Submitted:
30 October 2025
Posted:
31 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Role of MicroRNA-221 in Tumorigenesis, Progression, and Therapy: Mechanisms and Clinical Implications
2.1. miR-221 as a Diagnostic and Prognostic Biomarker in Human Cancers
2.2. miR-221 Regulates Tumor Cell Biology via Key Targets and Signaling Pathways
2.2.1. Proliferation and Cell Cycle Control
2.2.2. Migration, Invasion, and Metastasis
2.2.3. Stem Cell-like Properties
2.3. miR-221 Mediates Cancer Therapy Resistance
2.3.1. Chemoresistance
2.3.2. Radiosensitivity
2.3.3. Targeting miR-221 for Cancer Therapy
3. The Biological Functions of MicroRNA-221 in the Cardiovascular System: Insights from Preclinical and Clinical Studies
3.2. miR-221 in Heart Failure: Ventricular Specificity and Fibrotic Remodeling
3.3. miR-221 in Coronary Artery Disease and Atherosclerosis
3.4. miR-221 in Vascular Regeneration and Stem Cell Differentiation
3.5. miR-221 in Myocardial Ischemia-Reperfusion Injury
3.6. miR-221 in Vascular Smooth Muscle Cells and Vein Graft Disease
3.7. miR-221 as a Biomarker in Cardiovascular Diseases
4. miR-221 in the Nervous System: Multifaceted Biological Functions
5. miR-221 in the Digestive System: Multifaceted Biological Functions
6. miR-221 in the Respiratory System: Multifunctional Regulatory Roles
7. miR-221 in Adipose and Endocrine Systems: Biological Functions
8. Conclusions
| System/Disease Type | Key Target Genes | Regulated Signaling Pathways | Functional Effects | Ref | |
|---|---|---|---|---|---|
| Oncological System | |||||
| Glioma | DNM3 | DNA repair and tumor progression | Promotes glioma proliferation and temozolomide resistance; serves as a liquid biopsy marker | [1][] | |
| Cutaneous Squamous Cell Carcinoma (CSCC) | PTEN | PI3K/AKT pathway | Accelerates G1/S phase transition, promotes cell proliferation and colony formation | [2][] | |
| Hepatocellular Carcinoma (HCC) | CDKN1C/p57, CDKN1B/p27 | Cell cycle regulatory pathway | Inhibits cell cycle inhibitors to promote hepatocyte proliferation | [3,4] | |
| Hepatocellular Carcinoma (HCC) | HDAC6 | malignant progression of tumors | Enhances the malignant phenotype of HCC cells | [2][] | |
| Hepatocellular Carcinoma (HCC) | Bmf | Bcl-2 family apoptotic pathway | Inhibits pro-apoptotic proteins; associated with tumor multifocality | [2][] | |
| Neuroblastoma | NLK | MYCN regulatory pathway (NLK is a negative regulator of MYCN) | Increases MYCN levels; associated with disease progression and poor prognosis | [2][] | |
| Triple-Negative Breast Cancer (TNBC) | PTEN | Wnt/β-catenin, PI3K/AKT pathways | Activates pathways to promote tumor progression and cancer stem cell (CSC) properties | [2][] | |
| Colorectal Cancer (CRC) | CDKN1C/p57 | Cell cycle regulatory pathway | Inhibits p57 to promote cell proliferation | [[3[] | |
| Colorectal Cancer (CRC) | TP53INP1 | p53 signaling pathway | Inhibits TP53INP1 to weaken p53-mediated tumor-suppressive effects; ferulic acid-loaded micelles activate TP53INP1 by inhibiting miR-221 | [3][] | |
| Esophageal Cancer (Chemoresistant) | DKK2 | chemoresistance-related phenotypes | Mediates chemotherapy resistance | [2][] | |
| Cardiovascular System | |||||
| Viral Myocarditis (VM) | ETS1/2, IRF2, BCL2L11, TOX, BMF, CXCL12 | Antiviral defense pathway, Inflammatory regulation pathway | Restricts CVB3 replication, reduces T-cell infiltration and myocardial necrosis | [[6[] | |
