Submitted:
06 November 2025
Posted:
07 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Tumor pH Biology and and Its Role in Breast Cancer
2.1. Why pH Is a Hallmark of Cancer?
2.2. Acidic Shift in Breast cancer
3. Imaging Techniques for pH Detection in Breast Cancer
3.1. MRS Methods
3.2. Hyperpolarized 13C MRS:
3.3. Optical and Fluorescent Probes for tumor pH detection
| Technique | Primary Measure | Key Strength | Key Finding | Main Limitation |
| 1H MRS (Conventional) | Total Choline (tCho) concentration | High endogenous concentration; widely available on standard clinical MRI systems | 71-80% sensitivity/specificity for malignant lesion detection | Cannot directly measure pH; lipid signal contamination |
| 1H MRS (DQF) | Lactate concentration | Specific lactate detection by suppressing lipid signals | Higher lactate in grade III vs. grade II lesions; links to hypoxia | 50% inherent signal loss; challenging for small lesions |
| 1H MRS (Exogenous Probes) | Chemical shift of probe's H-2 proton | Ratiometric, concentration-independent pHe measurement | Successful pHe mapping in preclinical models reveals acidic regions | Small chemical shift range (~0.7 ppm); may alter native pHe |
| 31P MRS | Chemical shift difference of inorganic phosphate compared to pH-independent phosphates I | Direct measurement of intracellular pH; monitors energy metabolism | Resolves multiple pH compartments via Pi splitting | Low endogenous concentration; poor spatial/temporal resolution |
| 19F MRS | Chemical shift of exogenous 19F probe | Negligible biological background; large chemical shift dispersion | Superior SNR vs. 31P MRS; enables specific pHe mapping | Requires exogenous probes; limited clinical translation |
| Hyperpolarized 13C MRS | Lac/Pyr or H13CO3−/13CO2 ratio | >10,000x signal enhancement for real-time metabolic flux | Lac/Pyr increase ≥20% predicts pCR post-treatment | Extreme cost/technical complexity; short signal lifetime |
| CEST MRI (Endogenous) | Amide proton transfer (APT) effect | No contrast agent needed; correlates with tumor aggression | High AUC (~0.96) for malignancy; tracks therapy response | Confounded by multiple factors; less sensitive in small lesions |
| CEST MRI (Exogenous) | Chemical exchange of iodinated agents | Ratiometric, concentration-independent pHe measurement | Revealed "pH-neutral" tumors; quantitative pHe mapping | Limited to acidic range (pH <7.2); requires high field strength (e.g., 7T) |
| Fluorescence Imaging | Fluorescence intensity ratio | High sensitivity; real-time ratiometric quantification | Direct correlation between low pHe and high tumor invasion | Limited to superficial tumors (<1 cm depth) |
| Optical Coherence Tomography | Tissue microstructure changes | High spatial resolution (~micrometers); non-invasive | 93% sensitivity/85% specificity for cancerous tissue | Does not directly measure pH; structural context only |
| Photoacoustic Imaging | Optoacoustic signal ratio | Deeper penetration than pure optical; combines optical/ultrasound | 91% sensitivity for lesions 1-2 mm; quantifies tumor pH | Nonlinear response curves; probe biocompatibility issues |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
| MRI | Magnetic Resonance Imaging |
| MRS | Magnetic Resonance Spectroscopy |
| 1H-MRS | Proton Magnetic Resonance Spectroscopy |
| 31P-MRS | Phosphorus-31 Magnetic Resonance Spectroscopy |
| 19F-MRS | Fluorine-19 Magnetic Resonance Spectroscopy |
| 13C-MRS | Carbon-13 Magnetic Resonance Spectroscopy |
| CEST | Chemical Exchange Saturation Transfer |
| APT | Amide Proton Transfer |
| BOLD | Blood Oxygen Level–Dependent |
| PET | Positron Emission Tomography |
| CT | Computed Tomography |
| US | Ultrasound |
| pHe | Extracellular pH |
| pHi | Intracellular pH |
| Na+/H+ exchanger (NHE1) | Sodium/Hydrogen Exchanger Isoform 1 |
| MCT | Monocarboxylate Transporter |
| CAIX | Carbonic Anhydrase IX |
| NMR | Nuclear Magnetic Resonance |
| RF | Radiofrequency |
| ppm | Parts per Million |
| TR/TE | Repetition Time / Echo Time |
| FID | Free Induction Decay |
| PCr | Phosphocreatine |
| Pi | Inorganic Phosphate |
| CO2 | Carbon Dioxide |
| 19F | Fluorine-19 (nucleus used in MRS) |
| 13C | Carbon-13 (nucleus used in MRS) |
| DNP | Dynamic Nuclear Polarization |
| PA | Photoacoustic |
| PAI | Photoacoustic Imaging |
| pKa | Acid Dissociation Constant |
| B0 | Main Magnetic Field Strength |
| B1 | Radiofrequency Magnetic Field |
| T1/T2 | Longitudinal / Transverse Relaxation Time |
| SPIO | Superparamagnetic Iron Oxide |
| pH-sensitive MRI | Magnetic Resonance Imaging sensitive to pH contrast mechanisms |
| FDA | U.S. Food and Drug Administration |
References
- Mahfuz Al Hasan S, Bennett D, Toriola A. Screening programmes and breast cancer mortality: an observational study of 194 countries. Bull World Health Organ. 2025;103(8):470-483. [CrossRef]
- Breast Cancer Statistics | How Common Is Breast Cancer? Accessed October 29, 2025. https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html.
