Submitted:
26 November 2025
Posted:
26 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DNA Extraction
2.3. Targeted Sequencing
2.4. Bioinformatics and Variant Annotation
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Genetic Findings
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CVD | Cardiovascular diseases |
| NGS | Next-generation sequencing |
| SCD | Sudden cardiac death |
| LQTS | Long QT syndrome |
| SQTS | Short QT syndrome |
| BrS | Brugada syndrome |
| AF | Atrial fibrillation |
| CHD | Coronary heart disease |
| HGMD | Human Gene Mutation Database |
| ACMG | American College of Medical Genetics and Genomics |
References
- World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
- Tan, S. M. L., Lim, S. L., Ong, M. E., Leong, K. M. Genetics of Sudden Cardiac Arrest: Overview of Genetic Risk Factors and Aetiologies. Arrhythmia & Electrophysiology Review, 2025, 14, e18.
- Zheng, J., Zhang, J., Danioko, S., Yao, H., Guo, H., Rakovski, C. A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Scientific data, 2020, 7(1), 48.
- Dib Nehme, R., Sinno, L., Shouman, W., Ziade, J.A., Ammar, L.A., Amin, G., Booz, G.W. and Zouein, F.A. Cardiac Channelopathies: Clinical Diagnosis and Promising Therapeutics. Journal of the American Heart Association, 2025, 14(9), e040072.
- Schwartz, P. J., Ackerman, M. J., Antzelevitch, C., Bezzina, C. R., Borggrefe, M., Cuneo, B. F., Wilde, A. A. Inherited cardiac arrhythmias. Nature reviews Disease primers, 2020, 6(1), 58.
- Pesaresi, M., Bernini Di Michele, A., Melchionda, F., Onofri, V., Alessandrini, F., Turchi, C. Sudden Cardiac Death and Channelopathies: What Lies behind the Clinical Significance of Rare Splice-Site Alterations in the Genes Involved?. Genes, 2024, 15(10), 1272.
- Guelly, C., Abilova, Z., Nuralinov, O., Panzitt, K., Akhmetova, A., Rakhimova, S., Kozhamkulov, U., Kairov, U., Molkenov, A., Ashenova, A. Trajanoski, S. Patients with coronary heart disease, dilated cardiomyopathy and idiopathic ventricular tachycardia share overlapping patterns of pathogenic variation in cardiac risk genes. PeerJ, 2021, 9, e10711.
- Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J., Elliott P.M., Fitzsimons D., Hatala R., Hindricks G., Kirchhof P., Kjeldsen K. ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). European heart journal, 2015, 36(41), 2793–2867.
- Zeppenfeld, K., Tfelt-Hansen, J., De Riva, M., Winkel, B.G., Behr, E.R., Blom, N.A., Charron, P., Corrado, D., Dagres, N., De Chillou, C. and Eckardt, L. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). European heart journal, 2022, 43(40), 3997-4126.
- Zhu, W., Bian, X., Lv, J. From genes to clinical management: A comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2, 2024, 5(8), 573-58.
- Broendberg, A. K., Christiansen, M. K., Nielsen, J. C., Pedersen, L. N., Jensen, H. K. Targeted next generation sequencing in a young population with suspected inherited malignant cardiac arrhythmias. European journal of human genetics : EJHG, 2018, 26(3), 303–313.
- Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., & ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 2015, 17(5), 405–424.
- Wilde, A. A. M., Semsarian, C., Márquez, M. F., Shamloo, A. S., Ackerman, M. J., Ashley, E. A., Sternick, E. B., Barajas-Martinez, H., Behr, E. R., Bezzina, C. R., Breckpot, J., Charron, P., Chockalingam, P., Crotti, L., Gollob, M. H., Lubitz, S., Makita, N., Ohno, S., Ortiz-Genga, M., Sacilotto, L. Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the European Society of Cardiology (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 2022, 24(8), 1307–1367.
- Crotti, L., Odening, K. E., & Sanguinetti, M. C. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovascular research, 2020, 116(9), 1542-1556.
- Krahn, A. D., Laksman, Z., Sy, R. W., Postema, P. G., Ackerman, M. J., Wilde, A. A., Han, H. C. Congenital long QT syndrome. Clinical Electrophysiology, 2022, 8(5), 687-706.