| Heart Failure (HF, Autophagy Regulation) | p27 | p27/CDK2/mTOR pathway | Inhibits p27 to block autophagy, leading to accumulation of damaged organelles and cardiac dysfunction | [3][] | |
| Coronary Artery Disease (CAD) | AdipoR1 | Adiponectin signaling pathway, NO production pathway | Inhibits AdipoR1 to reduce NO production and increase pro-inflammatory cytokine release | [4][] | |
| Vascular Regeneration (Adipose-Derived Stem Cells) | PTEN | PI3K/AKT/mTOR pathway | Activates the pathway to promote endothelial differentiation and angiogenesis | [4][] | |
| Myocardial Ischemia-Reperfusion (I/R) Injury | p57 | cardiomyocyte survival | Inhibits p57 to increase cardiomyocyte necrosis and LDH release | [4][] | |
| Vascular Smooth Muscle Cell (VSMC) Phenotypic Switching | p27Kip1 | PDGF signaling pathway | Downregulates p27Kip1 to promote VSMC switching from contractile to synthetic phenotype | [5][] | |
| Renal Failure-Associated Cardiac Fibrosis | TSP-1 | TGF-β activation pathway (TSP-1 is an activator of TGF-β) | Inhibits TSP-1 to reduce TGF-β1 activation and collagen deposition | [5][] | |
| Nervous System | |||||
| Parkinson’s Disease (PD) | BIM | Bax/caspase-3 apoptotic pathway | Inhibits pro-apoptotic proteins to protect dopaminergic neurons from oxidative stress | [[7[] | |
| Parkinson’s Disease (PD) | BIM | Bax/caspase-3 apoptotic pathway | Rescues dopaminergic neuron loss and improves motor function in 6-OHDA-induced mice | [5][] | |
| Neuronal Survival (PC12 Cells) | BIM | ERK1/2 signaling pathway (NGF induces miR-221) | Downregulates BIM to enhance neuronal survival | [5][] | |
| Valproic Acid-Resistant Epilepsy | HIF-1α | Inflammatory pathway (HIF-1α mediates M1 microglial polarization) | Inhibits HIF-1α to reduce M1 microglial polarization and alleviate seizure severity | [5][] | |
| Neuroinflammation (LPS-Induced) | IRF2 | Interferon regulatory pathway | Propofol downregulates miR-221 to restore IRF2, inhibiting microglial activation | [5][] | |
| Digestive System | |||||
| Bovine Viral Diarrhea Virus (BVDV) Infection | ATG7 | ATG7-LC3 autophagic pathway | Downregulates ATG7 to inhibit autophagy and reduce BVDV replication | [5][] | |
| Fulminant Liver Failure | PUMA | Bcl-2 family apoptotic pathway | Inhibits PUMA to reduce hepatocyte apoptosis and delay liver failure | [6][] | |
| Liver Regeneration (Post-Partial Hepatectomy) | Arnt | Cell cycle regulatory pathway | Downregulates target genes to promote hepatocyte S-phase entry and proliferation | [[8[] | |
| Hepatic Inflammation | TIMP-3 | TNF-α-converting enzyme (TACE) regulatory pathway (TIMP-3 is an inhibitor of TACE) | Inhibits TIMP-3 to amplify pro-inflammatory signaling | [6][] | |
| Inflammatory Bowel Disease (DSS-Induced) | Maf, IL23R | Th17 cell differentiation pathway | Inhibits Maf and IL23R to restrict Th17 cell expansion and alleviate colitis | [6][] | |
| Respiratory System | |||||
| Pulmonary Arterial Hypertension (PAH) | AXIN2 | Wnt/β-catenin pathway (AXIN2 is a negative regulator of the pathway) | Activates the pathway to promote PASMC proliferation and PAH progression | [6][] | |
| Severe Asthma (ASMC Hyperproliferation) | p21WAF1, p27kip1 | ASMC proliferation | Specifically drives airway smooth muscle cell hyperproliferation | [6][] | |
| LPS-Induced Acute Lung Injury (ALI) | SOCS1 | NF-κB pathway (SOCS1 is a negative regulator of NF-κB) | Inhibits SOCS1 to exacerbate inflammation; miR-221 inhibition restores SOCS1 to alleviate ALI | [6][] | |
| Adipose and Endocrine Systems | |||||
