Submitted:
24 October 2025
Posted:
24 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Cytotoxicity Induced by Series of Alkylating Agents
2.2. Preferred Specific Recognition of GSH Fluorescent Probes
2.3. Optimization of Imaging Conditions for Fluorescent Probes
2.4. Evaluation of Different Alkylating Agents on the Capacity of Intracellular GSH Depletion

2.5. Dose and Time-Dependent Depletion of Intracellular GSH by Alkylating Agent
2.6. Alkylating Agents Induce the Production of Reactive Oxygen Species
2.7. Evaluation of the Antagonistic Effect of Different Exogenous GSH Modulators
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Cell Culture
5.2. Cytotoxicity Assay
5.3. Fluorescent Probe Preferences
5.4. Optimization of Probe Incubation Concentration and Time
5.5. Fluorescence Analysis of Intracellular GSH Changes
5.6. Measurement of Reactive Oxygen Species Generation
5.7. Screening of Protective Drugs and Optimization of Conditions
5.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu K Y, Shang H M, Kong X Q, et al. A novel near-infrared fluorescent probe with a large Stokes shift for biothiol detection and application in in vitro and in vivo fluorescence imaging [J]. Journal of Materials Chemistry B, 2017, 5(21): 3836-41. [CrossRef]
- Niu L Y, Guan Y S, Chen Y Z, et al. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine [J]. Journal of the American Chemical Society, 2012, 134(46): 18928-31. [CrossRef]
- Zhang J, Ji X, Zhou J L, et al. Pyridinium substituted BODIPY as NIR fluorescent probe for simultaneous sensing of hydrogen sulphide/glutathione and cysteine/homocysteine [J]. Sensors and Actuators B-Chemical, 2018, 257: 1076-82. [CrossRef]
- Shi Y P, Pan Y, Zhang H, et al. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma [J]. Biosensors & Bioelectronics, 2014, 56: 39-45. [CrossRef]
- Liu J, Sun Y Q, Huo Y Y, et al. Simultaneous Fluorescence Sensing of Cys and GSH from Different Emission Channels [J]. Journal of the American Chemical Society, 2014, 136(2): 574-7. [CrossRef]
- Niu B Y, Liao K X, Zhou Y X, et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy [J]. Biomaterials, 2021, 277. [CrossRef]
- Balendiran G K, Dabur R, Fraser D. The role of glutathione in cancer [J]. Cell Biochemistry and Function, 2004, 22(6): 343-52. [CrossRef]
- Fierro S, Yoshikawa M, Nagano O, et al. In vivo assessment of cancerous tumors using boron doped diamond microelectrode [J]. Scientific Reports, 2012, 2: 901. [CrossRef]
- Wu G Y, Fang Y Z, Yang S, et al. Glutathione metabolism and its implications for health [J]. Journal of Nutrition, 2004, 134(3): 489-92. [CrossRef]
- Franco R, Schoneveld O J, Pappa A, et al. The central role of glutathione in the pathophysiology of human diseases [J]. Archives of Physiology and Biochemistry, 2007, 113(4-5): 234-58. [CrossRef]
- Mahmoudabad A B Z, Saberi M, Pirzad J. Critical role of GSH in sulfur mustard-induced oxidative stress and cytotoxicity in human skin fibroblast cell line [J]. Iranian Journal of Pharmaceutical Research, 2008, 7(1): 35-41.
