Submitted:
24 November 2025
Posted:
25 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods and Sample
3. Results
3.1. Demographic Analysis
| Age | Duration of Utilization (Days) | Number of Comborbidities | Self-Reported Incidence | |
| Sample (n) | 405 | 407 | 407 | 407 |
| mean | 58.96 | 80.2 | 0.98 | 10.6% |
| 95% CI | 57.413 - 60.503 | 76.667 - 83.726 | 0.877 - 1.088 | 7.57% - 13.6% |
| Variance | 250.30 | 1312.2962 | 1.1746 | 0.09472 |
| Standard error | 0.7862 | 1.7956 | 0.05372 | 0.01526 |
| Median | 62.000 | 90.000 | 1.000 | 0.000 |
| 95% CI | 60.000 - 63.000 | 90.000 - 90.000 | 1.000 - 1.000 | 0.000 - 0.000 |
| Minimum | 6.000 | 5.000 | 0.000 | 0.000 |
| Maximum | 91.000 | 180.000 | 7.000 | 1.000 |
3.2. Comparison with National Incidence
3.3. Logistic Regression Analysis
- -
- Duration of intake (days)
- -
- Number of comorbidities
- -
- Age
- -
- Number of comorbidities – each additional comorbidity increased the risk of influenza by approximately 92% (OR=1.92; 95% CI: 1.43–2.57; p<0.0001).
- -
- Duration of intake – longer prophylactic use was associated with a slight but statistically significant reduction in risk (OR=0.99; p=0.0378), equivalent to about a 1% lower risk for every 10 additional days of use.
3.4. Subgroup Analysis (Patients with ≥3 Comorbidities)
4. Discussion
Inhibition of TMPRSS2 by BRH as the Basis for Prevention of COVID-19 and Influenza
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Roser M. (2020). The Spanish flu: the global impact of the largest influenza pandemic in history. Published online at OurWorldinData.org. Retrieved from: 'https://ourworldindata.org/spanish-flu-largest-influenza-pandemic-in-history' (Accessed: 20.11.2025).
- The pandemic's true death toll. The Economist. Archived from the original on 2024.02.08 (https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates). (Accessed: 20.11.2025).
- Viboud C, Simonsen L, Fuentes R, Flores J, Miller MA, Chowell G (2016). "Global Mortality Impact of the 1957–1959 Influenza Pandemic". The Journal of Infectious Diseases; 213 (5): 738–745.
- Jester BJ, Uyeki TM, Jernigan DB (2020) Fifty Years of Influenza A (H3N2) Following the Pandemic of 1968. Am J Public Health;110(5):669-676. [CrossRef]
- Mitev V. (2025). Prevention and Treatment of COVID 19 and Influenza with Bromhexine and High Doses of Colchicine. Trends in Immunotherapy; 9(3), 238–251. [CrossRef]
- Mitev V, Marinov K, Tiholov R, Tachkov K, Bilyukov R, Lilov AI, Palaveev KR, Miteva A, Miteva I, Dimitrova VS, Ishkitiev N, Mondeshki T (2025) High colchicine doses are more effective in COVID-19 outpatients than nirmatrelvir/ritonavir, remdesivir, and molnupiravir. Pharmacia; 72: 1-11. [CrossRef]
- Smart SJ, Polachek SW. (2024). COVID-19 Vaccine and risk-taking. Journal of risk and uncertainty; 68(1):25–49.
- Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, et al. (2019). TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. Journal of virology; 93(21):10-1128.
- Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. (2017). TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie; 142:1-10.
- Sakai K, Ami Y, Nakajima N, Nakajima K, Kitazawa M, Anraku M, Takeda M. (2016). TMPRSS2 independency for haemagglutinin cleavage in vivo differentiates influenza B virus from influenza A virus. Scientific reports; 6(1):29430.
- Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Pöhlmann S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology; 85(9): 4122-4134.
- Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Journal of virology; 84(24):12658-12664.
- Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, & Gallagher T. (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. Journal of virology; 85(2):873-882.
