Submitted:
06 November 2025
Posted:
10 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Computational Methods
3. Results
3.1. Alkynes
3.2. Aromatic Nitro Compounds
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy”. ChemEngineering 2021, 5, 24. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part II. AppliedChem 2021, 1, 111–129. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part III. AppliedChem 2022, 2, 213–228. [Google Scholar] [CrossRef]
- Meier, R.J.; Rablen, P.R. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part IV. Thermo 2023, 3, 289–308. [Google Scholar] [CrossRef]
- Meier, R.J.; Rablen, P.R. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part V. Appl. Sci. 2024, 14, 1929. [Google Scholar] [CrossRef]
- Meier, R.J.; Rablen, P.R. Group contribution revisited: The enthalpy of formation of Organic compounds with “chemical accuracy” Part VI. ApplChem. 2024, 4, 333–352. [Google Scholar] [CrossRef]
- Peterson, K.A.; Feller, D.; Dixon, D.A. Chemical accuracy in ab initio thermochemistry and spectroscopy: Current strategies and future challenges Theor. Chem. Acc. 2012, 131, 1079–1098. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; Chermin, H.A.G. Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem. Eng. Sci. 1951, 1, 66–80, Erratum in Chem. Eng. Sci. 1952, 1, 238. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 084108. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Adamo, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16; Gaussian, Inc., Willingford, CT, 2016.
- Narayanan, B.; Redfern, P.C.; Assary, R.S.; Curtiss, L.A. Accurate quantum chemical energies for 133,000 organic molecules. Chem. Sci. 2019, 10, 7449. [Google Scholar] [CrossRef] [PubMed]
- Wagman, D.D.; Kilpatrick, J.E.; Pitzer, K.S.; Rossini, F.D. Heats, equilibrium constants, and free energies of formation of the acetylene hydrocarbons through the pentynes, to 1,500 K. J. Res. Natl. Bur. Stand. 1945, 35, 467–496, www.nvlpubs.nist.gov/nistpubs/jres/35/jresv35n6p467_A1b.pdf. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. Thermochemistry of mono- and disubstituted acetylenes and polyynes at the Gaussian-4 level of theory. Comp. and Theor. Chem. 2011, 970, 15–22. [Google Scholar] [CrossRef]
- Ghahremanpour, M.M.; van Maaren, P.J.; Ditz, J.C.; Lindh, R.; van der Spoel, D. Large-scale calculations of gas phase thermochemistry: Enthalpy of formation, standard entropy, and heat capacity. J. Chem. Phys. 2016, 145, 114305. [Google Scholar] [CrossRef]
- NIST Data Base. Available online: https://webbook.nist.gov/ (last accessed October 2025).
- Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L. Heats of hydrogenation of linear alkynes and a molecular mechanics interpretation. J.Am.Chem.Soc. 1979, 101, 671–676. [Google Scholar] [CrossRef]
