Young, P.R.; Moore, B.D.; Chappell, K.J. Geographic patterns of koala retrovirus genetic diversity, endogenization, and subtype distributions. Proceedings of the National Academy of Sciences of the United States of America 2022, 119, e2122680119. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Montojo, M.; Doucet-O’Hare, T.; Henderson, L.; Nath, A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 2018, 44, 715–738. [Google Scholar] [CrossRef]
- Karamitros, T.; Hurst, T.; Marchi, E.; Karamichali, E.; Georgopoulou, U.; Mentis, A.; Riepsaame, J.; Lin, A.; Paraskevis, D.; Hatzakis, A.; et al. Human Endogenous Retrovirus-K HML-2 integration within RASGRF2 is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proceedings of the National Academy of Sciences of the United States of America 2018, 115, 10434–10439. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Sechi, L.A.; Kelvin, D.J. Human Endogenous Retrovirus K (HML-2) in Health and Disease. Frontiers in microbiology 2020, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- van der Kuyl, A.C.; Dekker, J.T.; Goudsmit, J. Discovery of a new endogenous type C retrovirus (FcEV) in cats: evidence for RD-114 being an FcEV(Gag-Pol)/baboon endogenous virus BaEV(Env) recombinant. Journal of virology 1999, 73, 7994–8002. [Google Scholar] [CrossRef]
- Henzy, J.E.; Gifford, R.J.; Johnson, W.E.; Coffin, J.M. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. Journal of virology 2014, 88, 2398–2405. [Google Scholar] [CrossRef]
- Vargiu, L.; Rodriguez-Tomé, P.; Sperber, G.O.; Cadeddu, M.; Grandi, N.; Blikstad, V.; Tramontano, E.; Blomberg, J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016, 13, 7. [Google Scholar] [CrossRef]
- Tönjes, R.R.; Löwer, R.; Boller, K.; Denner, J.; Hasenmaier, B.; Kirsch, H.; König, H.; Korbmacher, C.; Limbach, C.; Lugert, R.; et al. HERV-K: the biologically most active human endogenous retrovirus family. J Acquir Immune Defic Syndr Hum Retrovirol 1996, 13 Suppl 1, S261–267. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, B.; Jebbink, M.; Zsiros, J. Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. Journal of virology 1999, 73, 2365–2375. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Switzer, W.M.; Carr, J.K.; Bhullar, V.B.; Shanmugam, V.; Tamoufe, U.; Prosser, A.T.; Torimiro, J.N.; Wright, A.; Mpoudi-Ngole, E.; et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet (London, England) 2004, 363, 932–937. [Google Scholar] [CrossRef]
- Switzer, W.M.; Bhullar, V.; Shanmugam, V.; Cong, M.E.; Parekh, B.; Lerche, N.W.; Yee, J.L.; Ely, J.J.; Boneva, R.; Chapman, L.E.; et al. Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates. Journal of virology 2004, 78, 2780–2789. [Google Scholar] [CrossRef]
- Mottaghinia, S.; Stenzel, S.; Tsangaras, K.; Nikolaidis, N.; Laue, M.; Müller, K.; Hölscher, H.; Löber, U.; McEwen, G.K.; Donnellan, S.C.; et al. A recent gibbon ape leukemia virus germline integration in a rodent from New Guinea. Proceedings of the National Academy of Sciences of the United States of America 2024, 121, e2220392121. [Google Scholar] [CrossRef]
- Lerche, N.W.; Henrickson, R.V.; Maul, D.H.; Gardner, M.B. Epidemiologic aspects of an outbreak of acquired immunodeficiency in rhesus monkeys (Macaca mulatta). Lab Anim Sci 1984, 34, 146–150. [Google Scholar]