| Obesity (Lipid Metabolism) | AdipoR1 (co-regulated with PTB) | Adiponectin signaling pathway | Downregulates AdipoR1 to impair adiponectin signaling and insulin sensitivity | [7][] | |
| Obesity (Lipid Metabolism) | ANGPTL8 | Triglyceride storage regulatory pathway | Inhibits ANGPTL8 to reduce triglyceride storage in adipocytes | [7][] | |
| Mammary Epithelial Cells (Lactation) | FASN | Fatty acid synthesis pathway | Downregulates FASN to inhibit lipid synthesis; hormones downregulate miR-221 to promote lactation | [7][] | |
| Diabetes (Wound Healing) | THBS1 | Angiogenic pathway (THBS1 is an anti-angiogenic factor) | Inhibits THBS1 to reduce keratinocyte apoptosis and promote wound closure | [7][] | |
| Diabetes (Inflammatory Regulation) | DYRK1A | STAT3 signaling pathway (DYRK1A mediates STAT3 phosphorylation) | Inhibits DYRK1A to reduce STAT3 phosphorylation and pro-inflammatory cytokine release | [7][] | |
9. Future Directions and Challenges
Funding
Conflict of Interest
References
- Zhang, R.; Qu, Y.; Ji, Z.; Hao, C.; Su, Y.; Yao, Y.; Zuo, W.; Chen, X.; Yang, M.; Ma, G. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cellular & molecular biology letters 2022, 27, 55. [Google Scholar] [CrossRef]
- Ogawa, T.; Enomoto, M.; Fujii, H.; Sekiya, Y.; Yoshizato, K.; Ikeda, K.; Kawada, N. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 2012, 61, 1600–1609. [Google Scholar] [CrossRef]
- Sun, K.; Wang, W.; Zeng, J.J.; Wu, C.T.; Lei, S.T.; Li, G.X. MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta pharmacologica Sinica 2011, 32, 375–384. [Google Scholar] [CrossRef]
- Fornari, F.; Milazzo, M.; Galassi, M.; Callegari, E.; Veronese, A.; Miyaaki, H.; Sabbioni, S.; Mantovani, V.; Marasco, E.; Chieco, P.; et al. p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma. Molecular cancer research : MCR 2014, 12, 203–216. [Google Scholar] [CrossRef]
- Zhang, R.; Pang, B.; Xin, T.; Guo, H.; Xing, Y.; Xu, S.; Feng, B.; Liu, B.; Pang, Q. Plasma miR-221/222 Family as Novel Descriptive and Prognostic Biomarkers for Glioma. Molecular neurobiology 2016, 53, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Corsten, M.F.; Heggermont, W.; Papageorgiou, A.P.; Deckx, S.; Tijsma, A.; Verhesen, W.; van Leeuwen, R.; Carai, P.; Thibaut, H.J.; Custers, K.; et al. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. European heart journal 2015, 36, 2909–2919. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.E.; Park, H.J.; He, L.; Skibiel, C.; Junn, E.; Mouradian, M.M. The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox biology 2018, 19, 62–73. [Google Scholar] [CrossRef]
- Yuan, Q.; Loya, K.; Rani, B.; Mobus, S.; Balakrishnan, A.; Lamle, J.; Cathomen, T.; Vogel, A.; Manns, M.P.; Ott, M.; et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 2013, 57, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Wang, Q.; Balk, S.; Brown, M.; Lee, G.S.; Kantoff, P. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer research 2009, 69, 3356–3363. [Google Scholar] [CrossRef]
- Spahn, M.; Kneitz, S.; Scholz, C.J.; Stenger, N.; Rudiger, T.; Strobel, P.; Riedmiller, H.; Kneitz, B. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. International journal of cancer 2010, 127, 394–403. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, L.R.; Huo, X.L.; Wang, L.; Zhang, G.B.; Hao, S.Y.; Jia, H.W.; Kong, C.L.; Jia, W.; Wu, Z.; et al. MicroRNA-221/222 Inhibits the Radiation-Induced Invasiveness and Promotes the Radiosensitivity of Malignant Meningioma Cells. Frontiers in oncology 2020, 10, 1441. