Submitted:
17 September 2025
Posted:
28 October 2025
You are already at the latest version
Abstract
Diabetes mellitus (DM) continuous to be a global world health problem. The Athlas of the International DM Federation for 2023 estimated that 589 million adults (20-79 years) are living with DM and this number could increase to 853 million by 2050. The mortality induced by DM was estimated as up to 3,4 million deaths in 2023. Trends in age-standardized rates of DM-related complications have decreased in the last 15 years; however, a parallel reduction of the incidence of advanced chronic kidney disease (CKD) requiring renal replacement therapy (RRT) has not been observed. Diabetic kidney disease continues to be the first cause of end-stage renal disease worldwide. Until very recently, an integrated approach for the management of the patient with DM and CKD was based on an adequate style of life and nutritional measures associated with a combined treatment of one or various of five classes of drugs: 1) Angiotensin-Converting-Enzyme Inhibitors (ACEI) or Angiotensin II Receptor Blockers (AIIRB). 2) Sodium-glucose-transporter 2 (SGLT2) inhibitors. 3) Glucagon-like peptide-1 receptor agonists (GLP-1 RA). 4). An antagonist of type 1 Endothelin receptor with proved effect to reduce albuminuria and proteinuria. 5) The Mineralocorticoid Receptor antagonist (MRA) Finerenone has been recently tested in RCTs as a renoprotective agent. But, indeed, many new drugs of different therapeutic groups, - many of them proved not to DM management but for the treatment of obesity with or without DM, or HF management -, are now in development and may be added to the five classical pillars described before. These new drugs include other non-steroidal mineralocorticoid receptor antagonists, - Balcinrenone-; aldosterone synthase inhibitors, -Baxdrostat and Vicadrostat-, other GLP1-RA, - Tirzepatide, Survodutide, Retatrutide, Cagrilintide-; other endothelin receptor antagonists,- Zibotentan-; and soluble guanylate cyclase activators,-Avenciguat- . Strategies based on actions on gut microbiota or stem cell therapies will be introduced in the future. The new strategies suggest to combine some of these therapies in adequate personalised doses for an integrated management of patients with DM and CKD. All these measures may ideally be applied in an approach that includes different especialists, patients and health providers, in the context of multidisciplinar teams. Perhaps in the next step we should be able to “fold the curve”, to stop the progression to ESRD and the CV damage in the patients with DM, allowing definitively to decrease DM as the first cause of advaced CKD.
Keywords:
Introduction
Author Contributions
Funding
Conflict of Interest
References
- NCD Risk Factor Collaboration (NCD.-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024 Nov; 404(10467): 2077–2093. [CrossRef]
- International Diabetes Federation. IDF Diabetes Athlas 2023 Report. . http://www.diabetesathlas.org.
- http:/www.pub.med.gov. Last consultation August 16th. 2025.
- REDYT Registro Español de Diálisis y Trasplante. Sociedad Española de Nefrología (S.E.N) y Organización Nacional de Trasplante (ONT). Nefrología 2025. http://www.senefro.org.5. ERA Registry Annual Report 2022 Incident patients accepted for KRT. Clin. Kidn. J. 2025;18(2):sfae405. [CrossRef]
- Montero N, Oliveras L, Martínez-Castelao A, Gorriz JL, Soler MJ, Fernández-Fernández B, et al. on behalf of GEENDIAB (Spanish Diabetic Nephropathy Study Group), Clinical Practice Guideline for detection and management of diabetic kidney disease: A consensus report by the Spanish Society of Nephrology Nefrologia (English Vrsion). 2025; 45 Supl 1:1-26.
- Sánchez-Álamo B, García-Iñigo FJ, Shabaka A, Acedo JM , Cases-Corona C, Domínguez-Torres P et al. Urinary Dickkopf-3: a new biomarker for CKD progression and mortality Nephrology Dialysis Transplantation 2021;36 (12);2199–2207. [CrossRef]
- Martínez-Castelao A, Hasegawa T, Fernández-Fernández B, Górriz JL et al. Proinflammatory cytokines in stage 3 chronic kidney disease patients. A study in the PROGRESER cohort.(Submitted).
- Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, The effect of angiotensin converting enzime inhibition on diabetic nephropathy. N Engl J Med 1993; 1456-1462.
- Lewis EJ, Hunsicker LG, Clark et al, for the Irbesartan Collaborative Study Group. Rernoprotective effect of of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851-860.
- Parving HH, Lehnert HH, Brochner-Mortensen J et al, for the irbeartan in Patients with type-2 dibetes and microalbuminuria study group. N Engl J Med 20901; 345(12): 870-878.
- Brenner BM, Cooper ME, De Zeeuw D et al for the RENAAL study group. Effects of Losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12):861-869.
- Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373: 2117–2128.
- Wanner C, Inzucchi SE, Lachin JM Empagliflozin and pro- gression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375 :323–34. [CrossRef]
- Mahaffey KW,Jardine MJ, Bompoint S, Cannon CP, Neal B, Heerspink HJL et al. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups: Results From the Randomized CREDENCE Trial.
- Circulation. 2019 Aug 27; 140(9): 739–750. Published online 2019 Jul 11. [CrossRef]
- Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Ph.D., Cahn A et al , for the DECLARE–TIMI 58 Investigtors. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019;380:347-357. [CrossRef]
- Mosenzon O, Wiviott SD, Heerspink HJL, Dwyer JP, Cahn A, Goodrich EL et al. The Effect of Dapagliflozin on Albuminuria in DECLARE-TIMI 58 Diabetes Care. 2021 Aug; 44(8): 1805–1815. Published online 2021 Aug 11. [CrossRef]
- Toyama T, Neuen BL, Jun M , Ohkuma T , Neal C, Jardine M . et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab. . 2019 May;21(5):1237-1250. Epub 2019 Mar 4. [CrossRef]
- Heerspink HL, Stefansson BV, Correa-Rotter R et al. For the DAPA-CKD trial Committees and investigators. Dapagliflozin in patients with chronic kidney disease. NEJM.org. N Engl J Med 2020;383:1436-46. [CrossRef]
- Zheng Y, Sun J . Long-term effect of sodium–glucose cotransporter 2 inhibitors in kidney functions: A systematic review and meta-analysis. Medicine (Baltimore) 2025 Feb 14;104 (7): e41422. [CrossRef]
- P, Tunnicliffe DJ, Tadashi T, Palmer SC, Valeria M, Saglimbene VM et al. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors for people with chronic kidney disease and diabetes. Cochrane Database Syst Rev. 2024 May 21; 2024(5):CD015588. [CrossRef]
- Bergman NC, Davies MJ, Lingvay I , Knop FK. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes Metab 2022 Oct 18;25(1):18–35. [CrossRef]
- Jastreboff M, Le Roux CW., Stefanski A, Aronne LJ, Halpern B. https://orcid.org/0000-03-5065, Sean Wharton S et al., for the SURMOUNT-1 Investigators. . Tirzepatide for Obesity Treatment and Diabetes Prevention. N Engl J Med 2025; 392: 958-971. [CrossRef]
- Davies MJ, Bajaj HS, Broholm C, Eliasen A, Garvey T, Le Roux CW et al. Cagrilintide–Semaglutide im adults wirh overweight or obesity and type 2 diabetes. N Engl J Med 2025; 393:648-59. [CrossRef]