- Wilde, A. A., Amin, A. S., Postema, P. G. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart, 2022, 108(5), 332-338.
- Offerhaus, J. A. , Bezzina, C. R., Wilde, A. A. Epidemiology of inherited arrhythmias. Nature Reviews Cardiology, 2020, 17, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Vink, A.S. , Neumann, B., Lieve, K.V., Sinner, M.F., Hofman, N., El Kadi, S., Schoenmaker, M.H., Slaghekke, H.M., De Jong, J.S., Clur, S.A.B., Blom, N.A. Determination and interpretation of the QT interval: comprehensive analysis of a large cohort of long QT syndrome patients and controls. Circulation, 2018, 138, 2345–2358. [Google Scholar] [PubMed]
- European Society of Cardiology. How to measure the QT interval. Cardiovascular Genomics Insight, Volume 9. Available online: https://www.escardio.org/Councils/Council-on-Cardiovascular-Genomics/Cardiovascular-Genomics-Insight/Volume-9/how-to-measure-the-qt-interval. Accessed July 4, 2025. 4 July.
- Glazer, A.M. , Davogustto, G., Shaffer, C.M., Vanoye, C.G., Desai, R.R., Farber-Eger, E.H., Dikilitas, O., Shang, N., Pacheco, J.A., Yang, T., Muhammad, A. Arrhythmia variant associations and reclassifications in the eMERGE-III sequencing study. Circulation, 2022, 145, 877–891. [Google Scholar] [CrossRef] [PubMed]
- Gustina, A.S. and Trudeau, M.C. HERG potassium channel regulation by the N-terminal eag domain. Cellular signalling, 2012, 24, 1592–1598. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S., Ongtengco, A., Qiao, V., Chen, Y., Diaz, A., Hill, M., Bhan, A., Tofovic, D.S. Darbar, D. Association Between Family History and Early-Onset Atrial Flutter Across Racial and Ethnic Groups. Journal of the American Heart Association, 2024, 13(10), e032320.
- Chang, S.H., Kuo, C.F., Chou, I.J., See, L.C., Yu, K.H., Luo, S.F., Huang, L.H., Zhang, W., Doherty, M., Wen, M.S. Kuo, C.T. Association of a family history of atrial fibrillation with incidence and outcomes of atrial fibrillation: a population-based family cohort study. JAMA cardiology, 2017, 2(8), 863-870.
- Yoneda, Z.T. , Anderson, K.C., Quintana, J.A., O’Neill, M.J., Sims, R.A., Glazer, A.M., Shaffer, C.M., Crawford, D.M., Stricker, T., Ye, F. and Wells, Q.. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA cardiology, 2021, 6, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Bowles, N.E. , Jou, C.J., Arrington, C.B., Kennedy, B.J., Earl, A., Matsunami, N., Meyers, L.L., Etheridge, S.P., Saarel, E.V., Bleyl, S.B., Yost, H.J. Exome analysis of a family with Wolff–Parkinson–White syndrome identifies a novel disease locus. American Journal of Medical Genetics Part A, 2015, 167, 2975–2984. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K. , Konno, T., Tada, H., Tani, S., Liu, L., Fujino, N., Nohara, A., Hodatsu, A., Tsuda, T., Tanaka, Y. and Kawashiri, M.A.. Functional characterization of rare variants implicated in susceptibility to lone atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1095–1104. [Google Scholar] [PubMed]
- Vatta, M., Truty, R., Garcia, J., Callis, T.E., Hatchell, K., Rojahn, S., Morales, A., Aradhya, S. and Nussbaum, R. Common variants in KCNE1, KCNH2, and SCN5A may impact cardiac arrhythmia risk. Circulation: Genomic and Precision Medicine, 2021, 14(1), p.e003206.
- Nakajima, T. , Wu, J., Kaneko, Y., Ashihara, T., Ohno, S., Irie, T., Ding, W.G., Matsuura, H., Kurabayashi, M., Horie, M. KCNE3 T4A as the genetic basis of Brugada-pattern electrocardiogram. Circulation Journal, 2012, 76, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Kotta, M.C., Torchio, M., Bayliss, P., Cohen, M.C., Quarrell, O., Wheeldon, N., Marton, T., Gentilini, D., Crotti, L., Coombs, R.C. and Schwartz, P.J. Cardiac genetic investigation of sudden infant and early childhood death: a study from victims to families. Journal of the American Heart Association, 2023, 12(17), p.e029100.33.