- Kim J, Harper A, McCormack V, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med. 2025;31(4):1154-1162. [CrossRef]
- US Preventive Services Task Force, Nicholson WK, Silverstein M, et al. Screening for Breast Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2024;331(22):1918. [CrossRef]
- Trentham-Dietz A, Chapman CH, Jayasekera J, et al. Breast Cancer Screening With Mammography: An Updated Decision Analysis for the U.S. Preventive Services Task Force. Agency for Healthcare Research and Quality (US); 2024. Accessed October 29, 2025. http://www.ncbi.nlm.nih.gov/books/NBK603560/.
- Trentham-Dietz A, Chapman CH, Jayasekera J, et al. Collaborative Modeling to Compare Different Breast Cancer Screening Strategies: A Decision Analysis for the US Preventive Services Task Force. JAMA. 2024;331(22):1947. [CrossRef]
- Nelson HD, Cantor A, Humphrey L, et al. Screening for Breast Cancer: A Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation. Agency for Healthcare Research and Quality (US); 2016. Accessed October 29, 2025. http://www.ncbi.nlm.nih.gov/books/NBK343819/.
- Henderson JT, Webber EM, Weyrich M, Miller M, Melnikow J. Screening for Breast Cancer: A Comparative Effectiveness Review for the U.S. Preventive Services Task Force. Agency for Healthcare Research and Quality (US); 2024. Accessed October 29, 2025. http://www.ncbi.nlm.nih.gov/books/NBK603789/.
- Irvin VL, Zhang Z, Simon MS, et al. Comparison of Mortality Among Participants of Women’s Health Initiative Trials With Screening-Detected Breast Cancers vs Interval Breast Cancers. JAMA Netw Open. 2020;3(6):e207227. [CrossRef]
- Persi E, Duran-Frigola M, Damaghi M, et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun. 2018;9(1):2997. [CrossRef]
- Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11(9):671-677. [CrossRef]
- Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13(1):89. [CrossRef]
- Kallinowski F, Schlenger KH, Runkel S, et al. Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res. 1989;49(14):3759-3764.
- Warburg O, Wind F, Negelein E. THE METABOLISM OF TUMORS IN THE BODY. J Gen Physiol. 1927;8(6):519-530. [CrossRef]
- Lee S, Shanti A. Effect of Exogenous pH on Cell Growth of Breast Cancer Cells. Int J Mol Sci. 2021;22(18):9910. [CrossRef]
- Ward C, Meehan J, Gray ME, et al. The impact of tumour pH on cancer progression: strategies for clinical intervention. Explor Target Anti-Tumor Ther. 2020;1(2):71-100. [CrossRef]
- Estrella V, Chen T, Lloyd M, et al. Acidity Generated by the Tumor Microenvironment Drives Local Invasion. Cancer Res. 2013;73(5):1524-1535. [CrossRef]
- Gillies RJ, Gatenby RA. Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev. 2007;26(2):311-317. [CrossRef]
- Morita T, Nagaki T, Fukuda I, Okumura K. Clastogenicity of low pH to various cultured mammalian cells. Mutat Res. 1992;268(2):297-305. [CrossRef]
- Shi Q, Le X, Wang B, et al. Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene. 2001;20(28):3751-3756. [CrossRef]
- Bix G, Castello R, Burrows M, et al. Endorepellin In Vivo: Targeting the Tumor Vasculature and Retarding Cancer Growth and Metabolism. JNCI J Natl Cancer Inst. 2006;98(22):1634-1646. [CrossRef]
- Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984;2(4):343-366. [CrossRef]
- Gillies RJ, Liu Z, Bhujwalla Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol. 1994;267(1 Pt 1):C195-203. [CrossRef]
- Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373-4384.
- Swietach P, Boedtkjer E, Pedersen SF. How protons pave the way to aggressive cancers. Nat Rev Cancer. 2023;23(12):825-841. [CrossRef]
- Koltai T. The Ph paradigm in cancer. Eur J Clin Nutr. 2020;74(S1):14-19. [CrossRef]
- Michl J, Monterisi S, White B, et al. Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2. Cell Rep. 2023;42(6):112601. [CrossRef]
- Boron WF. Regulation of intracellular pH. Adv Physiol Educ. 2004;28(1-4):160-179. [CrossRef]
- Chesler M, Nicholson C. Regulation of intracellular pH in vertebrate central neurons. Brain Res. 1985;325(1-2):313-316. [CrossRef]
- Nishisho T, Hata K, Nakanishi M, et al. The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res MCR. 2011;9(7):845-855. [CrossRef]
- Pouysségur J, Franchi A, L’Allemain G, Paris S. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett. 1985;190(1):115-119. [CrossRef]
- Moolenaar WH. Effects of growth factors on intracellular pH regulation. Annu Rev Physiol. 1986;48:363-376. [CrossRef]
- Kapus A, Romanek R, Qu AY, Rotstein OD, Grinstein S. A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol. 1993;102(4):729-760. [CrossRef]
- Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct Binding of the Na–H Exchanger NHE1 to ERM Proteins Regulates the Cortical Cytoskeleton and Cell Shape Independently of H+ Translocation. Mol Cell. 2000;6(6):1425-1436. [CrossRef]
- Alterations of intracellular pH homeostasis in apoptosis: origins and roles | Cell Death & Differentiation. Accessed October 29, 2025. https://www.nature.com/articles/4401466.
- Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000;2(6):318-325. [CrossRef]
- Kato Y, Ozawa S, Tsukuda M, et al. Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J. 2007;274(12):3171-3183. [CrossRef]
- Kato Y, Nakayama Y, Umeda M, Miyazaki K. Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem. 1992;267(16):11424-11430.
- Comito G, Iscaro A, Bacci M, et al. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene. 2019;38(19):3681-3695. [CrossRef]
- Lactate modulation of immune responses in inflammatory versus tumour microenvironments | Nature Reviews Immunology. Accessed October 29, 2025. https://www.nature.com/articles/s41577-020-0406-2.
- Calcinotto A, Filipazzi P, Grioni M, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72(11):2746-2756. [CrossRef]
- Brand A, Singer K, Koehl GE, et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab. 2016;24(5):657-671. [CrossRef]
- Rolver MG, Holland LKK, Ponniah M, et al. Chronic acidosis rewires cancer cell metabolism through PPARα signaling. Int J Cancer. 2023;152(8):1668-1684. [CrossRef]
- Raghunand N, Gillies RJ. pH and drug resistance in tumors. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2000;3(1):39-47. [CrossRef]
- Gupta S, Farooque A, Adhikari JS, Singh S, Dwarakanath BS. Enhancement of radiation and chemotherapeutic drug responses by 2-deoxy-D-glucose in animal tumors. J Cancer Res Ther. 2009;5 Suppl 1:S16-20. [CrossRef]
- Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633-4646. [CrossRef]
- Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774-785. [CrossRef]
- Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. 2009;324(5930):1029-1033. [CrossRef]
- Toft NJ, Axelsen TV, Pedersen HL, et al. Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. eLife. 2021;10:e68447. [CrossRef]
- Swallow CJ, Grinstein S, Rotstein OD. A vacuolar type H(+)-ATPase regulates cytoplasmic pH in murine macrophages. J Biol Chem. 1990;265(13):7645-7654. [CrossRef]
- Young PR, Zygas AP. Secretion of lactic acid by peritoneal macrophages during extracellular phagocytosis. The possible role of local hyperacidity in inflammatory demyelination. J Neuroimmunol. 1987;15(3):295-308. [CrossRef]
- Halestrap AP, Wilson MC. The monocarboxylate transporter family--role and regulation. IUBMB Life. 2012;64(2):109-119. [CrossRef]
- Doherty JR, Yang C, Scott KEN, et al. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res. 2014;74(3):908-920. [CrossRef]
- Kumar A, Kant S, Singh SM. Targeting monocarboxylate transporter by α-cyano-4-hydroxycinnamate modulates apoptosis and cisplatin resistance of Colo205 cells: implication of altered cell survival regulation. Apoptosis. 2013;18(12):1574-1585. [CrossRef]
- Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281(14):9030-9037. [CrossRef]
- Xu D, Hemler ME. Metabolic activation-related CD147-CD98 complex. Mol Cell Proteomics MCP. 2005;4(8):1061-1071. [CrossRef]
- Guo H, Li R, Zucker S, Toole BP. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 2000;60(4):888-891.
- Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol. 1993;265(4 Pt 1):C1015-1029. [CrossRef]
- Rochefort H, Liaudet E, Garcia M. Alterations and role of human cathepsin D in cancer metastasis. Enzyme Protein. 1996;49(1-3):106-116. [CrossRef]
- Montcourrier P, Mangeat PH, Valembois C, et al. Characterization of very acidic phagosomes in breast cancer cells and their association with invasion. J Cell Sci. 1994;107 (Pt 9):2381-2391. [CrossRef]
- Lauritzen G, Stock CM, Lemaire J, et al. The Na+/H+ exchanger NHE1, but not the Na+, HCO3(-) cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett. 2012;317(2):172-183. [CrossRef]
- Boedtkjer E, Moreira JMA, Mele M, et al. Contribution of Na+,HCO3(-)-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer. 2013;132(6):1288-1299. [CrossRef]
- Lee S, Mele M, Vahl P, Christiansen PM, Jensen VED, Boedtkjer E. Na+,HCO3- -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflugers Arch. 2015;467(2):367-377. [CrossRef]
- Lee S, Axelsen TV, Andersen AP, Vahl P, Pedersen SF, Boedtkjer E. Disrupting Na+, HCO3−-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene. 2016;35(16):2112-2122. [CrossRef]
- Lee S, Axelsen TV, Jessen N, Pedersen SF, Vahl P, Boedtkjer E. Na+,HCO3--cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene. 2018;37(41):5569-5584. [CrossRef]
- Intracellular pH modulation of ADF/cofilin proteins - Bernstein - 2000 - Cell Motility - Wiley Online Library. Accessed October 29, 2025. https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0169%28200012%2947%3A4%3C319%3A%3AAID-CM6%3E3.0.CO%3B2-I.