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Liu, Z.; Shi, S.; Zhang, Z.; Zhang, J.; Lin, H. miR-221/222 activate the Wnt/beta-catenin signaling to promote triple-negative breast cancer. Journal of molecular cell biology 2018, 10, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.K.; Yang, J.P.; Tong, J.; Jing, S.Y.; Fan, B.; Wang, F.; Sun, G.Z.; Jiao, B.H. Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. Journal of neuro-oncology 2017, 131, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Verrienti, A.; Pecce, V.; Grani, G.; Del Gatto, V.; Barp, S.; Maranghi, M.; Giacomelli, L.; Di Gioia, C.; Biffoni, M.; Filetti, S.; et al. Serum microRNA-146a-5p and microRNA-221-3p as potential clinical biomarkers for papillary thyroid carcinoma. Journal of endocrinological investigation 2025, 48, 619–631. [Google Scholar] [CrossRef]
- Khan, R.; Riaz, A.; Abbasi, S.A.; Sadaf, T.; Baig, R.M.; Mansoor, Q. Identification of transcriptional level variations in microRNA-221 and microRNA-222 as alternate players in the thyroid cancer tumor microenvironment. Scientific reports 2023, 13, 15800. [Google Scholar] [CrossRef]
- Yau, T.O.; Wu, C.W.; Dong, Y.; Tang, C.M.; Ng, S.S.; Chan, F.K.; Sung, J.J.; Yu, J. microRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. British journal of cancer 2014, 111, 1765–1771. [Google Scholar] [CrossRef]
- Liu, S.; Sun, X.; Wang, M.; Hou, Y.; Zhan, Y.; Jiang, Y.; Liu, Z.; Cao, X.; Chen, P.; Chen, X.; et al. A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFkappaB and STAT3 in colorectal cancer cells. Gastroenterology 2014, 147, 847–859. [Google Scholar] [CrossRef]
- Li, F.; Xu, J.W.; Wang, L.; Liu, H.; Yan, Y.; Hu, S.Y. MicroRNA-221-3p is up-regulated and serves as a potential biomarker in pancreatic cancer. Artificial cells, nanomedicine, and biotechnology 2018, 46, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, W.; Li, J.; Liu, C.; Xiao, Z.; Lai, Q.; Qin, R.; Shen, M.; Shi, S.; Kang, M. Bioinformatics analysis of the expression and role of microRNA-221-3p in head and neck squamous cell carcinoma. BMC cancer 2021, 21, 395. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Herbst, A.; Kalinski, T.; Qin, J.; Wang, X.; Jiang, Z.; Benedix, F.; Franke, S.; Wartman, T.; et al. miR-221 Mediates Chemoresistance of Esophageal Adenocarcinoma by Direct Targeting of DKK2 Expression. Annals of surgery 2016, 264, 804–814. [Google Scholar] [CrossRef]
- Gong, Z.H.; Zhou, F.; Shi, C.; Xiang, T.; Zhou, C.K.; Wang, Q.Q.; Jiang, Y.S.; Gao, S.F. miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN. Cellular & molecular biology letters 2019, 24, 9. [Google Scholar] [CrossRef]
- Bae, H.J.; Jung, K.H.; Eun, J.W.; Shen, Q.; Kim, H.S.; Park, S.J.; Shin, W.C.; Yang, H.D.; Park, W.S.; Lee, J.Y.; et al. MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer. Journal of hepatology 2015, 63, 408–419. [Google Scholar] [CrossRef]
- Callegari, E.; Elamin, B.K.; Giannone, F.; Milazzo, M.; Altavilla, G.; Fornari, F.; Giacomelli, L.; D’Abundo, L.; Ferracin, M.; Bassi, C.; et al. Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology 2012, 56, 1025–1033. [Google Scholar] [CrossRef]
- Gramantieri, L.; Fornari, F.; Ferracin, M.; Veronese, A.; Sabbioni, S.; Calin, G.A.; Grazi, G.L.; Croce, C.M.; Bolondi, L.; Negrini, M. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clinical cancer research : an official journal of the American Association for Cancer Research 2009, 15, 5073–5081. [Google Scholar] [CrossRef]