- Ye, D., Gao, X., Bains, S., Neves, R.A., Zhou, W., Tester, D., Giudicessi, J.R. Ackerman, M.J. PO-01-240 UTILITY OF IN VITRO FUNCTIONAL CHARACTERIZATION IN THE PROMOTION OR DEMOTION OF CLINICALLY ENCOUNTERED VARIANTS OF UNCERTAIN SIGNIFICANCE IN THE THREE MOST COMMON LONG QT SYNDROME-CAUSATIVE GENES: KCNQ1, KCNH2, AND SCN5A. Heart Rhythm, 2023, 20(5), S166.
| Gene | Protein | Chromosome | Transcript | OMIM | Phenotype |
| KCNA5 | Kv1.5 | 12p13.32 | NM_002234 | 176267 | AF |
| KCND3 | Kv4.3 | 1p13.2 | NM_172198 | 605411 | BrS |
| KCNE1 | Kv7.1 | 21q22.12 | NM_000219 | 176261 | LQTS, Jervell and Lange Nielsen syndrome |
| KCNE2 | Kv7.2 | 21q22.11 | NM_172201 | 603796 | LQTS, AF |
| KCNE3 | Kv7.3 | 11q13.4 | NM_005472 | 604433 | BrS |
| KCNE5 | Kv7.5 | Xq23 | NM_012282 | 600681 | BrS |
| KCNH2 | Kv11.1/hERG | 7q36.1 | NM_172057/ NM_000238 | 152427 | LQTS, SQTS |
| KCNJ2 | Kir2.1 | 17q24.3 | NM_000891 | 600681 | Andersen-Tawil syndrome, SQTS, AF |
| KCNJ5 | Kir 3.4 | 11q24.3 | NM_000890 | 600734 | LQTS |
| KCNJ8 | Kir 6.1 | 12p12.1 | NM_00498 | 600935 | BrS, SQTS, IVF associated, ERS |
| KCNQ1 | Kv7.1 | 11p15.5-p15.4 | NM_181798 | 607542 | LQTS, SQTS, AF, Jervell and Lange Nielsen syndrome |
| Characteristics |
Total, n = 79 |
AV block, n=16 |
SSS, n=16 |
iAF, n=31 |
CHD AF, n=16 |
| Age, years | 47.5±17.5 | 45,6±23.8 | 47,7±17.6 | 42,7±13.9 | 58,4±11.9 |
| Gender, M/F | 52/27 | 6/10 | 9/7 | 22/9 | 15/1 |
| BMI, kg/m2 | 26.8±5.4 | 26,1±6 | 25,5±5.4 |
27,3±5.3 | 28,2±5.4 |
| Family history СVD, N | 23 (29%) | 3 | 4 | 8 | 8 |
| Diabetics, N | 11 (14%) | 2 | 1 | 5 | 3 |
| Syncope, N | 12 (15%) | 7 | 4 | 0 | 1 |
| Pacemaker implantation, N | 31 (39%) | 14 | 16 | 0 | 1 |
| Prolonged QT, N | 14 (18%) | 5 | 6 | 0 | 3 |
| Case ID | Sex | Age | Group | Clinical phenotype | LVEF (%) |
QT interval, ms |
Family history | Gene | Nucleotide | AA change | gnomeAD |
Exonic effect |
HGMD | ACMG score |
| #516 | M | 55 | CHD AF | Myocardial infarction |
44 | 378 | yes | KCNH2 | NM_000238.3:c.196T>A | p.Cys66Gly |
- | missense | DM | 4 |
| #334 | F | 20 | iAF | WPW syndrome, Paroxysmal orthodromic AV-reentry tachycardia | 61 | 402 | no | KCNH2 | NM_000238.3:c.196T>A | p.Cys66Gly |
- | missense | DM | 4 |
| #377 | M | 24 | iAF | A blood thrombus in the auricle of the left atrium | 64,71 | 320 | no | KCNH2 | NM_000238.3:c.196T>A | p.Cys66Gly | - | missense | DM | 4 |
| #202 | M | 76 | iAF | CHF I, Paroxysmal AF | 64,71 | 340 | no | KCNH2 | NM_000238.3:c.526C>T | p.Arg176Trp | 0.000618 | missense | DM | 4 |
| #573 | M | 41 | iAF | EHRA II. CHF, NYHA I, Paroxysmal AF | 52 | 392 | no | KCNH2 | p.Arg176Trp | 0.000618 | missense | DM | 4 | |