- Muskiet M., Tonneijck L., Huang Y., Liu M., Saremi A., Heerspink H.J.L., et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: An exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6:859–869. [CrossRef]
- Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB et al. , EXSCEL Study Group Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes N Engl J Med. 2017 Sep 28; 377(13): 1228–1239. Published online 2017 Sep 14. [CrossRef]
- Davies M.J., Bain S.C., Atkin S.L., Rossing P., Scott D., Shamkhalova M.S., Bosch-Traberg H., Syrén A., Umpierrez G.E. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diabetes Care. 2015; 39:222–230. [CrossRef]
- Marso SP, Bain SC, Consoli A, Eliaschewitz FE, Jódar E, Leiter LA, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016; 375:1834-1844. [CrossRef]
- Gerstein H.C., Colhoun H.M., Dagenais G.R., Diaz R., Lakshmanan M., Pais P., Probstfield J., Riesmeyer J.S., Riddle M.C., Rydén L., et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–130. [CrossRef]
- Tuttle K.R., Lakshmanan M.C., Rayner B., Busch R.S., Zimmermann A.G., Woodward D.B., Botros F.T. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6:605–617. [CrossRef]
- Mahaffey KW, Tuttle KR , Arici M , Baeres FMM , Bakris G , Charytan DM , on behalf of the FLOW Trial. Cardiovascular outcomes with semaglutide by severity of chronic kidney disease in type 2 diabetes: the FLOW trial. Eur Heart J. 2024 Aug 30;46 (12):1096–1108. [CrossRef]
- Waijer SW, Gansevoort RT, Bakris GL, Correa-Rotter R, Hou FF, Kohan DE et al. , The Effect of Atrasentan on Kidney and Heart Failure Outcomes by Baseline Albuminuria and Kidney Function: A Post Hoc Analysis of the SONAR Randomized Trial. Clin J Am Soc Nephrol. 2021 Dec; 16(12): 1824–1832. Published online 2021.
- Bakris GL, Agarwal R, Anke SD, Pitt B, Ruilope LM., Rossing P et al. for the FIDELIO-DKD Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med 2020;383:2219-2229. [CrossRef]
- Ruilope LM, Pitt B, Anker SD, Rossing P, Kovesdy CP, Pecoits-Filho R, et al. Kidney outcomes with finerenone: an analysis from the FIGARO-DKD study. Nephrol Dial Transplant . 2023 Feb 13;38(2):372-383. [CrossRef]
- Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph P et al. FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022 Feb 10;43(6):474-484. [CrossRef]
- Agarwal R, Green J, Heerspink HJL, Mann JFE, McGill JB, Mottl AK et al. Finerenone with empagliflozin in chronic kidney disease and type 2 diabetes, N Egl J Med 2025; 393 (6): 533-543.
- de Boer IH, Khunti K, Sadusky T, Tuttle KR, Neumiller JJ, Rhee CM et al. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care. 2022 Dec 1;45(12):3075-3090. [CrossRef]
- American Diabetes Association. ADA standards of Medic Care care in Diabetes—2022 Abridged for Primary Care Providers. Clin Diabetes 2022;40(1):10–38. [CrossRef]
- American Diabetes Association Professional Practice Committee. Summary of revisions: Standards of Care in Diabetes—2025. Diabetes Care 2025;48 (Suppl. 1):S6–S13.DM and DKD.
- Martínez-Castelao A. Diabetes Mellitus and Diabetic Kidney Disease: The Future Is Already Here. J. Clin. Med. 2023;12: 2914-17 doi.org/10.3390/jcm120822914.
