Submitted:
10 November 2025
Posted:
11 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Initiation Phase (2008-2014)
1.2. Advancement Phase (2015-2018)
1.3. Optimisation Phase (2019-2023)
1.4. Innovation Phase (2023 Till Current)
1.5. Study Objectives
2. Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Antibiotic Consumption
3.2. Antibiotic Appropriateness
3.3. GNB Susceptibility
4. Discussion
4.1. Study Limitations
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016;62(10):e51–e77. [CrossRef]
- Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin Infect Dis. 2014;59 Suppl 3(Suppl 3):S97-S100. [CrossRef]
- Chua AQ, Kwa A, Tan TY, Legido-Quigley H, Hsu LY. Ten-year narrative review on antimicrobial resistance in Singapore. Singapore Med J 2019; 60(8): 387-396. [CrossRef]
- Ng TM, Ang LW, Heng ST, Kwa A, Wu JE, Seah X et al. Antibiotic utilisation and resistance over the first decade of nationally funded antimicrobial stewardship programmes in Singapore acute-care hospitals. Antimicrobial Resistance & Infection Control 2023; 12: 82. [CrossRef]
- Ababneh MA, Nasser SA, Rababa'h AM. A systematic review of Antimicrobial Stewardship Program implementation in Middle Eastern countries. Int J Infect Dis 2021; 105:746-752. [CrossRef]
- Karanika S, Paudel S, Grigoras C, Kalbasi A, Mylonakis E. Systematic Review and Meta-analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs. Antimicrob Agents Chemother 2016; Jul 22;60(8):4840-52. [CrossRef]
- Strazzulla A, Adrien V, Houngnandan SR, Devatine S, Bahmed O, Abroug S, et al. Characteristics of Pseudomonas aeruginosa infection in intensive care unit before (2007-2010) and after (2011-2014) the beginning of an antimicrobial stewardship program. Antimicrob Steward Healthc Epidemiol 2024; A29;4(1):e60. [CrossRef]
- Mahmoudi L, Sepasian A, Firouzabadi D, Akbari A. The Impact of an Antibiotic Stewardship Program on the Consumption of Specific Antimicrobials and Their Cost Burden: A Hospital-wide Intervention. Risk Manag Healthc Policy 2020; 23;13:1701-1709. [CrossRef]
- Chrysou K, Zarkotou O, Kalofolia S, Papagiannakopoulou P, Mamali V, Chrysos G, Themeli-Digalaki K, Sypsas N, Tsakris A, Pournaras S. Impact of a 4-year antimicrobial stewardship program implemented in a Greek tertiary hospital. Eur J Clin Microbiol Infect Dis 2022; Jan;41(1):127-132. [CrossRef]
- Liew YX, Lee W, Loh JCZ, Cai Y, Tag S, Lim C et al. Impact of an antimicrobial stewardship programme on patient safety in Singapore General Hospital. Int J Antimicrob Agents 2012; 40: 55-60. [CrossRef]
- Loo L, Liew Y, Lee W, Lee LW, Chlebicki P, Kwa A. Discontinuation of antibiotic therapy within 24 hours of treatment initiation for patients with no clinical evidence of bacterial infection: a 5-year safety and outcome study from Singapore General Hospital Antimicrobial Stewardship Program. Int J Antimicrob Agents 2019; 53: 606-611. [CrossRef]
- Teo J, Kwa AL, Loh J, Chlebicki MP, Lee W. The effect of a whole-system approach in an antimicrobial stewardship programme at the Singapore General Hospital. Eur J Clin Microbiol Infect Dis 2012 Jun;31(6):947-55. [CrossRef]
- Versporten A, Zarb P, Caniaux I, Gros MF, Drapier N, Miller M, Jarlier V, Nathwani D, Goossens H; Global-PPS network. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health 2018; 6(6):e619-e629. [CrossRef]
- Loo LW, Zhou YP, Wang YB, Lee LW, Chung JS. Antimicrobial Stewardship in Cardiac Device Surgery: Impact of Behavioural Change Interventions on Extended Prophylaxis Practices. Antibiotics. 2025; 14(8):754. [CrossRef]
- Lee LW, Lim SYC, Zhou YP, et al. Impact of the ABxSG Mobile Application on Antibiotic Prescribing: An Interrupted Time Series Study. Antibiotics (Basel). 2025;14(9):933. [CrossRef]
- Tang S, Lim JL, Lee LXT, Yii YCD, Zhou YP et al. Augmented intelligence in infectious diseases (AI2D) as an antimicrobial stewardship tool for early antibiotic discontinuation in suspected lower respiratory tract infections [abstract]. Presented at: Congress of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID); April 11-15, 2025; Vienna Austria. Available at: https://registration.escmid.org/AbstractList.aspx?e=30&header=0&preview=1&aig=-1&ai=29130. Accessed on 27 October 2025.
- Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin Pharmacokinet. 2019;58(11):1407-1443. [CrossRef]
- Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?. Clin Infect Dis. 2014;58(8):1072-1083. [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology, ATC classification index with DDDs, 2024. Oslo, Norway 2024.
- CLSI. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data. 5th ed. CLSI guideline M39. Clinical and Laboratory Standards Institute; 2022.
- CLSI. Piperacillin-Tazobactam Breakpoints for Pseudomonas aeruginosa. CLSI rationale document MR15. Clinical and Laboratory Standards Institute; 2024.
- Tamma PD, Harris PN, Mathers AJ, Wenzler E, Humphries RM. Breaking Down the Breakpoints: Rationale for the 2022 Clinical and Laboratory Standards Institute Revised Piperacillin-Tazobactam Breakpoints Against Enterobacterales. Clinical Infect Dis 2023; 77(11):1585-1590. [CrossRef]
- Bork JT, Heil EL, Leekha S, Fowler RC, Hanson ND, Majumdar A, et al. Impact of CLSI and EUCAST Cefepime breakpoint changes on the susceptibility reporting for Enterobacteriaceae. Diagn Microbiol Infect Dis. 2017; Dec;89(4):328-333. [CrossRef]
- Mihalov P, Hodosy J, Koščálová A, et al. Antimicrobial Therapy as a Risk Factor of Multidrug-Resistant Acinetobacter Infection in COVID-19 Patients Admitted to the Intensive Care Unit. Can J Infect Dis Med Microbiol. 2023;2023:4951273. [CrossRef]
- Livermore DM, Hope R, Reynolds R, Blackburn R, Johnson AP, Woodford N. Declining cephalosporin and fluoroquinolone non-susceptibility among bloodstream Enterobacteriaceae from the UK: links to prescribing change? Journal of Antimicrobial Chemotherapy. 2013;68(11):2667-2674. [CrossRef]
- Moosdeen F. The evolution of resistance to cephalosporins. Clin Infect Dis. 1997;24(3):487-493. [CrossRef]
- Aldeyab MA, Harbarth S, Vernaz N, et al. The impact of antibiotic use on the incidence and resistance pattern of extended-spectrum beta-lactamase-producing bacteria in primary and secondary healthcare settings. Br J Clin Pharmacol. 2012;74(1):171-179. [CrossRef]
- Ministry of Health. One health report on antimicrobial utilisation and resistance 2019. Singapore: Ministry of Health Singapore; 2019. Available at https://www.moh.gov.sg/resources-statistics/reports/one-health-report-on-antimicrobial-utilisation-and-resistance-2019. Accessed 21 September 2024.
- Medina Presentado JC, Paciel López D, Berro Castiglioni M, Gerez J. Ceftriaxone and ciprofloxacin restriction in an intensive care unit: less incidence of Acinetobacter spp. and improved susceptibility of Pseudomonas aeruginosa. Rev Panam Salud Publica. 2011;30(6):603-609. [CrossRef]
- Lee J, Oh CE, Choi EH, Lee HJ. The impact of the increased use of piperacillin/tazobactam on the selection of antibiotic resistance among invasive Escherichia coli and Klebsiella pneumoniae isolates. Int J Infect Dis. 2013;17(8):e638-e643. [CrossRef]
- Marquet A, Vibet MA, Caillon J, et al. Is There an Association Between Use of Amoxicillin-Clavulanate and Resistance to Third-Generation Cephalosporins in Klebsiella pneumoniae and Escherichia coli at the Hospital Level?. Microb Drug Resist. 2018;24(7):987-994. [CrossRef]
- Payne LE, Gagnon DJ, Riker RR, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21(1):276. [CrossRef]
- Wang C, Zhou Y, Zhou Y, Ye C. Ertapenem-Induced Neurotoxicity: A Literature Review of Clinical Characteristics and Treatment Outcomes. Infect Drug Resist. 2023;16:3649-3658. [CrossRef]
- Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, Mejia JL, Roberts MS, Roger C, Udy AA, Lipman J, Roberts JA. Population Pharmacokinetics of Piperacillin in Nonobese, Obese, and Morbidly Obese Critically Ill Patients. Antimicrob Agents Chemother 2017; Feb 23;61(3):e01276-16. [CrossRef]
- European committee on antimicrobial susceptibility testing. Aminopenicillin breakpoints for Enterobacterales. General Consultation. 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Consultation/2021/Aminopenicillins_and_Enterobacterales_General_consultation_November_2021.pdf. Accessed on 21 September 2024.
- Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database of Systematic Reviews 2017, Issue 2. Art. No.: CD003543. [CrossRef]
- Nachtigall I, Tafelski S, Deja M, Halle E, Grebe MC, Tamarkin A, Rothbart A, Uhrig A, Meyer E, Musial-Bright L, Wernecke KD, Spies C. Long-term effect of computer-assisted decision support for antibiotic treatment in critically ill patients: a prospective 'before/after' cohort study. BMJ Open 2014; Dec 22;4(12):e005370. [CrossRef]
- Paul M, Andreassen S, Tacconelli E, Nielsen AD, Almanasreh N, Frank U, Cauda R, Leibovici L; TREAT Study Group. Improving empirical antibiotic treatment using TREAT, a computerized decision support system: cluster randomized trial. J Antimicrob Chemother 2006; Dec;58(6):1238-45. [CrossRef]
- Poline J, Postaire M, Parize P, et al. Stewardship program on carbapenem prescriptions in a tertiary hospital for adults and children in France: a cohort study. Eur J Clin Microbiol Infect Dis. 2021;40(5):1039-1048. [CrossRef]
- Ishtiaq U, Acosta K, Akabusi C, Noble K, Gujadhur N, Cluzet V. Appropriateness of Empiric Initiation of Meropenem in the Intensive Care Unit as Determined by Internal Medicine Residents. Antimicrob Steward Healthc Epidemiol. 2024;4(1):e185. Published 2024 Oct 24. [CrossRef]
- Zhang D, Cui K, Lu W, et al. Evaluation of carbapenem use in a tertiary hospital: antimicrobial stewardship urgently needed. Antimicrob Resist Infect Control. 2019;8:5. [CrossRef]
- Zakhour J, Haddad SF, Kerbage A, Wertheim H, Tattevin P, Voss A, et al. International Society of Antimicrobial Chemotherapy (ISAC) and the Alliance for the Prudent Use of Antibiotics (APUA). Diagnostic stewardship in infectious diseases: a continuum of antimicrobial stewardship in the fight against antimicrobial resistance. Int J Antimicrob Agents 2023; Jul;62(1):106816. [CrossRef]
- Claeys KC, Trautner BW, Leekha S, Coffey KC, Crnich CJ, Diekema DJ, et al. Optimal Urine Culture Diagnostic Stewardship Practice-Results from an Expert Modified-Delphi Procedure. Clin Infect Dis 2022; Aug 31;75(3):382-389. [CrossRef]
- Pinto-de-Sá, R.; Sousa-Pinto, B.; Costa-de-Oliveira, S. Brave New World of Artificial Intelligence: Its Use in Antimicrobial Stewardship—A Systematic Review. Antibiotics 2024; 13, 307. [CrossRef]
- Tang S, Chang D, Zhi Chin D, Piotr Chlebicki M, Jasmine Chung S, Wei Lee L, et al. 163. Can Machine Learning Guide Antibiotic Initiation for Lower Respiratory Tract Infections? Open Forum Infect Dis 2023;10(Suppl 2):ofad500.236. [CrossRef]
- Hanson KE, Tsalik EL. Host Immune Response Profiling for the Diagnosis of Infectious Diseases. J Infect Dis. Published online August 11, 2025. [CrossRef]




| Phase | Approx. Years | Key Stewardship Strategies |
|---|---|---|
| Initiation | 2008-2014 |
|
| Advancement | 2015-2018 |
|
| Optimization | 2019-2023 |
|
| Innovation | 2023-current |
|
| Antibiotic | DDD/1,000 PD (2011) | DDD/1,000 PD (2024) | DDD | Trend (2011-2024) |
Kendall Tau coefficient | p-value |
