Submitted:
20 November 2025
Posted:
21 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Extension of the First Law of Coherence Thermodynamics
2.2. Definition of the Work Functional
2.3. Spectral Linewidth Representation
2.4. Computational Implementation
- Work Functional : Convolution of with restructuring events to show accumulation of structural memory.
- Linewidth : Fourier transform of to demonstrate residual broadening as a measurable spectral trace of memory.
- Inverse Energy Scaling: Validation of the dimensional identity , confirming that coherence cost decreases with structural complexity.
3. Results
3.1. Methodology of Non-Markovian Coherence Simulation
3.1.0.1. Panel A: Work Functional (Accumulated Memory).
3.1.0.2. Panel B: Coherence Linewidth (Memory Trace).
3.1.0.3. Panel C: Inverse Energy Scaling.
3.2. End of Simulation (EOS)
- Field work accumulates as structural memory (Panel A).
- Memory manifests as residual linewidths (Panel B).
- Dimensional consistency is validated through inverse energy scaling (Panel C).
4. Discussion
5. Conclusion
Data Availability Statement
Acknowledgments
Abbreviations
| EOS | End of Simulation |
| OD | Optical Depth |
| IR | Infrared |
| LH2 | Light-Harvesting Complex 2 |
| BChl | Bacteriochlorophyll |
| FRET | Förster Resonance Energy Transfer |
| QCMD | Quantum-Classical Molecular Dynamics |
| FS | Femtosecond |
| GRAPES | Gradient-Assisted Photon Echo Spectroscopy |
| ZQC | Zero Quantum Coherence |
References
- Stark, G.; et al. . Spectral line broadening due to collisions. Reports on Progress in Physics 2001, 64, 225–282. [Google Scholar] [CrossRef]
- Griem, H.R. Principles of Plasma Spectroscopy; Cambridge University Press, 1997. [CrossRef]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Reviews of Modern Physics 2017, 89, 041003. [Google Scholar] [CrossRef]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature Communications 2015, 6, 6383. [Google Scholar] [CrossRef]
- Binder, F.; Correa, L.A.; Flammia, S.T.; Martin-Martinez, E.; Modi, K. Thermodynamics of quantum coherence. Physical Review Letters 2019, 123, 230403. [Google Scholar] [CrossRef]
- Narasimhachar, V.; Gour, G. Low-temperature thermodynamics with quantum coherence. Nature Communications 2015, 6, 8689. [Google Scholar] [CrossRef]
- Tajima, H.; Takagi, R. Gibbs-preserving operations requiring infinite amount of quantum coherence. arXiv preprint 2025, arXiv:2404.03479v3. [Google Scholar] [CrossRef]
- Bromley, S.L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T.L.; Kaiser, R.; Yelin, S.F.; Lukin, M.D.; et al. Collective atomic scattering and motional effects in a dense coherent medium. Nature Communications 2016, 7, 11039. [Google Scholar] [CrossRef] [PubMed]
- Joutsuka, T.; Thompson, W.H.; Laage, D. Vibrational Quantum Decoherence in Liquid Water. The Journal of Physical Chemistry Letters 2016, 7, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Harel, E.; Engel, G.S. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proceedings of the National Academy of Sciences 2012, 109, 706–711. [Google Scholar] [CrossRef]
- Barton, J. From Decoherence to Coherent Intelligence: A Framework for the Emergence of AI Structure through Recursive Reasoning. Preprints 2025, 2025, 041917. [Google Scholar] [CrossRef]
- Barton, J. Thermodynamic Coherence and Virial Inversion in Black Hole Evolution. Preprints 2025, 2025, 110458. [Google Scholar] [CrossRef]
- Barton, J. Non-Markovian Coherence Thermodynamics Simulation Code. https://colab.research.google.com/drive/16Lf-e36JwQsyGZW6RpcnfOWH8ubnem3D?usp=sharing, 2025. Google Colab Notebook illustrating coherence restructuring work in spectral line analysis.
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Non-Markovianity and reservoir memory of quantum channels. Reports on Progress in Physics 2014, 77, 094001. [Google Scholar] [CrossRef]
- Daffer, S.; Wódkiewicz, K.; Cresser, J.D.; Walls, D.F. Memory effect and non-Markovian dynamics in an open quantum system. Physical Review A 2019, 99, 052119. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, 1944. [Google Scholar]
- Raithel, G. Ionic Spectra and Coherence Fields. Physical Review Letters 2021, 126, 123001. [Google Scholar] [CrossRef]
- Mukherjee, P. Quantum Resonance Phenomena in Atomic Spectra. Journal of Chemical Physics 2017, 147, 224110. [Google Scholar] [CrossRef]
- Madsen, L.B. Resonance States in Multi-Electron Atoms. Reports on Progress in Physics 2021, 84, 046401. [Google Scholar] [CrossRef]
- Wilson, S. Many-Body Quantum Theory; Oxford University Press, 2018. [CrossRef]
- Feinberg, J. Complexity in Multi-Electron Quantum Systems. Advances in Quantum Chemistry 2022, 85, 45–72. [Google Scholar] [CrossRef]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press, 2011. [CrossRef]
- Keck, M. Transition States in Non-Hermitian Quantum Systems. Physical Review A 2019, 99, 052118. [Google Scholar] [CrossRef]
- Bethe, H.A.; Salpeter, E.E. Quantum Mechanics of One- and Two-Electron Atoms; Springer, 1977. [CrossRef]
- Niedzielski, B. Solving the Hydrogen Atom: Modern Perspectives. Journal of Physics Education 2023, 58, 215–229. [Google Scholar] [CrossRef]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence. Physical Review Letters 2006, 96, 181602. [Google Scholar] [CrossRef] [PubMed]
- Bekenstein, J.D. Black holes and entropy. Physical Review D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Page, D.N. Hawking radiation and black hole thermodynamics. New Journal of Physics 2005, 7, 203. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