- Lam CSP, Køber L, Kuwahara K, Lund LH, Mark PB, Mellbin LG, et al. MIRACLE Study Investigators. Balcinrenone plus dapagliflozin in patients with heart failure and chronic kidney disease: Results from the phase 2b MIRACLE trial. Eur Heart F. 2024; Ag 26(8); 1727-1735. [CrossRef]
- Freeman MW, Halvorsen YD, Bond M, Murphy B, Isaacsohn J. Results from a Phase 1 Study Assessing the Pharmacokinetics of the Aldosterone SynthaseInhibitor Baxdrostat in Participants with Varying Degrees of Renal Function. Clin. Pharmacol Drug Dev 2024: Apr13(4); 410-418. [CrossRef]
- Judge PK, Tuttle KR, Staplin N, Hauske SJ, Zhu D, Sardell R, et al. The potential for improving cardio-renal outcomes in chronic kidney disease with the aldosterone synthase inhibitor vicadrostat (BI 690517): a rationale for the EASi-KIDNEY trial. Nephrol Dial Transplant. 2025 May 30;40(6):1175-1186. [CrossRef]
- Garg SK, Kaur G, Renner D, Lanning MS, Mason E, Beatson et al. Cardiovascular and Renal Biomarkers in Overweightand Obese Adults with Type 1 Diabetes Treated with Tirzepatide for 21 Months. Diabetes Technol. Ther. 2025; 27(3): 152-160. [CrossRef]
- Le Roux CW, Steen O, Lucas KJ , Startseva E, Unseld A, Hussain SA et al. . Subgroup analysis by sex and baseline BMI in peoplewith a BMI ≥27 kg/m in the phase 2 trial of survodutide, a glucagon/GLP-1 receptor dual agonist. Diabetes Obes Metab. 2925;Apr 27(4): 1773-1782. [CrossRef]
- Ma J, Hu X, Zhang W, Tao M, Wang M, Lu W. Comparison of the effects of Liraglutide, Tirzepatide,and Retatrutide on diabetic kidney disease in db/dbmice. Endocrine 2025; Jan 87(1): 159-169. [CrossRef]
- Heerspink HJL, Kiyosue A, Wheeler DC, Lin M, Wijkmark E, Carlson G et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet. 2023 Nov 25;402(10416):2004-2017. Epub 2023 Nov 3. [CrossRef]
- Heerspink HJL , Cherney D, Halim A, Gafor A, Górriz JL, Pergola PE, et al. Effect of Avenciguat on Albuminuria in Patients with CKD: Two Randomized Placebo-Controlled Trials. J Am Soc Nephrol 2025; May 25;35(9):1227-1239. [CrossRef]
- Martínez-Castelao A, Soler MJ, Górriz Teruel JL, Navarro-González JF, Fernandez-Fernádez B, de Alvaro Moreno F, et al. Optimizing the timing of nephrologhy referral for patients with diabetic kidney disease. Clin Kidney J. 2020 Aug 5;14(1):5-8. [CrossRef]
| Name of Study and Authors | Drug | Study Type | N Patients | Patient Type | Results |
| RAAS Blockers | |||||
| Captopril trial, Lewis EJ et el [9] | Captopril vs placebo |
Ph III RCT | 409 (207 capt, 202 plac) | T1D | 50% decrease combined 1EP( x2 sCreat, dialysis,renal transpl). |
| IRMA II, Parving HH et al [10] | Irbesartan vs plac |
Ph III RCT | 590 | T2D | I End point HR 0,30, p< 0.001 |
| IDNT, Lewis EJ et al [11] | Irbesartan vs amlodipin vs plac |
Ph III RCT | 1715 | T2D | x2 sCreat decrease 21% vs 24% (vs plac p<0.03, vs amlodip < 0.05) |
| RENAAL, Brenner BM et al [12] | Losartan Vs plac |
Ph III RCT | 1513 | T2D | x2 sCreat decrease 16%(p=0.006), dcase ESRD 28% /(p=0,02), deceae protª 35% (p=0,001) |
| SGLT2 Inhibitors | |||||
| EMPA-REG, Zinman B et al [13] | Empagliflozin vs plac | PhIII RCT | 7028 (empa 10 mg N=2345, empa 25 mg (n=2342, plac (n=2333) | T2D | 1EP combined decreased 10,5% vs 12,1%, RR 0,86, p<0.001 |