- Suntsova, M.A.; Dorofeeva, O.V. Use of G4 Theory for the assessment of inaccuracies in experimental enthalpies of formation of aromatic nitro compounds. J. Chem.& Eng. Data 2016, 61, 313–329. [Google Scholar] [CrossRef]
- Suntsova, M.A.; Dorofeeva, O.V. Use of G4 theory for the assessment of inaccuracies in experimental enthalpies of formation of aliphatic nitro compounds and nitramines. J.Chem.& Eng. Data 2014, 59, 2813–2826. [Google Scholar] [CrossRef]
- Bikelyte, G.; Hartel, M.; Stierstorfer, J.; Klapötke, T.. M.; Pimerzin, A.A.; und Verevkin, S.P. (2017): Benchmark properties of 2-, 3-and 4-nitrotoluene: Evaluation of thermochemical data with complementary experimental and computational methods. In: Journal of Chemical thermodynamics 2017, 111, 271–278. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Prosen, E.J.; Johnson, W.H.; Rossini, F.D. Heats of combustion and formation at 25 °C of the alkylbenzenes through C10H14. and of the higher normal monoalkylbenzenes. J. Res. Natl. Bur. Stand. 1946, 36, 455–461. [Google Scholar] [CrossRef]
- Silva Ferraz, J.M., Emel’yanenko, V.N., Zaiutsau, D.H., Samarov, A.A., Brunetti, B., Ciccioli, A., Ciprioti, S.V., Verevkin, S.P. ChemPlusChem 2025 e202400703. [CrossRef]
| 1-alkynes | Rossini [12] | Rogers c.s. [16] | GC model |
model-exp (or G4) | ABS (model-exp) (or model - G4) |
G4 [13] | G4 [14] | G4 present work |
|---|---|---|---|---|---|---|---|---|
| ethyne | 226.9 | 226.9 | 0 | 0 | 228.4 | 228.4/228.4 | ||
| 1-propyne | 185.6 | 184.54 | -1.06 | 1.06 | 185.2 | 185.1 | 185.1/185.1 | |
| 1-butyne | 166.2 | 163.91 | -2.29 | 2.29 | 166.8 | 166.7 | 166.8/166.8 | |
| 1-pentyne | 144.45 | 143.28 | -1.17 | 1.17 | 144.9 | 144.8/144.9 | ||
| 1-hexyne | 122.3±1.2 | 122.65 | 0.35 | 0.35 | 123.8 | 124.0/124.7 | ||
| 1-heptyne | 102.40 | 102.02 | -0.38 | 0.38 | 102.40 | 102.7/104.2 | ||
| 1-octyne | 80.7±3.6 | 81.39 | 0.69 | 0.69 | 85.9 | 81.1/83.7 | ||
| 1-nonyne | 59.8 | 60.76 | 0.96 | 0.96 | 59.80 | 59.7/63.2 | ||
| 1-decyne | 41.9±3.4 | 40.13 | -1.77 | 1.77 | 38.7 | |||
| 3-methyl-1-butyne | 136.4±2.1 | 136.08 | -0.32 | 0.32 | 139.6 | 139.6/139.6 | ||
| 3-methyl-1-pentyne | 117.55 | -0.45 | 0.45 | 119.9 | 116.8/118.0 | |||
| 4-methyl-1-pentyne | 115.45 | 0.85 | 0.85 | 114.3 | 114.5/114.6 | |||
| C≡C-C-(CH3)3 | 102.62 | -3.38 | 3.38 | 106 | 106.0/106.0 | 106.0/106.0 | ||
| C≡C-C6H5 | 317.4 | 0.1 | 0.1 | 317.4 | 317.3/317.3 | 317.3/317.3 | ||
|
averaged absolute difference |
1.06 | |||||||
| C≡C-CH2F | -12.23 | 36.53 | 34.43 | 22.2 | 24.3/24.3 | |||
| C≡C-CH2-CH2-OH | 14.64 | -0.06 | 0.06 | 12.9/14.7 | ||||
| C≡C-CH2-OH | 35.27 | -15.43 | 15.43 | 50.4/50.7 | ||||
| C≡C-OH | 55.9 | -37.2 | 37.2 | 93.1 | 93.1/93.1 | |||
| C≡C-CHO | 102.9 | 28.0 | 28.1 | 131 | 130.9/130.9 | |||
| C≡C-NH2 | 239.9 | -9.0 | 9 | 248.9 | 248.9/248.9 | |||
| C≡C-CN | 342.9 | -29.1 | 29.1 | 372 | 372.0/372.0 | |||
| 2-, 3-, 4- and 5-alkynes | ||||||||