|---|---|---|---|---|---|---|
| IV Ciprofloxacin | 11.0 | 4.9 | 7.8 (4.4-9.4) | Decreasing | -0.853 | 0.000 |
| Ceftriaxone | 105.0 | 90.0 | 77.2 (73.7-82.9) | Stable | -0.165 | 0.412 |
| IV amoxicillin-clavulanate | 32.9 | 48.5 | 39.8 (34.2-43.4) | Increasing | 0.780 | 0.000 |
| Cefepime | 41.1 | 11.9 | 25.8 (12.8-30.2) | Decreasing | -0.641 | 0.001 |
| Piperacillin-tazobactam | 47.8 | 82.0 | 70.9 (63.8-78.5) | Increasing | 0.780 | 0.000 |
| Ertapenem | 13.8 | 7.5 | 9.0 (7.7-10.2) | Decreasing | -0.751 | 0.000 |
| Meropenem | 38.3 | 47.8 | 40.3 (38.3-44.7) | Stable | -0.011 | 0.956 |
| Gram-negative bacilli | No. of isolates a year | Antibiotic | % Susceptibility (As of 2011 or 2014 for carbapenems) |
% Susceptibility (As of 2024) |
Susceptibility Trend | Kendall Tau coefficient |
p-value |
|---|---|---|---|---|---|---|---|
| Acinetobacter baumannii | 254 (216-378) | Ciprofloxacin | 33.6 | 74.4 | Increasing | 0.58 | <0.01 |
| Cefepime | 35.9 | 81.5 | Increasing | 0.56 | <0.01 | ||
| Piperacillin-tazobactam | 32.4 | 74.1 | Increasing | 0.66 | <0.01 | ||
| Meropenem | 48.5 | 79.8 | Increasing | 0.48 | <0.05 | ||
| Citrobacter freundii | 99 (88-110) | Ciprofloxacin | 70.2 | 74.6 | stable | 0.22 | 0.273 |
| Cefepime | 79.2 | 90.7 | Increasing | 0.53 | <0.05 | ||
| Ertapenem | 79.7 | 96.2 | Increasing | 0.65 | <0.01 | ||
| Meropenem | 80.6 | 99.2 | Increasing | 0.67 | <0.01 | ||
| Enterobacter spp.(including Klebsiella aerogenes) | 805 (747-885) | Ciprofloxacin | 78.2 | 77.6 | Stable | -0.17 | 0.412 |
| Cefepime | 82.8 | 88.6 | Increasing | 0.47 | <0.05 | ||
| Ertapenem | 86.7 | 92.7 | Increasing | 0.60 | <0.05 | ||
| Meropenem | 91.1 | 97.2 | Increasing | 0.52 | <0.05 | ||
| E. Coli | 4282 (3924-4738) | Ciprofloxacin | 51.4 | 53.1 | Stable | -0.10 | 0.622 |
| Ceftriaxone | 69.9 | 75.1 | Increasing | 0.59 | <0.01 | ||
| Amoxicillin-clavulanate | 66.0 | 79.6 | Increasing | 0.77 | <0.01 | ||
| Cefepime | 74.7 | 86.6 | Increasing | 0.73 | <0.01 | ||
| Piperacillin-tazobactam | 91.1 | 93.9 | Increasing | 0.49 | <0.05 | ||
| Ertapenem | 97.0 | 98.9 | Stable | 0.45 | 0.059 | ||
| Meropenem | 97.9 | 99.2 | Increasing | 0.55 | <0.05 | ||
| Klebsiella spp | 2323 (2180-2767) | Ciprofloxacin | 57.6 | 66.1 | Stable | 0.08 | 0.702 |
| Ceftriaxone | 60.5 | 76.7 | Increasing | 0.77 | <0.01 | ||
| Amoxicillin-clavulanate | 57.9 | 74.5 | Increasing | 0.76 | <0.01 | ||
| Cefepime | 63.0 | 84.1 | Increasing | 0.84 | <0.01 | ||
| Piperacillin-tazobactam | 73.0 | 84.6 | Increasing | 0.69 | <0.01 | ||
| Ertapenem | 94.3 | 95.9 | Increasing | 0.62 | <0.01 | ||
| Meropenem | 95.1 | 96.9 | Increasing | 0.53 | <0.05 | ||
|
Pseudomonas aeruginosa |
1522 (1380-1831) | Ciprofloxacin | 76.3 | 91.3 | Increasing | 0.93 | <0.01 |
| Cefepime | 84.5 | 96.4 | Increasing | 0.93 | <0.01 | ||
| Piperacillin-tazobactam | 90.7 | 92.9 | Increasing | 0.65 | <0.01 | ||
| Meropenem | 87.5 | 93.8 | Increasing | 0.86 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