| EMPA REG OTCOME Wanner C et al [14] | Empagliflozin vs plac | PhIII RCT | 7028 (empa 10 mg N=2345, empa 25 mg (n=2342, plac (n=2333) | T2D | Incident worsening nephropathy occurred in 12,2% in empag group vs 18,8% in plac goup (HR 0,61 p<0.001). x2 sCreat ocurred in 1,5% vs 2,6% (44% RR reduction). Renal Replacement Therapy was initiated in 0,3% (empa group) vs 0,6% (plac group) (RR 55% reuction).No differences in incident Albª. |
| CREDENCE trial, Mahaffey et al [15] | Canagliflozin vs plac | PhIII RCT | 4431 T2D | T2D | 1ºEP decrease MACE RR 0,80 (p=0.01), primary EP RR 0,68 (p=0.01) Second EP RR 0.85 (p=0.25). → Decrease MACE and kidney failure |
| DECLARE, Wiviot SD et al. [16] | Dapagliflozin vs plac | PhIIIRCT | 17160 T2D |
T2D | MACE reduction HR 0.93 p=0.17, HF reduction 4,9% vs 5,8%, hospitalization HR 0.83, p=0.005. Renal event reduction 4,3 vs 5,6 HR 0.76. |
| DECLARE – TIMI, Mosenzon O et al. [17] | Dapagliflozin vs plac. | PhIII RCT | 16863 with albuminuria not CKD | T2D | Reduction of Albª and eGFR decline in all categories (p< 0.05). |
| Toyama et al. [18] | SGLT2 inh. vs plac. |
Metaanalysis 27 RCT | 7363 T2D + CKD | T2D | 1 EP composite renal outomes eGFR decline /dialysis/RTransplant decrease HR 0,71 (29%). |
| DAPA CKD, Heerspink HJL et al [19] | Dapagliflozin vs plac | PhIII RCT | DM + CKD n=4304. DM= 1455 dapa, 1451 plac. |
T2D | 1EP composite =or>50% decline eGFR/ESKD/death→ 9,2% in dapagl, 14,5% in plac. RR 0.61, p< 0.001 |
| Zheng Y et al [20] |
Syst. Rev. & Metaanalysis (20 qualitative & 9 quantitative studies | RCT | 22313 treated with SGLT2 inh. vs plac. | T2D with CKD | Strong evidence for protective therapy for renal health |
| Natale P et al. [21] | Syst Rev | 53 RCT | 65241 SGLT2 inh. vs plac. | T2D with CKD | Decreased risk death (2 studies,RR 0,85-0.94). Renal events: decreased RR 0,70-0,89 in 2 studies with 12647 p; decreased RR 0.68-0.78 in 7 studes with 36380 patients. |
| GLP-1 R Agonists | |||||
| STEP 1 to 8 propramme. Bergman NC et al [22] | Review | 8 RCT | Semaglutide 2,4 mg sc /week N=1961 pat. |
Obesity without DM | At week 68, 14,9% (semagl. group) vs 17,4% (plac group) weight loss. |
| SURMOUNT-1, Jastreboff et al [23] | 2539 p | 2539 (1032 with Pre DM) | Obesity | At week 17, 1,3% in tirzepatide group vs 13,3 % in plac group developped T2D, HR 0.12, P< 0.001 |
|
| Davies MJ et al [24] | Cagrilintide - semaglutide vs plac | 1206 | Cagrilintide +semag (n=904), placebo (n=342) |
Obesity+T2D | At week 68, -13,7% (cagri+semagl) vs - 3,4% (plac) weight loss. |
| ELIXA Musquiet ME et al [25] | Lixisenatide vs plac | 6068 5978 microAlbª available |
Lixienatide 2250 lixisenatide vs 2191 plac. |
T2D | At week 108, % change in Albª: -1,69% in normoAlbª (p 0.73); -21,1% in microAlbª (p0.05) and – 39,18 % in macroprotª (p= 0.007) |
| EXSCEL Holman HH [26] | Exenatide 2 mg/sc/w vs plac | N=14752 (10782 with previous CV disease) |
T2D | Primary composite outcome event occurred in 11.4% in the exenatide group and in 12.2% in the placebo group (HR 0.91). Exenatide was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P = 0.06 for superiority). The rates of death from cardiovascular causes, hospitalization for heart failure, and hospitalization for acute coronary síndrome and serious adverse events did not differ significantly between the two groups | |
| LIRA RENAL Davies MJ [27] | Lixienatide vs plac | Ph III RCT | Lixisenatide sc n= 279 | T2D + CKD |