- Kumar AP, Quake AL, Chang MKX, et al. Repression of NHE1 Expression by PPARγ Activation Is a Potential New Approach for Specific Inhibition of the Growth of Tumor Cells In vitro and In vivo. Cancer Res. 2009;69(22):8636-8644. [CrossRef]
- Miraglia E, Viarisio D, Riganti C, Costamagna C, Ghigo D, Bosia A. Na+ /H+ exchanger activity is increased in doxorubicin-resistant human colon cancer cells and its modulation modifies the sensitivity of the cells to doxorubicin. Int J Cancer. 2005;115(6):924-929. [CrossRef]
- Sloth RA, Axelsen TV, Espejo MS, et al. Loss of RPTPγ primes breast tissue for acid extrusion, promotes malignant transformation and results in early tumour recurrence and shortened survival. Br J Cancer. 2022;127(7):1226-1238. [CrossRef]
- Zhou Y, Skelton LA, Xu L, Chandler MP, Berthiaume JM, Boron WF. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3. J Am Soc Nephrol JASN. 2016;27(9):2616-2621. [CrossRef]
- Boedtkjer E, Hansen KB, Boedtkjer DMB, Aalkjaer C, Boron WF. Extracellular HCO3- is sensed by mouse cerebral arteries: Regulation of tone by receptor protein tyrosine phosphatase γ. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2016;36(5):965-980. [CrossRef]
- Khramtsov V, Grigor’ev I, Foster M, Lurie DJ, Nicholson I. Biological applications of spin pH probes. Cell Mol Biol. Published online December 1, 2000. Accessed October 29, 2025. https://www.semanticscholar.org/paper/Biological-applications-of-spin-pH-probes.-Khramtsov-Grigor%E2%80%99ev/7ec48d8b31b72163cb7f467d793a8c989f6dac88.
- Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng. 2005;7:287-326. [CrossRef]
- Tognarelli JM, Dawood M, Shariff MIF, et al. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015;5(4):320-328. [CrossRef]
- Rhodes CJ. Magnetic Resonance Spectroscopy. Sci Prog. 2017;100(3):241-292. [CrossRef]
- Aime S, Botta M, Milone L, Terreno E. Paramagnetic complexes as novel NMR pH indicators. Chem Commun. 1996;(11):1265-1266. [CrossRef]
- Bitencourt AGV, Goldberg J, Pinker K, Thakur SB. Clinical applications of breast cancer metabolomics using high-resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1H MRS): systematic scoping review. Metabolomics Off J Metabolomic Soc. 2019;15(11):148. [CrossRef]
- Choline metabolism in malignant transformation | Nature Reviews Cancer. Accessed October 29, 2025. https://www.nature.com/articles/nrc3162.
- Sharma U, Jagannathan NR. In vivo MR spectroscopy for breast cancer diagnosis. BJR Open. 2019;1(1):20180040. [CrossRef]
- Mellon EA, Lee SC, Pickup S, et al. Detection of Lactate with a Hadamard Slice Selected, Selective Multiple Quantum Coherence, Chemical Shift Imaging Sequence (HDMD-SelMQC-CSI) on a clinical MRI scanner: Application to Tumors and Muscle Ischemia. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2009;62(6):1404-1413. [CrossRef]
- Maudsley AA, Darkazanli A, Alger JR, et al. Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed. 2006;19(4):492-503. [CrossRef]
- He Q, Shungu DC, van Zijl PC, Bhujwalla ZM, Glickson JD. Single-scan in vivo lactate editing with complete lipid and water suppression by selective multiple-quantum-coherence transfer (Sel-MQC) with application to tumors. J Magn Reson B. 1995;106(3):203-211. [CrossRef]
- Thakur SB, Yaligar J, Koutcher JA. In vivo lactate signal enhancement using binomial spectral-selective pulses in selective MQ coherence (SS-SelMQC) spectroscopy. Magn Reson Med. 2009;62(3):591-598. [CrossRef]
- Payne GS, Harris LM, Cairns GS, et al. Validating a robust double-quantum-filtered (1) H MRS lactate measurement method in high-grade brain tumours. NMR Biomed. 2016;29(10):1420-1426. [CrossRef]
- Thakur S, Annarao S, Bokacheva L, Oh JH. Measurement of lactate concentrations in the breast mammary tumors using selective multiple quantum coherence editing sequence at 4.7 T. In: Joint Annual Meeting ISMRM-ESMRMB. Milano, Italy: International Society of Magnetic Resonance in Medicine. 2014. Accessed October 29, 2025. https://archive.ismrm.org/2014/3774.html.
- Rizwan A, Serganova I, Khanin R, et al. Relationships between LDH-A, Lactate and Metastases in 4T1 Breast Tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(18):10.1158/1078-0432.CCR-12-3300. [CrossRef]
- Serganova I, Rizwan A, Ni X, et al. Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(19):6250-6261. [CrossRef]
- Cheung SM, Husain E, Masannat Y, et al. Lactate concentration in breast cancer using advanced magnetic resonance spectroscopy. Br J Cancer. 2020;123(2):261-267. [CrossRef]
- García-Martín ML, Hérigault G, Rémy C, et al. Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res. 2001;61(17):6524-6531.