| 2-butyne | 148.1 | 145.88 | -2.22 | 2.22 | 147.9 | 147.8/147.8 | ||
| 2-pentyne | 128.95 | 125.25 | -3.7 | 3.7 | 129.0/129.0 | |||
| 3-hexyne | 105.4±1.9 | 104.62 | -0.78 | 0.78 | 109.8/109.8 | |||
| 3-heptyne | 82.8±2.4 | 83.99 | 1.19 | 1.19 | 87.4/87.6 | |||
| 3-octyne | 62.5±1.8 | 63.36 | 0.86 | 0.86 | 66.1/67.3 | |||
| 2-octyne | 63.8±1.5 | 63.36 | -0.44 | 0.44 | 64.2/66.1 | |||
| 4-octyne | 60.1±2.1 | 63.36 | 3.26 | 3.26 | 64.7/65.3 | |||
| 2-nonyne | 43.6±3.0 | 42.73 | -0.87 | 0.87 | 54.6 | 43.5/45.6 | ||
| 3-nonyne | 42±2.5 | 42.73 | 0.73 | 0.73 | 51.70 | 45.5/46.6 | ||
| 4-nonyne | 42±2.8 | 42.73 | 0.73 | 0.73 | 44.60 | 44.1/44.9 | ||
| 2-decyne | 23.6±3.4 | 22.1 | -1.5 | 1.5 | 22.3/25.0 | |||
| 3-decyne | 21.8±3.3 | 22.1 | 0.3 | 0.3 | 23.5 | |||
| 4-decyne | 19.9±3.0 | 22.1 | 2.2 | 2.2 | 22.7 | |||
| 5-decyne | 18.7±3.3 | 22.1 | 3.4 | 3.4 | 21.9/24.4 | |||
| 4-methyl-2-pentyne | 99.52 | -1.58 | 1.58 | 101 | 101.1/101.1 | |||
| 7-methyl-3-octyne | 35.53 | -2.57 | 2.57 | 43.4 | 37.2/38.1 | |||
| 2,6-dimethylhept-3-yne | 28.33 | -0.27 | 0.27 | 28.4 | 28.5/28.6 | |||
|
averaged absolute difference |
1.56 |
| nitro aromatic compounds | experiment [17]t |
GC model | GC model -exp | B3LYP relative energies |
| benzene | 82.99 [21] | 84.5 | 1.51 | |
| nitrobenzene | 67.5±0.6 | 64.5 | -3 | |
| 2-methylnitrobenzene | 37.1±1.0 [19] | 28.14 | -8.96 | 12 |
| 3-methylnitrobenzene | 29.0±1.5 [19] | 28.14 | -0.86 | 2 |
| 4-methylnitrobenzene | 29.9±1.1 [19] | 28.14 | -1.76 | 0 |
| 2-ethylnitrobenzene | 11.2±6.6 | 7.51 | -3.69 | |
| 4-ethylnitrobenzene | 7.4±6.6 | 7.51 | 0.11 | |
| 2-nitrobenzoic acid | -279.8 | -314.5 | -34.7 | 23 |
| 3-nitrobenzoic acid | -304 | -314.5 | -10.5 | -2 |
| 4-nitrobenzoic acid | -307.7 | -314.5 | -6.8 | 0 |
| 2-nitrophenol | -127.8 | -112 | 15.8 | -12 |
| 3-nitrophenol | -111.8 | -112 | -0.2 | 6 |
| 4-nitrophenol | -114.1 | -112.0 | 2.1 | 0 |
| 1,2-dinitrobenzene | 93.7±1.2 | 44.5 | -49.2 | 39 |
| 1,3-dinitrobenzene | 53.8±1.8 | 54.5 | 0.7 | 0 |
| 1,4-dinitrobenzene | 55.6±0.8 | 54.5 | -1.1 | 0 |
| 1-methyl-2,4-dinitrobenzene | 33.2±3.3 | 18.14 | -15.06 | |
| 2,4-dinitrophenol | -128.1 | -122 | 6.1 | 0 |
| 2,6-dinitrophenol | -97.8 | -132 | -34.2 | 30 |
| 2-nitroaniline | 63.8 / 62.9 | 70.5 | 6.7 | 0 |
| 3-nitroaniline | 58.4 / 62.5 | 70.5 | 12.1 | 10 |
| 4-nitroaniline | 58.8 / 57.7 | 70.5 | 11.7 | 0 |
| N,N-dimethyl-3-nitroaniline | 72.6±1.8 | 65.28 | -7.32 | 11 |
| N,N-dimethyl-4-nitroaniline | 67.3±1.7 | 65.28 | -2.02 | 0 |
| 2-methyl-5-nitrophenol | -147.2 | -148.36 | -1.16 | 0 |
| 3-methyl-4-nitrophenol | -138.5 | -148.36 | -9.86 | 9 |
| 4-methyl-2-nitrobenzoic acid | -316.9 [22] | -350.9 | -34 | |
| 6-methyl-3-nitrobenzoic acid | -333.2 [22] | -350.9 | -17.7 | |
| 2-methyl-4-nitrobenzoic acid | -334.6±3.0 [22] | -350.9 | -16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