Weight loss -2.41 kbw vs -1,09 (p< 0.0052). No changes in renal function. |
| LEADER, Marso SP et al [28] | Liraglutide vs plac | Ph III RCT | N= 94340, Liraglutide (4668) vs plac (n=4672) | T2D | 1ºEP comps 13% vs 14,9%, RR 0,87 p< 0.001. Death from CV causes 4,7 vs 6% (RR 0.78, p00.007); deaths from any cause 8,2 vs 9,6 %, RR0.85, p= 0.02 |
| REWIND Gerstain HC et al [29] | PhIII RCT | Dulaglutide 1,5 mg sc/w. Dukagl n) 4949 vs plac (n=4952) | T2D with pevious CV risk factors | 1 composite EP 12% vs 13,4 % HR 0,88 p 0.026. No differentcies on mortality rate. | |
| AWARD Tuttle K et al [30] | Dulaglutide vs isuulin glargine | PhIII RCT | Dulaglutide n=577, 1,5 mg sc/w, dulag 0,75 mg sc/w vs insulin glargine | T2D + CKD | At 52 w: eGFR dulaglutide groups : 34 mL/min/1,73m2; eGFR in insulin glargine 31 mL/min/1,73m2 (<0.005). UACR and glucose control without fferences between groups. |
| FLOW Mahaffy et al [31] | Semaglutide 1 mg sc/week x 52 w | Ph III RCT | N=3533 KDIGO low risk (n=242 p), high risk (n=878 p), very high risk (n=2412) |
T2D + CKD | Decrease in CV death/mioc infart c/stroke 18% in tsemaglutide patients, regardless of baseline CKD severity. |
| Endothelin A Receptor antagonists | |||||
| SONAR Waijer et al [32] | Atrasentan 1 mg/d vs plac | Ph III RCT | Initial Ph n= 5117; enrichment ph n= 3668 p | T2D + CKD | 1EP decrease RH 0.71, highest benefit in patients with higher UACR and lower eGFR . High risk of hospitalization fr HF aceross ll categories of AUCR and eGFR.at baselipne |
| Mineralocorticoid Receptor Antagonists | |||||
| FIDELIO DKD, Bakris G et al [33] | Finerenone vs plac | PhIII RCT | N= 5734, 2833 finerenone, 2841 plac. | T2D + CKD | 1 EP combined 17,8% vs 21,1% HR 0,86, p0.001; Second EP kidney failure/sustained decrease eGFR/death renal cause) 13% vs 14,8% HR 0,86 p=0.03 |
| FIGARO Ruilope JM et al [34] | Finernone vs plac | RCT | 7352 | T2D + CKD | Higher effects on the eGFR decrease <57% cin¡mpsite 1EP HR 0.77 p=0.041, 36% risk reduction for ESRD |
| FIDELITY Agarwall R et al [35] | Finerenone vs plac | Pool analysis 2 RCT | N=6519 finerenone N=6507 plac |
T2D + CKD | Comp 1 EP CV outcome 12,7 % vs 14,4 %, HR0.86, p=0.00018. Composite kdney outcomes: 5,5% vs 7,1%, HR 077, p=0.0002 |
| Agarwall R et al [36] | Finerenone 10 mg/d, empagliflozin 10 mg/d, or combined finerenone + empagliflozin | PhIII RCT | Finerenone n= 258 p; empagliflozin n=261 p, combined t n=265 p | T2D + CKD | At day 180, the reduction in the UATC ratio with combination therapy was 29% greater than that with finerenone alone ( HR 0.71; P<0.001) and 32% greater than that with empagliflozin alone ( 0.68; P<0.001 |
| Name of study and authors | Drug | Study type | N patients | Patient type | Results |
| Mineralocoticoid Receptor Antagonists | |||||
| MIRACLE, Lam CSP et al [41] | Balcinrenone (10,50 or 150 mg/d) + Dapagliflozin 10 mg/d Vs Dapag 10 g/d + plac. |
PhII RCT | 166 planned, not achieved | CKD + symptomatic HF | -Stopped early because of low recruitment. -No specific response relationship dose-dependent incrases in s K. - No UACR decrease t 12 weeks. |
| Aldosterone-Synthase Inhibitors | |||||
| Freeman MW et al [42] | Baldrostat 10 mg/d by 7 days | Ph I pharmacokinetic study | N= 32 | CDK diverse degrees | Renal impairment had no significant impact on systemic exposure or clearance of baxdrostat. Dose adjustment due to PK differences in patients with kidney disease is probably not necessary. |