- He, X.Y.; Tan, Z.L.; Mou, Q.; Liu, F.J.; Liu, S.; Yu, C.W.; Zhu, J.; Lv, L.Y.; Zhang, J.; Wang, S.; et al. microRNA-221 Enhances MYCN via Targeting Nemo-like Kinase and Functions as an Oncogene Related to Poor Prognosis in Neuroblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2017, 23, 2905–2918. [Google Scholar] [CrossRef]
- Li, B.; Lu, Y.; Yu, L.; Han, X.; Wang, H.; Mao, J.; Shen, J.; Wang, B.; Tang, J.; Li, C.; et al. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-kappaB/COX-2 activation. Chemico-biological interactions 2017, 277, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Di Leva, G.; Li, M.; Fang, F.; Devlin, C.; Hartman-Frey, C.; Burow, M.E.; Ivan, M.; Croce, C.M.; Nephew, K.P. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 2011, 30, 1082–1097. [Google Scholar] [CrossRef]
- Larabee, S.M.; Cheng, K.; Raufman, J.P.; Hu, S. Muscarinic receptor activation in colon cancer selectively augments pro-proliferative microRNA-21, microRNA-221 and microRNA-222 expression. PloS one 2022, 17, e0269618. [Google Scholar] [CrossRef]
- Hu, X.H.; Zhao, Z.X.; Dai, J.; Geng, D.C.; Xu, Y.Z. MicroRNA-221 regulates osteosarcoma cell proliferation, apoptosis, migration, and invasion by targeting CDKN1B/p27. Journal of cellular biochemistry 2019, 120, 4665–4674. [Google Scholar] [CrossRef]
- Storci, G.; Bertoni, S.; De Carolis, S.; Papi, A.; Nati, M.; Ceccarelli, C.; Pirazzini, C.; Garagnani, P.; Ferrarini, A.; Buson, G.; et al. Slug/beta-catenin-dependent proinflammatory phenotype in hypoxic breast cancer stem cells. The American journal of pathology 2013, 183, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Hong, X.; Li, S.; Meng, P.; Xiao, F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Experimental & molecular medicine 2021, 53, 91–102. [Google Scholar] [CrossRef]
- Hassan, M.; Elzallat, M.; Aboushousha, T.; Elhusseny, Y.; El-Ahwany, E. MicroRNA-122 mimic/microRNA-221 inhibitor combination as a novel therapeutic tool against hepatocellular carcinoma. Non-coding RNA research 2023, 8, 126–134. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.J.; Moon, S.U.; Kim, S. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beacon. Biomaterials 2016, 74, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Sweed, N.M.; Dawoud, M.H.S.; Aborehab, N.M.; Ezzat, S.M. An approach for an enhanced anticancer activity of ferulic acid-loaded polymeric micelles via MicroRNA-221 mediated activation of TP53INP1 in caco-2 cell line. Scientific reports 2024, 14, 2073. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Du, S.Y.; Armenia, J.; Qu, F.; Fan, J.; Wang, X.; Fei, T.; Komura, K.; Liu, S.X.; Lee, G.M.; et al. Expression of lncRNA MIR222HG co-transcribed from the miR-221/222 gene promoter facilitates the development of castration-resistant prostate cancer. Oncogenesis 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.C.; Sabri, A.; Al-Bataineh, D.; Chotalia, D.; Guo, X.; Tsipenyuk, F.; Berretta, R.; Kavitha, P.; Gopi, H.; Houser, S.R.; et al. Differential microRNA-21 and microRNA-221 Upregulation in the Biventricular Failing Heart Reveals Distinct Stress Responses of Right Versus Left Ventricular Fibroblasts. Circulation. Heart failure 2020, 13, e006426. [Google Scholar] [CrossRef]
- Verjans, R.; Peters, T.; Beaumont, F.J.; van Leeuwen, R.; van Herwaarden, T.; Verhesen, W.; Munts, C.; Bijnen, M.; Henkens, M.; Diez, J.; et al. MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload-Induced Heart Failure. Hypertension 2018, 71, 280–288. [Google Scholar] [CrossRef]