- van Sluis R, Bhujwalla ZM, Raghunand N, et al. In vivo imaging of extracellular pH using 1H MRSI. Magn Reson Med. 1999;41(4):743-750. [CrossRef]
- Gil MS, Cruz F, Cerdán S, Ballesteros P. Imidazol-1-ylalkanoate esters and their corresponding acids. A novel series of extrinsic 1H NMR probes for intracellular pH. Bioorg Med Chem Lett. 1992;2(12):1717-1722. [CrossRef]
- Gil S, Zaderenzo P, Cruz F, Cerdán S, Ballesteros P. Imidazol-1-ylalkanoic acids as extrinsic 1H NMR probes for the determination of intracellular pH, extracellular pH and cell volume. Bioorg Med Chem. 1994;2(5):305-314. [CrossRef]
- Provent P, Benito M, Hiba B, et al. Serial In vivo Spectroscopic Nuclear Magnetic Resonance Imaging of Lactate and Extracellular pH in Rat Gliomas Shows Redistribution of Protons Away from Sites of Glycolysis. Cancer Res. 2007;67(16):7638-7645. [CrossRef]
- Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo | British Journal of Cancer. Accessed October 29, 2025. https://www.nature.com/articles/s41416-018-0216-5.
- Bhujwalla ZM, Artemov D, Ballesteros P, Cerdan S, Gillies RJ, Solaiyappan M. Combined vascular and extracellular pH imaging of solid tumors. NMR Biomed. 2002;15(2):114-119. [CrossRef]
- Haselgrove JC, Subramanian VH, Leigh JS, Gyulai L, Chance B. In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance. Science. 1983;220(4602):1170-1173. [CrossRef]
- Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12(7):413-439. [CrossRef]
- Glaholm J, Leach MO, Collins DJ, et al. In-vivo 31P magnetic resonance spectroscopy for monitoring treatment response in breast cancer. Lancet Lond Engl. 1989;1(8650):1326-1327. [CrossRef]
- Leach MO, Verrill M, Glaholm J, et al. Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed. 1998;11(7):314-340. [CrossRef]
- Arias-Mendoza F, Zakian K, Schwartz A, et al. Methodological standardization for a multi-institutional in vivo trial of localized 31P MR spectroscopy in human cancer research. In vitro and normal volunteer studies. NMR Biomed. 2004;17(6):382-391. [CrossRef]
- Robey IF, Baggett BK, Kirkpatrick ND, et al. Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases. Cancer Res. 2009;69(6):2260-2268. [CrossRef]
- Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992;5(5):303-324. [CrossRef]
- Chen LQ, Pagel MD. Evaluating pH in the Extracellular Tumor Microenvironment Using CEST MRI and Other Imaging Methods. Adv Radiol. 2015;2015:1-25. [CrossRef]
- Van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magn Reson Med. 2011;65(4):927-948. [CrossRef]
- Cai K, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18(2):302-306. [CrossRef]
- Sherry AD, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng. 2008;10:391-411. [CrossRef]
- Song X, Airan RD, Arifin DR, et al. Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells. Nat Commun. 2015;6(1):6719. [CrossRef]
- Sun PZ, Lu J, Wu Y, Xiao G, Wu R. Evaluation of the dependence of CEST-EPI measurement on repetition time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity. Phys Med Biol. 2013;58(17):N229-N240. [CrossRef]
- Englander SW, Downer NW, Teitelbaum H. Hydrogen Exchange. Annu Rev Biochem. 1972;41(1):903-924. [CrossRef]
- Igarashi T, Kim H, Sun PZ. Detection of tissue pH with quantitative chemical exchange saturation transfer magnetic resonance imaging. NMR Biomed. 2023;36(6):e4711. [CrossRef]
- Anemone A, Consolino L, Conti L, et al. Tumour acidosis evaluated in vivo by MRI-CEST pH imaging reveals breast cancer metastatic potential. Br J Cancer. 2021;124(1):207-216. [CrossRef]
- Corrado A, Lorito N, Anemone A, et al. In vivo imaging of the spatial heterogeneity of intratumoral acidosis (pH) as a marker of the metastatic phenotype in breast cancer. Breast Cancer Res. 2025;27(1):112. [CrossRef]
- Chan KWY, Jiang L, Cheng M, et al. CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR Biomed. 2016;29(6):806-816. [CrossRef]
- Zhou J, Lal B, Wilson DA, Laterra J, Van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50(6):1120-1126. [CrossRef]
- Sun PZ, Wang E, Cheung JS, Zhang X, Benner T, Sorensen AG. Simulation and optimization of pulsed radio frequency irradiation scheme for chemical exchange saturation transfer (CEST) MRI—demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia. Magn Reson Med. 2011;66(4):1042-1048. [CrossRef]