| EASi KIDNEY, Judge PK et al [43] | Vicadrostat 10 mg/d (+ RAAS inh + empagliflozin 10 mg/d) vs plac | Ph III Runnning st. |
Stratum 1: 4800 p. Stratum 2; 6200 p. Follow-up 3 y. |
CKD | 1070 outcomes are expected in 3 years in each group.. 1 EP:composite kidney progression and 2EP Composite CV death/HF hospitalization |
| GLP-1 R Agonists | |||||
| Garg SK et al [44] | Tirzepatide vs controls |
Retrospective Ph IV | T1D n=84 Controls n= 38 |
T1D + BMI =or> 27 kbw/1,73 m2 | Tirzepatide treated patients significantly losed more weight (-59 ± 4.6 lbs [-23.4%]) compared with a gain of (+1.7 ± 5.0 lbs [+1.8%]) in controls over 21 months. The HbA1c decreased more in group than controls (-0.50 ± 0.07% and -0.24 ± 0.09%, respectively, P = 0.017).Tirzepatide significantly improved total and low-density lipoprotein cholesterol, triglycerides, systolic blood pressure, and eGFR. The eGFR declined significantly in controls but not in the tirzepatide users |
| Le Roux et al [45] | Survodutide Sc 0,6/2,4/3,6/4,8 mg/w, dose escalating Vs plac |
Ph II | N= 387 | Overweight or obesity | In people with a BMI ≥27 kg/m2, survodutide significantly reduced body weight and waist circumference when compared with placebo, in prespecified subgroups based on sex and baseline BMI, and was tolerated at all doses tested. |
| Ma et al [46] |
10 nmol/kbw intraperitoneal injection of Liraglutide vs Tirzepatide vs Retatrutide |
Experimental T2D model | 10 Db/db mouse Per group |
Experimental db/db mouse | Retatrutide demonstrated superior effectiveness in reducing weight and improving renal function in db/db mice compared to Liraglutide and Tirzepatide. it markedly suppressed the expression of pro-inflammatory cytokines (TNF-α, caspase-1, and NLRP3) and pro-fibrotic factors (fibronectin, α-SMA, and collagen I) in the kidneys of mice. Retatrutide enhanced liver function, reduced triglyceride levels, cholesterol levels, low-density lipoprotein cholesterol, elevated high-density lipoprotein cholesterol, and increased the content of intestinal metabolite butyrate in db/db mice when compared to the other two drugs., Tirzepatide exhibited better effects on lowering blood glucose, weight loss, lipid reduction, and improvement of DKD compared to Liraglutide. |
| Endothelin A Receptor Antagonists | |||||
| ZENITH-CKD Heerspink HJL et al [47] | -Zibozentan 1,5 mg/d + Dapagliflozin 10 mg/d; -Zibot 0,25 mg/d + dapaglif 10 mg/d; -Dapagliflozin 10 mg/d + plac. |
PhIIb RCT | CKD (n= 449 zibot 1,5 + dapa); n=91 zibot 0.25 + dapa) N=177 dapa + plac |
CKD | At 12 w: UACR decrease -33,7% (p<0.001, in zibot 1,5 mg group); -27% (p=0.0022) in zibot 0.25 group, all groups vs dapa + plac. Fluid retention: 18% in zibot 1,5 mg; 9% in zibot 0,25 mg; 8% in dapa + plac. |
| Guanylate cyclase activators | |||||
| Heerspink JHL et al [48] | Avenciguat 1,2 or 3 mg/TID vs plac. | PhIII RCT, studies 1 and 2 Pooled analysis |
500 CKD patients, from whom DM=243 in study 1 and 27 in study 2. | CKD or CKD+T2D. | UACR in 10 h urine: decrease 15,5%(avenciguat 1mg), -13,2% (avenciguat 2mg) and -21,5% (avenciguat 3 mg)- UACR in first morning void urine: -19,4% (avenciguat 1mg), -15,5% (avenciguat 2 mg) and -21,4% (avenciguat 3 mg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