- Gardner, M.B. The history of simian AIDS. Journal of medical primatology 1996, 25, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, R.; Okamoto, M.; Sakaguchi, S.; Nakagawa, S.; Miura, T.; Hirai, H.; Miyazawa, T. Simian retrovirus 4 induces lethal acute thrombocytopenia in Japanese macaques. Journal of virology 2015, 89, 3965–3975. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.W.; Miller, M.; Ramer, J.; Travis, D.; Barbiers, R.; Wolfe, N.D.; Switzer, W.M. Implications of simian retroviruses for captive primate population management and the occupational safety of primate handlers. J Zoo Wildl Med 2006, 37, 219–233. [Google Scholar] [CrossRef]
- Schroder, M.A.; Fisk, S.K.; Lerche, N.W. Eradication of simian retrovirus type D from a colony of cynomolgus, rhesus, and stump-tailed macaques by using serial testing and removal. Contemp Top Lab Anim Sci 2000, 39, 16–23. [Google Scholar]
- Montiel, N.A. An updated review of simian betaretrovirus (SRV) in macaque hosts. Journal of medical primatology 2010, 39, 303–314. [Google Scholar] [CrossRef]
- Yee, J.L.; Grant, R.; Van Rompay, K.K.; Kuller, L.; Carpenter, A.; Watanabe, R.; Huebner, R.; Agricola, B.; Smedley, J.; Roberts, J.A. Emerging diagnostic challenges and characteristics of simian betaretrovirus infections in captive macaque colonies. Journal of medical primatology 2017, 46, 149–153. [Google Scholar] [CrossRef]
- Nham, P.; Halley, B.; Van Rompay, K.K.A.; Roberts, J.; Yee, J. Simian retrovirus transmission in rhesus macaques. Journal of medical primatology 2024, 53, e12726. [Google Scholar] [CrossRef]
- Driscoll, C.A.; Clutton-Brock, J.; Kitchener, A.C.; O’Brien, S.J. The Taming of the cat. Genetic and archaeological findings hint that wildcats became housecats earlier--and in a different place--than previously thought. Sci Am 2009, 300, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, R.E.; Sherr, C.J.; Todaro, G.J. Evolution of type C viral genes: origin of feline leukemia virus. Science (New York, N.Y.) 1975, 190, 886–888. [Google Scholar] [CrossRef]
- Giselbrecht, J.; Jähne, S.; Bergmann, M.; Meli, M.L.; Pineroli, B.; Boenzli, E.; Teichmann-Knorrn, S.; Zablotski, Y.; Pennisi, M.G.; Layachi, N.; et al. Prevalence of Different Courses of Feline Leukaemia Virus Infection in Four European Countries. Viruses 2023, 15. [Google Scholar] [CrossRef]
- Stubbe, S.P.; Lang, J.; Nagler, N.; Müller, S.F.; Lierz, M. High Prevalence of Antigens of and Specific Antibodies Against Various Viral Pathogens in European Wildcats (Felis silvestris) from Southwest Germany, 2020-22. J Wildl Dis 2025, 61, 663–673. [Google Scholar] [CrossRef]
- Hashem, M.A.; Kayesh, M.E.H.; Yamato, O.; Maetani, F.; Eiei, T.; Mochizuki, K.; Sakurai, H.; Ito, A.; Kannno, H.; Kasahara, T.; et al. Coinfection with koala retrovirus subtypes A and B and its impact on captive koalas in Japanese zoos. Archives of virology 2019, 164, 2735–2745. [Google Scholar] [CrossRef]
- Zheng, H.; Pan, Y.; Tang, S.; Pye, G.W.; Stadler, C.K.; Vogelnest, L.; Herrin, K.V.; Rideout, B.A.; Switzer, W.M. Koala retrovirus diversity, transmissibility, and disease associations. Retrovirology 2020, 17, 34. [Google Scholar] [CrossRef]
- Joyce, B.A.; Blyton, M.D.J.; Johnston, S.D.; Meikle, W.D.; Vinette Herrin, K.; Madden, C.; Young, P.R.; Chappell, K.J. Diversity and transmission of koala retrovirus: a case study in three captive koala populations. Sci Rep 2022, 12, 15787. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Yajima, M.; Ikuta, K. Epstein-Barr virus strain variation and cancer. Cancer Sci 2019, 110, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Tocagen’s cancer drug fails to improve survival in glioma trial. Available online: www.clinicaltrialsarena.com/news/tocagen-glioma-phaseiii-fails/ (accessed on November 5 2025).