- Sun PZ, Wang E, Cheung JS. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI—Correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. NeuroImage. 2012;60(1):1-6. [CrossRef]
- Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9(8):1085-1090. [CrossRef]
- Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PC. Proton NMR spectroscopy of solvent-saturable resonances: a new approach to study pH effects in situ. Magn Reson Med. 1998;40(1):36-42. [CrossRef]
- Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50(6):1120-1126. [CrossRef]
- Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J Magn Reson Imaging JMRI. 2019;50(2):347-364. [CrossRef]
- Yan K, Fu Z, Yang C, et al. Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9 L Gliosarcoma in the Rat Brain Using Proteomic Analysis. Mol Imaging Biol. 2015;17(4):479-487. [CrossRef]
- Lee DH, Heo HY, Zhang K, et al. Quantitative assessment of the effects of water proton concentration and water T1 changes on amide proton transfer (APT) and nuclear overhauser enhancement (NOE) MRI: The origin of the APT imaging signal in brain tumor. Magn Reson Med. 2017;77(2):855-863. [CrossRef]
- Xu M, Shan D, Zhang R, et al. Differentiation of breast cancer subtypes and correlation with biological status using functional magnetic resonance imaging: comparison with amide proton transfer-weighted imaging and diffusion-weighted imaging. Quant Imaging Med Surg. 2025;15(7):6102-6117. [CrossRef]
- Lee RC, Boparai MS, Duong TQ. Detection of breast cancer lesions using APT weighted MRI: a systematic review. J Transl Med. 2025;23(1):141. [CrossRef]
- Liu Z, Wen J, Wang M, et al. Breast Amide Proton Transfer Imaging at 3 T: Diagnostic Performance and Association With Pathologic Characteristics. J Magn Reson Imaging. 2023;57(3):824-833. [CrossRef]
- Van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci. 2007;104(11):4359-4364. [CrossRef]
- Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci. 2008;105(7):2266-2270. [CrossRef]
- Cai K, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18(2):302-306. [CrossRef]
- Zhou R, Bagga P, Nath K, Hariharan H, Mankoff DA, Reddy R. Glutamate-Weighted Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Detects Glutaminase Inhibition in a Mouse Model of Triple-Negative Breast Cancer. Cancer Res. 2018;78(19):5521-5526. [CrossRef]
- Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;44(5):799-802. [CrossRef]
- Longo DL, Dastrù W, Digilio G, et al. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T. Magn Reson Med. 2011;65(1):202-211. [CrossRef]
- Longo DL, Michelotti F, Consolino L, et al. In Vitro and In Vivo Assessment of Nonionic Iodinated Radiographic Molecules as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Tumor Perfusion Agents: Invest Radiol. 2016;51(3):155-162. [CrossRef]
- Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med. 2014;72(5):1408-1417. [CrossRef]
- Chen M, Chen C, Shen Z, et al. Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget. 2017;8(28):45759-45767. [CrossRef]
- Moon BF, Jones KM, Chen LQ, et al. A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging. 2015;10(6):446-455. [CrossRef]
- Wu R, Longo DL, Aime S, Sun PZ. Quantitative description of radiofrequency (RF) power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging. NMR Biomed. 2015;28(5):555-565. [CrossRef]
- Wu R, Liu C, Liu PK, Sun PZ. Improved measurement of labile proton concentration-weighted chemical exchange rate (kws) with experimental factor-compensated and T1 -normalized quantitative chemical exchange saturation transfer (CEST) MRI. Contrast Media Mol Imaging. 2012;7(4):384-389. [CrossRef]
- Sharma U, Jagannathan NR. Magnetic Resonance Imaging (MRI) and MR Spectroscopic Methods in Understanding Breast Cancer Biology and Metabolism. Metabolites. 2022;12(4):295. [CrossRef]
- Rata M, Giles SL, deSouza NM, Leach MO, Payne GS. Comparison of three reference methods for the measurement of intracellular pH using31 P MRS in healthy volunteers and patients with lymphoma. NMR Biomed. 2014;27(2):158-162. [CrossRef]
- Moon RB, Richards JH. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973;248(20):7276-7278.