- Jackson CB, Farzan M, Chen B. et al. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol; 23: 3–20. [CrossRef]
- Fraser BJ, Beldar S, Seitova, A et al. (2022). Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nat Chem Biol 18, 963–971. [CrossRef]
- Gulati K, Rai N, Chaudhary S, Ray A. (2016). Chapter 6 - Nutraceuticals in Respiratory Disorders. In Nutraceuticals Efficacy, Safety and Toxicity: pp. 75-86. Academic Press. [CrossRef]
- Depfenhart M, de Villiers D, Lemperle G, Meyer M, Di Somma S. (2020). Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy? Intern Emerg Med;15(5):801-812. [CrossRef]
- Marinov K, Mondeshki T, Georgiev H, Dimitrova VS, Mitev V. (2025). Effects of long-term prophylaxis with bromhexine hydrochloride and treatment with high colchicine doses of COVID-19. Pharmacia 72: 1-10. [CrossRef]
- Mitev V. (2023). Comparison of treatment of COVID-19 with inhaled bromhexine, higher doses of colchicine and hymecromone with WHO-recommended paxlovid, molnupiravir, remdesivir, anti-IL-6 receptor antibodies and baricitinib. Pharmacia 70(4): 1177-1193. [CrossRef]
- Ansarin K, Tolouian R, Ardalan M, Taghizadieh A, Varshochi M, Teimouri S, et al. (2020). Effect of Bromhexine on Clinical Outcomes and Mortality in COVID-19 patients: a Randomized Clinical Trial. BioImpacts;10(4):209–15.
- Maggio R, Corsini GU. (2020). Repurposing the Mucolytic Cough Suppressant and TMPRSS2 Protease Inhibitor Bromhexine for the Prevention and Management of SARS-CoV-2 Infection. Pharmacological Research;157:104837.
- Vanyo Mitev, Tsanko Mondeshki, Ani Miteva, Konstantin Tashkov, Dimitrova V. (2025). COVID-19 Prophylactic Effect of Bromhexine Hydrochloride. Authorea. [CrossRef]
- National Centre for Infectious and Parasitic Diseases – yearly report for 2023. Available at: Анализ на забoляемoстта oт oстри инфекциoзни бoлести в България през 2005 г (Accessed 31.10. 2025).
- Cressey DJN. (2011). Traditional drug-discovery model ripe for reform. Nature; 471(7336):17-18.
- Jachak SM, Saklani A. (2007). Challenges and opportunities in drug discovery from plants. Current Science;92(9):1251-1257.
- Gns HS, Gr S, Murahari M, Krishnamurthy M. (2019). An update on Drug Repurposing: Re-written saga of the drug's fate. Biomed Pharmacother;110:700-716. [CrossRef]
- Wei Li, Li Wan. (2021). Global Drug Repurposing Research from 2000 to 2018: A Bibliometric Analysis. Advances in Bioscience and Bioengineering; 9(2): 39-47. [CrossRef]
- Gatti M, De Ponti F. (2021). Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics; 13(3): 302. [CrossRef]
- Orienti I, Gentilomi GA, Farruggia G. (2020). Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment In COVID-19. International journal of molecular sciences; 21(11): 3812. [CrossRef]
- Barros de Lima, G., Nencioni, E., Thimoteo, F., Perea, C., Pinto, R. F. A., & Sasaki, S. D. (2025). TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules, 15(1), 75. [CrossRef]
- Woo-Jin S, Seong BL. (2017). Type II transmembrane serine proteases as potential target for anti-influenza drug discovery, Expert Opinion on Drug Discovery;11: 1139-1152. [CrossRef]
- Nehad JA, Menshawy AM. (2021). Bromhexine Use in the Outpatient Department in a Public Hospital in Al-Kharj. Journal of Pharmaceutical Research International; 33(51B):208–211. [CrossRef]
- EMA. Revised assessment report Ambroxol-Bromhexin. EMA/PRAC/800767/2015.
- Pharmacovigilance Risk Assessment Committee (PRAC) https://www.ema.europa.eu/en/documents/referral/ambroxol-and-bromhexine-article-31-referral-prac-assessment-report_en.pdf.
- Jiang S, Colditz GA. (2022). Prevention Trials: Challenges in Design, Analysis, and Interpretation of Prevention Trials. In: Piantadosi S, Meinert CL. (eds) Principles and Practice of Clinical Trials. Springer, Cham. [CrossRef]
- Böttcher E, Matrosovich T, Beyerle M, et al. (2006). Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol;80:9896.
- Cheng Z, Zhou J, To KK-W, et al. (2015). Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza. J Infect Dis;212:1214–21.