| #464 | F | 30 | iAF | Paroxysmal AF, EHRA I. Left atrial flutter, Atrial extrasystole | 58 | 380 | no | KCNE2 | NM_172201.1:c.29C>A | p.Thr10Lys | 0.000968 | missense | DM? | 3 |
| #80 |
M | 57 | SSS | Arterial hypertension | 60 | No path | yes | KCNE3 | - p.Thr4Ala | 0.000646 | missense | DM | 3 | |
| #282 | M | 22 | iAF | Paroxysmal AF |
- | 400 | no | KCNQ1 | NM_000218.2:c.1128+4C>T | - | 0.00001 | intron | N/A | 3 |
| #93 | F | 47 | AV block | Arterial hypertension |
66 | No path | yes | KCNQ1 | NM_000218.2:c.1033-4C>T |
- |
- | intron | N/A | 3 |
| #333 | M | 30 | iAF | CHF NYHA II, persistent AF | 46 | 360 | yes | KCNJ8 | NM_004982.3:c.263C>G | p.Ala88Gly | - | missense | N/A | 3 |
| #579 | M | 64 | CHD AF | CHF NYHA II, EHRA I. Persistent AF | 36 | 386 | yes | KCNJ8 | NM_004982.3:c.1145A>G | p.Lys382Arg | - | missense | N/A | 3 |
| Gene |
HGMD mutation |
Variant class |
dbSNP identifier |
gnomeAD | ClinVar |
| KCNH2 | Tyr652Ter | DM | rs1137617 | - | Not provided |
| KCNQ1 | Tyr662Ter | DM | rs1161907 | 0.000649 | Conflicting interpretations of pathogenicity |
| KCNH2 | Cys66Gly | DM | rs199473416 | - | Not provided |
| KCNE3 | Thr4Ala | DM | rs200856070 | 0.000646 | Conflicting interpretations of pathogenicity |
| KCNQ1 | Lys393Asn | DM | rs12720457 | 0.000387 | Conflicting interpretations of pathogenicity |
| KCNH2 | Arg176Trp | DM | Rs36210422 | 0.000618 | Conflicting interpretations of pathogenicity |
| KCNE2 | Thr10Met | DM? | rs199473648 | 0.000968 | Conflicting interpretations of pathogenicity |
| KCNE5 | Tyr81His | DM? | Rs199924386 | 0.000324 | Benign |
| KCNQ1 | Pro448Arg | DM? | Rs12720449 | 0.005302 | Benign/Likely benign |
| KCNA5 | Pro307Ser | DFP | Rs17215409 | 0.002235 | Conflicting interpretations of pathogenicity |
| KCNH2 | Arg1047Leu | DFP | Rs36210421 | 0.026377 | Conflicting interpretations of pathogenicity |
| KCNH2 | Lys897Thr | DFP | Rs1805123 | 0.185003 | Benign |
| KCNE1 | Ser38Gly | DFP | rs1805127 | 0.659157 | Benign |
| KCNJ2 | Leu382Leu | DF | Rs173135 | 0.118301 | Benign |
| KCNE3 | Phe66Phe | DF | rs2270676 | 0.138846 | Benign |
| KCNJ5 | Glu282Gln | FP | rs7102584 | 0.015136 | Benign |
| Case ID | Gene | Transcript | Nucleotide | Protein change |
Geno type |
Chr |
Exonic effect |
SIFT score | Polyphen-2 score | CADD phred |
| 472 | KCND3 | NM_172198 | c.1928C>A | p.Pro643His | 0/1 | 1 | missense | 0.8741, tolerated |
0.961, probably damaging | 22.5, deleterious |
| 513 | KCNE5 | NM_012282 | c.378G>T | p.Gln126His | 0/1 | X | missense | 0.7802, tolerated |
0.138, possibly damaging |
8.025, tolerated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