- Stubbs M, Bhujwalla ZM, Tozer GM, et al. An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed. 1992;5(6):351-359. [CrossRef]
- Ackerman JJ, Soto GE, Spees WM, Zhu Z, Evelhoch JL. The NMR chemical shift pH measurement revisited: analysis of error and modeling of a pH dependent reference. Magn Reson Med. 1996;36(5):674-683. [CrossRef]
- Oberhaensli RD, Hilton-Jones D, Bore PJ, Hands LJ, Rampling RP, Radda GK. Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet Lond Engl. 1986;2(8497):8-11. [CrossRef]
- Ng TC, Grundfest S, Vijayakumar S, et al. Therapeutic response of breast carcinoma monitored by 31P MRS in situ. Magn Reson Med. 1989;10(1):125-134. [CrossRef]
- Merchant TE, Thelissen GR, de Graaf PW, Den Otter W, Glonek T. Clinical magnetic resonance spectroscopy of human breast disease. Invest Radiol. 1991;26(12):1053-1059. [CrossRef]
- Twelves CJ, Porter DA, Lowry M, et al. Phosphorus-31 metabolism of post-menopausal breast cancer studied in vivo by magnetic resonance spectroscopy. Br J Cancer. 1994;69(6):1151-1156. [CrossRef]
- van der Kemp WJ, Stehouwer BL, Luijten PR, van den Bosch MA, Klomp DW. Detection of alterations in membrane metabolism during neoadjuvant chemotherapy in patients with breast cancer using phosphorus magnetic resonance spectroscopy at 7 Tesla. SpringerPlus. 2014;3:634. [CrossRef]
- Li H. A Non-invasive way to Detect Phospholipid Metabolism of Cancer: In vivo31P-MRS. J Radiol Radiat Ther. 2024;12(1):1-7. [CrossRef]
- Ojugo AS, McSheehy PM, McIntyre DJ, et al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous (19)F and (31)P probes. NMR Biomed. 1999;12(8):495-504. [CrossRef]
- Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag Q Mag Eng Med Biol Soc. 2004;23(5):57-64. [CrossRef]
- Deutsch CJ, Taylor JS. Intracellular pH as Measured by19 F NMRa. Ann N Y Acad Sci. 1987;508(1):33-47. [CrossRef]
- Deutsch CJ, Taylor JS. New class of 19F pH indicators: fluoroanilines. Biophys J. 1989;55(4):799-804. [CrossRef]
- Prior MJW, Maxwell RJ, Griffiths JR. Fluorine-19F NMR Spectroscopy and Imaging In-Vivo. In: Rudin M, ed. In-Vivo Magnetic Resonance Spectroscopy III: In-Vivo MR Spectroscopy: Potential and Limitations. Springer; 1992:101-130. [CrossRef]
- Mehta VD, Kulkarni PV, Mason RP, et al. 6-Fluoropyridoxol: A novel probe of cellular pH using19 F NMR spectroscopy. FEBS Lett. 1994;349(2):234-238. [CrossRef]
- Deutsch C, Taylor JS, Wilson DF. Regulation of intracellular pH by human peripheral blood lymphocytes as measured by 19F NMR. Proc Natl Acad Sci U S A. 1982;79(24):7944-7948. [CrossRef]
- Deutsch C, Taylor JS, Price M. pH homeostasis in human lymphocytes: modulation by ions and mitogen. J Cell Biol. 1984;98(3):885-893. [CrossRef]
- Taylor JS, Deutsch C, McDonald GG, Wilson DF. Measurement of transmembrane pH gradients in human erythrocytes using 19F NMR. Anal Biochem. 1981;114(2):415-418. [CrossRef]
- Taylor JS, Deutsch C. Fluorinated alpha-methylamino acids as 19F NMR indicators of intracellular pH. Biophys J. 1983;43(3):261-267. [CrossRef]
- Mason RP. Transmembrane pH gradients in vivo: measurements using fluorinated vitamin B6 derivatives. Curr Med Chem. 1999;6(6):481-499.
- McSheehy PM, Seymour MT, Ojugo AS, et al. A pharmacokinetic and pharmacodynamic study in vivo of human HT29 tumours using 19F and 31P magnetic resonance spectroscopy. Eur J Cancer Oxf Engl 1990. 1997;33(14):2418-2427. [CrossRef]
- Peterson KL, Srivastava K, Pierre VC. Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging. Front Chem. 2018;6:160. [CrossRef]
- Mizukami S. Development of Molecular Imaging Tools to Investigate Protein Functions by Chemical Probe Design. Chem Pharm Bull (Tokyo). 2011;59(12):1435-1446. [CrossRef]
- Carril M. Activatable probes for diagnosis and biomarker detection by MRI. J Mater Chem B. 2017;5(23):4332-4347. [CrossRef]
- Oishi M, Sumitani S, Nagasaki Y. On−Off Regulation of19 F Magnetic Resonance Signals Based on pH-Sensitive PEGylated Nanogels for Potential Tumor-Specific Smart19 F MRI Probes. Bioconjug Chem. 2007;18(5):1379-1382. [CrossRef]
- Yu JX, Cui W, Bourke VA, Mason RP. 6-Trifluoromethylpyridoxine: Novel19 F NMR pH Indicator for in Vivo Detection. J Med Chem. 2012;55(15):6814-6821. [CrossRef]
- Chen S, Yang Y, Li H, Zhou X, Liu M. pH-Triggered Au-fluorescent mesoporous silica nanoparticles for19 F MR/fluorescent multimodal cancer cellular imaging. Chem Commun. 2014;50(3):283-285. [CrossRef]
- Huang X, Huang G, Zhang S, et al. Multi-Chromatic pH-Activatable19 F-MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemical-Shift Barcodes. Angew Chem Int Ed. 2013;52(31):8074-8078. [CrossRef]
- Li Y, Zhang H, Guo C, Hu G, Wang L. Multiresponsive Nanoprobes for Turn-On Fluorescence/19 F MRI Dual-Modal Imaging. Anal Chem. 2020;92(17):11739-11746. [CrossRef]