- Tolouian R, Moradi O, Mulla Z D, Ziaie S, Haghighi M, et al. (2022). Bromhexine for Post-exposure COVID-19 Prophylaxis: A Randomized, Double-blind, Placebo-controlled Trial. Jundishapur J Microbiol;15(8):e130198. [CrossRef]
- Vila Méndez ML, Antón Sanz C, Cárdenas García AdR, Bravo Malo A, Torres Martínez FJ, Martín Moros JM, Real Torrijos M, Vendrell Covisa JFJ, Guzmán Sierra O, Molina Barcena V, et al. (2023). Efficacy of Bromhexine versus Standard of Care in Reducing Viral Load in Patients with Mild-to-Moderate COVID-19 Disease Attended in Primary Care: A Randomized Open-Label Trial. Journal of Clinical Medicine; 12(1):142. [CrossRef]
- Dao TL, Colson P, Million M, Gautret P. (2021). Co-infection of SARS-CoV-2 and influenza viruses: A systematic review and meta-analysis. Journal of Clinical Virology Plus;1(3):100036.
- Huang Y, Yang C, Xu Xf. et al. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin; 41:1141–1149. [CrossRef]
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell;181(2):271-280.e8. [CrossRef]
- Böttcher-Friebertshäuser E, Lu Y, Meyer D, Sielaff F, Steinmetzer T, Klenk HD, Garten W. (2012). Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine; 30(51): 7374-7380.
- Hatesuer B, Bertram S, Mehnert N, Bahgat MM, Nelson PS, Pöhlman S, Schughart K. (2013). Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS pathogens; 9(12): e1003774.
- Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A. et al.. (2014). TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. Journal of virology; 88(9): 4744-4751.
- Sakai K, Ami Y, Tahara M, Kubota T, Anraku M, Abe M, et al. (2014). The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and season al influenza viruses. Journal of virology;88(10):5608-5616.
- Kim MJ, et al. (2023). Reciprocal enhancement of SARS-CoV-2 and influenza virus replication in human pluripotent stem cell-derived lung organoids. Emerging Microbes & Infections; 2023: 2211685.
- Dadashi M, Khaleghnejad S, Abedi Elkhichi P, Goudarzi M, Goudarzi H, Taghavi A, Hajikhani B. (2021). COVID-19 and influenza co-infection: a systematic review and meta-analysis. Frontiers in medicine; 8:681469.
- Stowe J, Tessier E, Zhao H, Guy R, Muller-Pebody B, Zambon M, et al. (2021). Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: a test-negative design. International journal of epidemiology; 50(4):1124-1133.
- Kim D, Quinn J, Pinsky B, Shah NH, Brown I. (2020). Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA; 323(20):2085-2086.
- Wu X, Cai Y, Huang X, Yu X, Zhao L, Wang F, et al. (2020). Co-infection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China. Emerging infectious diseases; 26(6):1324.
- Davis B, Rothrock AN, Swetland S, Andris H, Davis P, Rothrock SG. (2020). Viral and atypical respiratory co-infections in COVID-19: a systematic review and meta-analysis. JACEP Open;1(4):533-548.
- D’Abramo A, Lepore L, Palazzolo C, Barreca F, Liuzzi G, Lalle E, Nicastri E. (2020). Acute respiratory distress syndrome due to SARS-CoV-2 and Influenza A co-infection in an Italian patient: Mini-review of the literature. International Journal of Infectious Diseases; 97: 236-239.
- WHO coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (Accessed 20.11.2025).
- Dao TL, Hoang VT, Colson P, Million M, Gautret P. (2021). Co-infection of SARS-CoV-2 and influenza viruses: A systematic review and meta-analysis. J Clin Virol Plus;1(3):100036. [CrossRef]
- Martins R, Ferreira I, Jorge DMM, Almeida L, Souza JP, Pontelli M, Castro IA, Lima TM, Viana RMM, Zamboni D, Marcato PD, Arruda E. (2022) In Vitro Inhibition of SARS-CoV-2 Infection by Bromhexine hydrochloride. bioRxiv; 23:521817. [CrossRef]
- Kim TS, Heinlein C, Hackman RC, Nelson PS. (2006). Phenotypic Analysis of Mice Lacking the Tmprss2-Encoded Protease. Molecular and Cellular Biology;26(3):965–75.
- Habtemariam S, Nabavi SF, Ghavami S, Cismaru CA, Berindan-Neagoe I, Nabavi SM. (2020). Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the Transmembrane Serine Protease 2. Pharmacol Res;157:104853. [CrossRef]
- Schwerdtner M, Schmacke LC, Nave J, Limburg H, Steinmetzer T, Stein DA, et al. (2024). Unveiling the Role of TMPRSS2 in the Proteolytic Activation of Pandemic and Zoonotic Influenza Viruses and Coronaviruses in Human Airway Cells. Viruses;16(11):1798.
