Submitted:
03 November 2025
Posted:
04 November 2025
You are already at the latest version
Abstract
Keywords:
MSC: 11M06; 11N05; 11N13
1. Introduction
2. Proof of Theorem 1.1
References
- Bombieri, E. On the large sieve. Mathmatika 1965, 12, 201–225. [Google Scholar] [CrossRef]
- Vinogradov, A.I. The density hypothesis for Dirichet L–series. Izv. Akad. Nauk SSSR Ser. Mat. 1965, 29, 903–934. [Google Scholar]
- Jutila, M. A statistical density theorem for L–functions with applications. Acta Arith. 1969, 16, 207–216. [Google Scholar] [CrossRef]
- Motohashi, Y. On a mean value theorem for the remainder term in the prime number theorem for short arithmetical progressions. Proc. Japan Acad. 1971, 47, 653–657. [Google Scholar] [CrossRef]
- Huxley, M.N.; Iwaniec, H. Bombieri’s theorem in short intervals. Mathematika 1975, 22, 188–194. [Google Scholar] [CrossRef]
- Ricci, S.J. Mean–value theorems for primes in short intervals. Proc. London Math. Soc. 1978, 37, 230–242. [Google Scholar] [CrossRef]
- Perelli, A.; Pintz, J.; Salerno, S. Bombieri’s theorem in short intervals. Ann. Scvota Normale Sup. Pisa 1984, pp. 529–539.
- Perelli, A.; Pintz, J.; Salerno, S. Bombieri’s theorem in short intervals II. Invent. Math. 1985, 79, 1–9. [Google Scholar] [CrossRef]
- Zhan, T. Bombieri’s theorem in short intervals. Acta Math. Sin. (N. S.) 1989, 5, 37–47. [Google Scholar]
- Timofeev, N.M. Distribution in the mean of arithmetic functions in short intervals in arithmetic progressions. Math. USSR–Izv. 1988, 30, 315–335. [Google Scholar] [CrossRef]
- Lao, H.X. Bombieri’s theorem in short intervals. Communications in Mathematical Research 2012, 28, 173–180. [Google Scholar]
- Lou, S.; Yao, Q. Generalizations and applications of a mean value theorem. Journal of Shandong University (Natural Science Edition) 1979, 2, 1–19. (in Chinese). [Google Scholar]
- Wu, J. Théorèmes généralisés de Bombieri–Vinogradov dans les petits intervalles. Quart. J. Math. Oxford Ser. (2) 1993, 44, 109–128. [Google Scholar] [CrossRef]
- Heath-Brown, D.R. Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 1982, 34, 1365–1377. [Google Scholar] [CrossRef]
- Guth, L.; Maynard, J. New large value estimates for Dirichlet polynomials. Ann. of Math., to appear. arXiv e-prints 2024, p. arXiv:2405.20552v1, [arXiv:math.NT/2405.20552]. [CrossRef]
- Chen, B. Large value estimates for Dirichlet polynomials, and the density of zeros of Dirichlet’s L–functions. arXiv e-prints 2025, p. arXiv:2507.08296v1, [arXiv:math.NT/2507.08296]. [CrossRef]
- Guo, R. Primes in arithmetic progressions to moduli with a large power factor. Advances in Pure Mathematics 2013, 3, 25–32. [Google Scholar] [CrossRef]
- Harm, M. Refinements for primes in short arithmetic progressions. arXiv e-prints 2025, p. arXiv:2507.15334v1, [arXiv:math.NT/2507.15334]. [CrossRef]
- Montgomery, H.L. Topics in Multiplicative Number Theory; Lecture Notes in Math. 227; Springer: Berlin, 1971. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).