Submitted:
10 November 2025
Posted:
12 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Associated Legendre Equation
3. Sixth-Order Homogeneous Potential
4. Additional Cases
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Differential Galois Theory
References
- Llibre, J. and Mahdi, A. and Valls, C., Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree - 2, Physics Letters A,2011, 18, 5, pp. 1845–1849. [CrossRef]
- Oliveira R. and Valls C., Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree -k, Physics Letters A, 2016 380, 46, pp. 3876–3880. [CrossRef]
- Grammaticos, B., Dorizzi B. and Padjen R. Painleve property and integrals of motion for the Henon-Heiles system, Physics Letters A, 1982 89, 3, pp. 111–113,. [CrossRef]
- Dorizzi B., Grammaticos, B., and Ramani A. A new class of integrable systems, J. Math. Phys., 1983, 24, pp. 2282–2288. [CrossRef]
- Grammaticos, B., Dorizzi B. and Ramani A., Integrability of Hamiltonians with third – and fourth-degree polynomial potentials, J. Math. Phys., 1983 24, pp. 2289–2295. [CrossRef]
- Grammaticos, B., and Ramani A., Integrability–and how to detect it, Integrability of Nonlinear Systems, 2004 – Springer Lecture Notes in Physics, 2004 Vol. 638, pp. 31–94. [CrossRef]
- Ramani, A., Dorizzi, B., and Grammaticos, B., Painlevé conjecture revisited, Phys. Rev. Lett., 1982 49, 1539–1541. [CrossRef]
- Ramani, A., Grammaticos, B., and Bountis, T., The Painleve property and singularity analysis of integrable and nonintegrable systems, Phys. Rep., 1989 180, 159–245. [CrossRef]
- Nakagawa, K. and Yoshida, H., A list of all integrable two-dimensional homogeneous polynomial potentials with a polynomial integral of order at most four in the momenta, J. Phys. A, 2001, 34, 8611–8630. [CrossRef]
- Yoshida, H., (1987) A criterion for the non-existence of an additional integral in Hamiltonian systems with homogeneous potential, Physica D, 1987, 29, 1–2, pp. 128–142. [CrossRef]
- Yoshida, H., A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with n degree of freedom, Physics Letters A, 1989, 141, 3–4, pp. 108-112. [CrossRef]
- Hietarinta, J., A search for integrable two-dimensional hamiltonian systems with polynomial potential, Physics Letters A, 1983, 96, 6, pp. 273–278. [CrossRef]
- Hietarinta, J., Direct methods for the search of the second invariant, Physics Reports, 1987, 147, 2, pp. 87–154. [CrossRef]
- Ziglin, S. L., (1983) Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. II, Funct. Anal. Appl., 1983 16, pp. 181–189. [CrossRef]
- Ziglin, S. L., Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I, Funct. Anal. Appl., 1982 17, pp. 6–17. [CrossRef]
- Baider, A., Churchill, R. C., Rod, D. L., and Singer, M. F., On the infinitesimal geometry of integrable systems, Mechanics Day (Waterloo, ON, 1992), Fields Institute Communcations, 1996, vol. 7 (American Mathematical Society, Providence, RI), pp. 5–56. [CrossRef]
- Churchill, R. C. and Rod, D. L., On the determination of Ziglin monodromy groups, SIAM J. Math. Anal., 1991, 22, pp. 1790–1802. [CrossRef]
- Morales-Ruiz J., Differential Galois Theory and Non-integrability of Hamiltonian Systems, Publisher: Birkhäuser, Springer Basel 1999.
- Morales-Ruiz J., Picard –Vessiot Theory and integrability, Journal of Geometry and Physics, 2015, 87, January,http://doi.org/10.1016/j.geomphys.2014.07.006, pp. 314–343.
- Morales-Ruiz J, Ramis J-P, and Simó C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann Scient Ec Norm Sup, 2007; 40, pp. 845–884. [CrossRef]
- Maciejewski, A. J., Przybylska, M., All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Physics Letters A, 2004 327, 5–6, pp. 461–473. [CrossRef]
- Maciejewski, A. J., Przybylska, M., Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, Journal of Mathem. Phys., 2005 46, 062901, http://dx.doi.org/10.1063/1.1917311.
- Olver F., Lozier D., Boisvert R. and Clark C., NIST Handbook of Mathematical Functions, Publisher: Cambridge University Press 2010, Ch.14, Legendre and Related Functions, pp. 352–380.
- Kimura T., On Riemann’s Equations which are Solvable by Quadratures, Funkcialaj Ekvacioj, 1969, 12, pp. 269–281.
- Acosta-Humanez, P. B., Lazaro J. T., Morales-Ruiz J., Pantazi C., On the Integrability of Polynomial Vector Fields in the plane by means of Picard-Vessiot Theory, Discrete and Continous Dynamical Systems, 2015, v.35, 5, pp. 1767–1800. [CrossRef]
- Poole E. G. C., Introduction to the Theory of Linear Differential Equations, Publisher: At The Clarendon Press 1936, Oxford.
- Duval A., Loday-Richaud M., Kovacic’s algorithm and its application to some families of special functions, AAECC 3, 1992, pp. 211–246.
- Bouchier, D., Sur les equations differentielles lineaires parametrees, une application aux systemes hamiltoniens, 2000, Ph.D. thesis, Universite de Limoges, France.
- Bouchier, D., Non complere integrability of a satellite in circular orbit. Portugal. Math., 2006 63, pp. 69–89, http://eudml.org/doc/52423.
- Christov O., and Georgiev G., Non-Integrability of Some Higher-Order Painleve Equations in the Sense of Liouville, SIGMA 11, 045, 2015. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