- Lazarowitz SG, Choppin PW. (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology;68(2):440-454.
- Ghayour AE, Nazari S, Keramat F, Shahbazi F, Eslami-Ghayour A. (2024). Evaluation of the efficacy of N-acetylcysteine and bromhexine compared with standard care in preventing hospitalization of outpatients with COVID-19: a double blind randomized clinical trial. Rev Clín Esp. (English Edition):224:86-95. [CrossRef]
- Fu Q, Zheng X, Zhou Y, Tang L, Chen Z, Ni S. (2021). Re-recognizing bromhexine hydrochloride: pharmaceutical properties and its possible role in treating pediatric COVID-19. Eur J Clin Pharmacol;77:261-263. [CrossRef]
- Tolouian R, Mulla ZD. (2021). Controversy with bromhexine in COVID-19; where we stand. Immunopathologia Persa; 7:e12. [CrossRef]
- Tolouian R, Mulla ZD, Jamaati H, Babamahmoodi A, Marjani M, Eskandari R, Dastan FJ. (2021). Effect of bromhexine in hospitalized patients with COVID-19. JIM;71:691–699. [CrossRef]
- Cuerdo ARM, Ogbac MK, Tamayo JE. (2022). Effect of Bromhexine among COVID-19 Patients - A Meta-Anaylsis. ERJ Open Res; 8:104. [CrossRef]
- Mitev V, Momekov G. (2025). Colchicine only inhibits in higher doses hyperactivated NLRP3 inflammasome - the main respondent for complications in COVID-19 and influenza. Front. Biosci. (Landmark Ed);30(9): 44744. [CrossRef]
- Khan U, Mubariz M, Khlidj Y, Nasirk MM, Ramadan S, Saeed F, Muhammad A, Abuelazm M. (2024). Safety and Efficacy of Camostat Mesylate for Covid-19: a systematic review and Meta-analysis of Randomized controlled trials. BMC Infect Dis;24:709. [CrossRef]
- Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. (2021). TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J; 40(16):e107821. [CrossRef]
- Naidu AS, Wang CK, Rao P. et al. (2024). Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. npj Sci Food;8:19. [CrossRef]
- Sure F, Bertog M, Afonso S, Diakov A, Rinke R, Madej MG, Wittmann S, Gramberg T, Korbmacher C, Ilyaskin AV. (2022). Transmembrane serine protease 2 (TMPRSS2) proteolytically activates the epithelial sodium channel (ENaC) by cleaving the channel's γ-subunit. J Biol Chem;298(6):102004. [CrossRef]
- BISOLVON CHESTY FORTE. Short Product characteristic. Retrieved from: https://www.medsafe.govt.nz/profs/datasheet/b/bisolvontabsol.pdf (Accessed 24.11.2025).
- Hernandez-Vargas EA, Wilk E, Canini L, Toapanta FR, Binder SC, Uvarovskii A, Ross TM, Guzmán CA, Perelson AS, Meyer-Hermann M. (2014). Effects of aging on influenza virus infection dynamics. Journal of virology; 88(8):4123–4131. [CrossRef]

| Area under the ROC curve (AUC) | 0.786 |
| Standard Error | 0.0276 |
| 95% Confidence interval | 0.743 to 0.825 |
| Variable | Coefficient | Std. Error | P | Odds ratio | 95% CI |
| Duration (days) | -0.0099329 | 0.0047816 | 0.0378 | 0.9901 | 0.98 - 0.994 |
| Number of Comorbidities | 0.65283 | 0.14889 | <0.0001 | 1.9210 | 1.435 - 2.57 |
| Age | -0.0045412 | 0.012255 | 0.7110 | 0.9955 | 0.972 - 1.02 |
| Constant | -1.9259 |
| In What Cases | Reception Mode | Result [*] |
| Prophylaxis | BRH is taken in tablet form during COVID-19/flu season | Prevents infection to a large extent **** |
|
Post-exposure prophylaxis |
After contact, inhale immediately |
Prevents disease to a large extent *** |
|
Use in illness |
Taken by inhalation |
Inhibits spread and replication ** |
|
Use in inpatients |
Taken by inhalation |
Makes breathing easier * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