- Cloughesy, T.F.; Petrecca, K.; Walbert, T.; Butowski, N.; Salacz, M.; Perry, J.; Damek, D.; Bota, D.; Bettegowda, C.; Zhu, J.J.; et al. Effect of Vocimagene Amiretrorepvec in Combination With Flucytosine vs Standard of Care on Survival Following Tumor Resection in Patients With Recurrent High-Grade Glioma: A Randomized Clinical Trial. JAMA Oncol 2020, 6, 1939–1946. [Google Scholar] [CrossRef]
- Reitz, M.S., Jr.; Voltin, M.; Gallo, R.C. Characterization of a partial provirus from a gibbon ape naturally infected with gibbon ape leukemia virus. Virology 1980, 104, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.I.; Iwatsuki, K.; Ko, Y.H.; Kimura, H.; Manoli, I.; Ohshima, K.; Pittaluga, S.; Quintanilla-Martinez, L.; Jaffe, E.S. Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leuk Lymphoma 2020, 61, 808–819. [Google Scholar] [CrossRef]
- Cancer Today. Available online: https://gco.iarc.fr/today/en (accessed on 11 November 2025).
- Liang, Y.; Tang, Y.; WanYan, Y.; Li, E. Comparative global burden analysis of lymphoma subtypes: a statistical evaluation of severity across global regions. Front Public Health 2025, 13, 1590093. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, A.S.; Pendleton, A.L.; Lashbrook, M.J.; Cech, E.; Altieri, M.; Kunch, A.; Modiano, J.F.; Halo, J.V. Expression and high levels of insertional polymorphism of an endogenous gammaretrovirus lineage in dogs. PLoS genetics 2023, 19, e1011083. [Google Scholar] [CrossRef] [PubMed]
| Retrovirus group | Virus name* | Abbreviation* | Host species |
|---|---|---|---|
| ICTV examplar gammaretroviruses | reticuloendotheliosis virus | REV | bird |
| Trager duck spleen necrosis virus | SNV | bird | |
| chick syncytial virus | CSV | bird | |
| murine leukemia virus | MLV | mouse | |
| feline leukemia virus | FeLV | cat | |
| gibbon ape leukemia virus | GALV | gibbon | |
| koala retrovirus | KoRV | koala | |
| porcine type-C oncovirus | PCOV/PERV | pig | |
| ICTV examplar gammaretroviruses needing a helper virus | Finkel-Biskis-Jinkins murine sarcoma virus | - | mouse |
| Harvey murine sarcoma virus | - | mouse | |
| Kirsten murine sarcoma virus | - | mouse | |
| Moloney murine sarcoma virus | - | mouse | |
| Hardy-Zuckerman feline sarcoma virus | - | cat | |
| Snyder-Theilen feline sarcoma virus | - | cat | |
| woolly monkey sarcoma virus | WMSV | woolly monkey | |
| ICTV examplar betaretroviruses with a gamma-type env gene | Po-1-Lu | Po-1-Lu | langur monkey |
| Mason-Pfizer monkey virus | MPMV/SRV3 | rhesus monkey | |
| squirrel monkey retrovirus | SMRV | squirrel monkey | |
| Non-ICTV gammaretroviruses | baboon endogenous virus | BaEV | baboon |
| MAC-1 | MAC-1 | rhesus monkey | |
| CPC-1 | CPC-1 | colobus monkey | |
| Non-ICTV betaretroviruses with a gamma-type env gene | simian endogenous retrovirus | SERV | African green monkey |
| RD-114 | RD-114 | cat |
| Gammaretrovirus1 | Possible infection source | Recommendation |
|---|---|---|
| Avian gammaretroviruses (REV, SNV, CSV) |
Poultry products | Screen flocks |
| GALV | Contact with gibbons Clinical use of RRVs |
Protective measures2 Limit use |
| MLV | Clinical use of RRVs | Limit use |
| FeLV | Contact with pet cats | Vaccinate cats3 |
| KORV | Exposure to koalas | Protective measures Vaccinate koalas4 |
| PERV/PCOV | Xenotransplantation | Edit pig genome |
| SRV1-3 | Exposure to primates | Protective measures2 |
| Primate ERVs5 (Po-1-Lu, SMRV, BaEV, MAC-1, CPC-1, SERV) |
Exposure to primates Cell line products |
Protective measures Perform quality checks |
| Cat ERV RD-114 | Cell line products | Edit cell line genome |
| ‘Sarcoma’ retroviruses | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