- Su, M.; Wang, J.; Wang, C.; Wang, X.; Dong, W.; Qiu, W.; Wang, Y.; Zhao, X.; Zou, Y.; Song, L.; et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell death and differentiation 2015, 22, 986–999. [Google Scholar] [CrossRef]
- Torres-Paz, Y.E.; Gamboa, R.; Fuentevilla-Alvarez, G.; Soto, M.E.; Gonzalez-Moyotl, N.; Martinez-Alvarado, R.; Torres-Tamayo, M.; Ramirez-Marroquin, E.S.; Vasquez-Jimenez, X.; Sainz-Escarrega, V.; et al. Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease. International journal of molecular sciences 2023, 24. [Google Scholar] [CrossRef]
- Qin, B.; Cao, Y.; Yang, H.; Xiao, B.; Lu, Z. MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via Ets-1/p21 inhibition. Molecular and cellular biochemistry 2015, 405, 115–124. [Google Scholar] [CrossRef]
- Chen, C.F.; Huang, J.; Li, H.; Zhang, C.; Huang, X.; Tong, G.; Xu, Y.Z. MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1. Gene 2015, 565, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, F.; Liang, B.; Jing, Y.; Zhang, P.; Liu, W.; Zhu, B.; Dou, D. LincRNA-p21 alleviates atherosclerosis progression through regulating the miR-221/SIRT1/Pcsk9 axis. Journal of cellular and molecular medicine 2021, 25, 9141–9153. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, X.J.; Lu, S.Y.; Huang, X.F.; Hu, Y.Y.; Liu, H.; Liu, B.; Liu, K.Y.; Zhang, M.X.; Wang, H.; et al. M2 macrophage-derived extracellular vesicles protect against abdominal aortic aneurysm by modulating macrophage polarization through miR221-5p. Cellular & molecular biology letters 2025, 30, 96. [Google Scholar] [CrossRef]
- Gao, W.; Yuan, L.; Zhang, Y.; Si, Y.; Wang, X.; Lv, T.; Wang, Y.S. miR-221/222 Promote Endothelial Differentiation of Adipose-Derived Stem Cells by Regulation of PTEN/PI3K/AKT/mTOR Pathway. Applied biochemistry and biotechnology 2023, 195, 4196–4214. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.C.; Chiang, E.P.; Tsai, S.Y.; Wang, F.Y.; Pai, M.H.; Syu, J.N.; Cheng, C.C.; Rodriguez, R.L.; Tang, F.Y. Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways. The Journal of nutritional biochemistry 2014, 25, 934–945. [Google Scholar] [CrossRef]
- Syu, J.N.; Lin, H.Y.; Huang, T.Y.; Lee, D.Y.; Chiang, E.I.; Tang, F.Y. Docosahexaenoic Acid Alleviates Trimethylamine-N-oxide-mediated Impairment of Neovascularization in Human Endothelial Progenitor Cells. Nutrients 2023, 15. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, W.; Zhao, P.; Zhang, J.; Lu, Y.; Zhu, Y.; Zhao, W.; Liu, Y.; Chen, Q.; Zhang, F. Down-Regulated Exosomal MicroRNA-221 - 3p Derived From Senescent Mesenchymal Stem Cells Impairs Heart Repair. Frontiers in cell and developmental biology 2020, 8, 263. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, Y.; Huo, X.; Sun, H.; Wang, Y.; Bu, F. MicroRNA-221-3p contributes to cardiomyocyte injury in H2O2-treated H9c2 cells and a rat model of myocardial ischemia-reperfusion by targeting p57. International journal of molecular medicine 2018, 42, 589–596. [Google Scholar] [CrossRef]
- Zhou, Y.; Richards, A.M.; Wang, P. MicroRNA-221 Is Cardioprotective and Anti-fibrotic in a Rat Model of Myocardial Infarction. Molecular therapy. Nucleic acids 2019, 17, 185–197. [Google Scholar] [CrossRef]
- Davis, B.N.; Hilyard, A.C.; Nguyen, P.H.; Lagna, G.; Hata, A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. The Journal of biological chemistry 2009, 284, 3728–3738. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; He, X.J.; Lee, K.C.; Huang, C.; Hu, J.B.; Zhou, R.; Xiang, X.Y.; Feng, B.; Lu, Z.Q. MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. International journal of cardiology 2016, 208, 79–86. [Google Scholar] [CrossRef]