- Zalewski M, Janasik D, Kapała A, et al. pH-Sensitive Polymethacrylates as Potential Contrast Agents in19 F MRI. Macromol Chem Phys. 2022;223(14):2200027. [CrossRef]
- Janasik D, Jasiński K, Węglarz WP, Nemec I, Jewula P, Krawczyk T. Ratiometric pH-Responsive19 F Magnetic Resonance Imaging Contrast Agents Based on Hydrazone Switches. Anal Chem. 2022;94(8):3427-3431. [CrossRef]
- Chen L, Jiang Y, Xiong N, Fan Y, Lin H, Gao J. Sensitive Multichannel19 F Magnetic Resonance Imaging Enabled by Paramagnetic Fluorinated Ionic Liquid-Based Probes. ACS Nano. 2025;19(9):9061-9069. [CrossRef]
- Deen SS, Rooney C, Shinozaki A, et al. Hyperpolarized Carbon 13 MRI: Clinical Applications and Future Directions in Oncology. Radiol Imaging Cancer. 2023;5(5):e230005. [CrossRef]
- Gallagher FA, Kettunen MI, Brindle KM. Imaging pH with hyperpolarized13 C. NMR Biomed. 2011;24(8):1006-1015. [CrossRef]
- Woitek R, Brindle KM. Hyperpolarized Carbon-13 MRI in Breast Cancer. Diagnostics. 2023;13(13):2311. [CrossRef]
- Gallagher FA, Woitek R, McLean MA, et al. Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc Natl Acad Sci. 2020;117(4):2092-2098. [CrossRef]
- Woitek R, McLean MA, Ursprung S, et al. Hyperpolarized Carbon-13 MRI for Early Response Assessment of Neoadjuvant Chemotherapy in Breast Cancer Patients. Cancer Res. 2021;81(23):6004-6017. [CrossRef]
- Comment A, Merritt ME. Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry. 2014;53(47):7333-7357. [CrossRef]
- Ravoori MK, Singh SP, Lee J, Bankson JA, Kundra V. In Vivo Assessment of Ovarian Tumor Response to Tyrosine Kinase Inhibitor Pazopanib by Using Hyperpolarized13 C-Pyruvate MR Spectroscopy and18 F-FDG PET/CT Imaging in a Mouse Model. Radiology. 2017;285(3):830-838. [CrossRef]
- Petersen S, Nagel L, Groß P, et al. In Vivo Molecular Imaging of Breast Cancer Metabolic Heterogeneity Using [1-13C]Pyruvate-d3 Hyperpolarized By Reversible Exchange With Parahydrogen. Chemistry. Preprint posted online August 1, 2024. [CrossRef]
- Bakshi SF, Guz N, Zakharchenko A, et al. Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. Nanoscale. 2018;10(3):1356-1365. [CrossRef]
- Ivanov YuD, Pleshakova TO, Malsagova KA, et al. Detection of marker miRNAs in plasma using SOI-NW biosensor. Sens Actuators B Chem. 2018;261:566-571. [CrossRef]
- Dellian M, Helmlinger G, Yuan F, Jain R. Fluorescence ratio imaging of interstitial pH in solid tumours: effect of glucose on spatial and temporal gradients. Br J Cancer. 1996;74(8):1206-1215. [CrossRef]
- Van Geel I, Oppelaar H, Rijken P, et al. Vascular perfusion and hypoxic areas in RIF-1 tumours after photodynamic therapy. Br J Cancer. 1996;73(3):288-293. [CrossRef]
- Martin GR, Jain RK. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 1994;54(21):5670-5674.
- Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-Mediated Tumor Invasion: a Multidisciplinary Study. Cancer Res. 2006;66(10):5216-5223. [CrossRef]
- Hassan M, Riley J, Chernomordik V, et al. Fluorescence Lifetime Imaging System for In Vivo Studies. Mol Imaging. 2007;6(4):229-236.
- Li C, Xia J, Wei X, Yan H, Si Z, Ju S. pH-Activated Near-Infrared Fluorescence Nanoprobe Imaging Tumors by Sensing the Acidic Microenvironment. Adv Funct Mater. 2010;20(14):2222-2230. [CrossRef]
- Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. 2019;38(1-2):25-49. [CrossRef]
- Majd SM, Salimi A, Ghasemi F. An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens Bioelectron. 2018;105:6-13. [CrossRef]
- Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science. 1991;254(5035):1178-1181. [CrossRef]
- Veselinovic J, Li Z, Daggumati P, Seker E. Electrically Guided DNA Immobilization and Multiplexed DNA Detection with Nanoporous Gold Electrodes. Nanomaterials. 2018;8(5):351. [CrossRef]
- Lin Y, Wu TY, Gmitro AF. Error analysis of ratiometric imaging of extracellular pH in a window chamber model. J Biomed Opt. 2012;17(4):046004. [CrossRef]
- Wang Y, Zhou K, Huang G, et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater. 2014;13(2):204-212. [CrossRef]
- Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT) | Chemical Reviews. Accessed October 30, 2025. https://pubs.acs.org/doi/10.1021/cr9002566.
- Su R, Ermilov S, Liopo A, Oraevsky A. Laser optoacoustic tomography: Towards new technology for biomedical diagnostics. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2013;720:58-61. [CrossRef]
- Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392-401. [CrossRef]
- Chen Q, Liu X, Chen J, Zeng J, Cheng Z, Liu Z. A Self-Assembled Albumin-Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. Adv Mater. 2015;27(43):6820-6827. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