- Zhou, Y.; Ng, D.Y.E.; Richards, A.M.; Wang, P. microRNA-221 Inhibits Latent TGF-beta1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis. Molecular therapy. Nucleic acids 2020, 22, 803–814. [Google Scholar] [CrossRef]
- Huang, D.; Chen, Z.; Wang, J.; Chen, Y.; Liu, D.; Lin, K. MicroRNA-221 is a potential biomarker of myocardial hypertrophy and fibrosis in hypertrophic obstructive cardiomyopathy. Bioscience reports 2020, 40. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Z.; Zhang, F.; Miao, N.; Wang, N.; Xu, X.; Yang, C. microRNA-221 rescues the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. Brain and behavior 2023, 13, e2921. [Google Scholar] [CrossRef]
- Terasawa, K.; Ichimura, A.; Sato, F.; Shimizu, K.; Tsujimoto, G. Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. The FEBS journal 2009, 276, 3269–3276. [Google Scholar] [CrossRef]
- Fu, M.; Zhu, Y.; Zhang, J.; Wu, W.; Sun, Y.; Zhang, X.; Tao, J.; Li, Z. MicroRNA-221-3p Suppresses the Microglia Activation and Seizures by Inhibiting of HIF-1alpha in Valproic Acid-Resistant Epilepsy. Frontiers in pharmacology 2021, 12, 714556. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Hou, Y.; Yu, W.; Qi, S. Propofol Ameliorates Microglia Activation by Targeting MicroRNA-221/222-IRF2 Axis. Journal of immunology research 2021, 2021, 3101146. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, X.; Li, Y.; Che, J.; Zhao, X.; Chen, Y.; Zheng, X.; Yuan, W. Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush. International journal of nanomedicine 2017, 12, 4195–4208. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, J.; Lu, B.; Meng, W.; Zhu, Y.; Jiang, Q.; Gao, D.; Ma, Z.; Zeng, H.; Chen, J.; et al. Reduction of microRNA-221 in BVDV infection enhances viral replication by targeting the ATG7-mediated autophagy pathway. Irish veterinary journal 2025, 78, 10. [Google Scholar] [CrossRef]
- Sharma, A.D.; Narain, N.; Handel, E.M.; Iken, M.; Singhal, N.; Cathomen, T.; Manns, M.P.; Scholer, H.R.; Ott, M.; Cantz, T. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology 2011, 53, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Markovic, J.; Sharma, A.D.; Balakrishnan, A. MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury. Cells 2020, 9. [Google Scholar] [CrossRef]
- Menghini, R.; Federici, M. MicroRNA 221/222 cluster kicks out Timp-3 to inflame the liver. EBioMedicine 2018, 37, 7–8. [Google Scholar] [CrossRef]
- Mikami, Y.; Philips, R.L.; Sciume, G.; Petermann, F.; Meylan, F.; Nagashima, H.; Yao, C.; Davis, F.P.; Brooks, S.R.; Sun, H.W.; et al. MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity 2021, 54, 514–525. [Google Scholar] [CrossRef]
- Gandhi, D.; Bhandari, S.; Mishra, S.; Rudrashetti, A.P.; Vetrivel, U.; Thimmulappa, R.K.; Rajasekaran, S. Forced expression of microRNA-221-3p exerts protective effects against manganese-induced cytotoxicity in human lung epithelial cells. Toxicology and applied pharmacology 2024, 485, 116904. [Google Scholar] [CrossRef]
- Sung, H.C.; Liu, C.W.; Hsiao, C.Y.; Lin, S.R.; Yu, I.S.; Lin, S.W.; Chiang, M.H.; Liang, C.J.; Pu, C.M.; Chen, Y.C.; et al. The effects of wild bitter gourd fruit extracts on ICAM-1 expression in pulmonary epithelial cells of C57BL/6J mice and microRNA-221/222 knockout mice: Involvement of the miR-221/-222/PI3K/AKT/NF-kappaB pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology 2018, 42, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Chen, Y.; Tan, J.; Dai, Y.; Mao, W.; Qin, G.; Ye, S.; Sun, J.; Yang, Z.; Chen, J. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascular pharmacology 2019, 116, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Yang, Q.; Zhou, Y.; Deng, H.; Zhu, Y.; Zhao, D.; Liu, F. MicroRNA-221 Modulates Airway Remodeling via the PI3K/AKT Pathway in OVA-Induced Chronic Murine Asthma. Frontiers in cell and developmental biology 2020, 8, 495. [Google Scholar] [CrossRef]
- Perry, M.M.; Baker, J.E.; Gibeon, D.S.; Adcock, I.M.; Chung, K.F. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. American journal of respiratory cell and molecular biology 2014, 50, 7–17. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, L.; Wei, X.; Dong, Z.; Liu, B.; Zhao, J.; Wang, L.; Xie, P.; Wang, Y.; Zhou, S. Inhibition of miR-221 alleviates LPS-induced acute lung injury via inactivation of SOCS1/NF-kappaB signaling pathway. Cell Cycle 2019, 18, 1893–1907. [Google Scholar] [CrossRef]
- Lustig, Y.; Barhod, E.; Ashwal-Fluss, R.; Gordin, R.; Shomron, N.; Baruch-Umansky, K.; Hemi, R.; Karasik, A.; Kanety, H. RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling. Diabetes 2014, 63, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Mysore, R.; Ortega, F.J.; Latorre, J.; Ahonen, M.; Savolainen-Peltonen, H.; Fischer-Posovszky, P.; Wabitsch, M.; Olkkonen, V.M.; Fernandez-Real, J.M.; Haridas, P.A.N. MicroRNA-221-3p Regulates Angiopoietin-Like 8 (ANGPTL8) Expression in Adipocytes. The Journal of clinical endocrinology and metabolism 2017, 102, 4001–4012. [Google Scholar] [CrossRef]
- Chu, M.; Zhao, Y.; Yu, S.; Hao, Y.; Zhang, P.; Feng, Y.; Zhang, H.; Ma, D.; Liu, J.; Cheng, M.; et al. MicroRNA-221 may be involved in lipid metabolism in mammary epithelial cells. The international journal of biochemistry & cell biology 2018, 97, 118–127. [Google Scholar] [CrossRef]
- Meerson, A.; Traurig, M.; Ossowski, V.; Fleming, J.M.; Mullins, M.; Baier, L.J. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-alpha. Diabetologia 2013, 56, 1971–1979. [Google Scholar] [CrossRef]
- Ahonen, M.A.; Asghar, M.Y.; Parviainen, S.J.; Liebisch, G.; Horing, M.; Leidenius, M.; Fischer-Posovszky, P.; Wabitsch, M.; Mikkola, T.S.; Tornquist, K.; et al. Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p. Biochimica et biophysica acta. Molecular and cell biology of lipids 2021, 1866, 158841. [Google Scholar] [CrossRef]
- Hu, K.; Liu, X.; Chang, H.; Zhang, Y.; Zhou, H.; Liu, L.; Zhang, X.; Jiao, Z.; Shen, B.; Zhang, Q. MicroRNA-221-3p Targets THBS1 to Promote Wound Healing in Diabetes. Diabetes, metabolic syndrome and obesity : targets and therapy 2023, 16, 2765–2777. [Google Scholar] [CrossRef]
- Hu, K.; Liu, L.; Tang, S.; Zhang, X.; Chang, H.; Chen, W.; Fan, T.; Zhang, L.; Shen, B.; Zhang, Q. MicroRNA-221-3p inhibits the inflammatory response of keratinocytes by regulating the DYRK1A/STAT3 signaling pathway to promote wound healing in diabetes. Communications biology 2024, 7, 300. [Google Scholar] [CrossRef]
- Robinson, C.L.; Zhang, L.; Schutz, L.F.; Totty, M.L.; Spicer, L.J. MicroRNA 221 expression in theca and granulosa cells: hormonal regulation and function. Journal of animal science 2018, 96, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Sokhi, U.K.; Bhutia, S.K.; Azab, B.; Su, Z.Z.; Sarkar, D.; Fisher, P.B. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 11948–11953. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