- Hou H, Li B F, Zhao X, et al. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice [J]. Food Chemistry, 2009, 115(3): 945-50. [CrossRef]
- Liu W J, Chen J, Qiao Q L, et al. A TICS-fluorophore based probe for dual-color GSH imaging [J]. Chinese Chemical Letters, 2022, 33(11): 4943-7. [CrossRef]
- Monge M E, Martinefski M R, Bollini M, et al. UHPLC-HRMS-Based Analysis of S-Hydroxymethyl-Glutathione, GSH, and GSSG in Human Cells [J]. Methods in molecular biology 2023, 2675: 117-32. [CrossRef]
- De Mattia G, Bravi M C, Laurenti O, et al. Endothelial dysfunction and oxidative stress in type 1 and type 2 diabetic patients without clinical macrovascular complications [J]. Diabetes Research and Clinical Practice, 2008, 79(2): 337-42. [CrossRef]
- Lorincz T, Szarka A. The determination of hepatic glutathione at tissue and subcellular level [J]. Journal of Pharmacological and Toxicological Methods, 2017, 88: 32-9. [CrossRef]
- Xie J W, Cheng D, Li P P, et al. Au/Metal-Organic Framework Nanocapsules for Electrochemical Determination of Glutathione [J]. Acs Applied Nano Materials, 2021, 4(5): 4853-62. [CrossRef]
- Hodáková J, Preisler J, Foret F, et al. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection [J]. Journal of Chromatography A, 2015, 1391: 102-8. [CrossRef]
- Li M, Mao S F, Wang S Q, et al. Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide [J]. Science China-Chemistry, 2019, 62(1): 142-50. [CrossRef]
- Wang C Y, Gao Y, Hu S, et al. MnO2 coated Au nanoparticles advance SERS detection of cellular glutathione [J]. Biosensors & Bioelectronics, 2022, 215: 114388. [CrossRef]
- Wei C H, Liu X, Gao Y, et al. Thiol-Disulfide Exchange Reaction for Cellular Glutathione Detection with Surface-Enhanced Raman Scattering [J]. Analytical Chemistry, 2018, 90(19): 11333-9. [CrossRef]
- Rahman I, Kode A, Biswas S K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method [J]. Nature Protocols, 2006, 1(6): 3159-65. [CrossRef]
- Giustarini D, Dalle-Donne I, Milzani A, et al. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide [J]. Nature Protocols, 2013, 8(9): 1660-9. [CrossRef]
- Cheng D, Li P P, Xu Z J, et al. Signal On-Off Electrochemical Sensor for Glutathione Based on a AuCu-Decorated Zr-Containing Metal-Organic Framework via Solid-State Electrochemistry of Cuprous Chloride [J]. Acs Sensors, 2022, 7(8): 2465-74. [CrossRef]
- Zhu Y J, Wu J F, Wang K, et al. Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy [J]. Talanta, 2021, 224: 121852. [CrossRef]
- Fogel A I, Martin S E, Hasson S A. Application of Imaging-Based Assays in Microplate Formats for High-Content Screening [J]. Methods Mol Biol, 2016, 1439: 273-304. [CrossRef]
- Richter L H J, Beck A, Flockerzi V, et al. Cytotoxicity of new psychoactive substances and other drugs of abuse studied in human HepG2 cells using an adopted high content screening assay [J]. Toxicology Letters, 2019, 301: 79-89. [CrossRef]
- Kim J, Gong Y X, Jeong E M. Measuring Glutathione Regeneration Capacity in Stem Cells [J]. International Journal of Stem Cells, 2023, 16(3): 356-62. [CrossRef]
- Saito J, Okamura A, Takeuchi K, et al. High content analysis assay for prediction of human hepatotoxicity in HepaRG and HepG2 cells [J]. Toxicology in Vitro, 2016, 33: 63-70. [CrossRef]
- Pohan G, Espinosa J A, Chen S, et al. Multiparametric High-Content Assays to Measure Cell Health and Oxidative Damage as a Model for Drug-Induced Liver Injury [J]. Current Protocols in Chemical Biology, 2020, 12(4): e90. [CrossRef]
- Jiang X Q, Chen J W, Bajic A, et al. Quantitative real-time imaging of glutathione [J]. Nature Communications, 2017, 8(1): 16087. [CrossRef]
- Chen J W, Jiang X Q, Zhang C W, et al. Reversible Reaction-Based Fluorescent Probe for Real-Time Imaging of Glutathione Dynamics in Mitochondria [J]. Acs Sensors, 2017, 2(9): 1257-61. [CrossRef]
- Neuwelt A, Wu J, Knap N, et al. Using Acetaminophen’s Toxicity Mechanism to Enhance Cisplatin Efficacy in Hepatocarcinoma and Hepatoblastoma Cell Lines [J]. Neoplasia, 2009, 11(10): 1003-11. [CrossRef]
- Sebastia J, Cristofol R, Martin M, et al. Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y [J]. Cytometry Part A : the journal of the International Society for Analytical Cytology, 2003, 51(1): 16-25. [CrossRef]
- Mangerich A, Debiak M, Birtel M, et al. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences [J]. Toxicology Letters, 2016, 244: 56-71. [CrossRef]
- Sawyer T W, McNeely K, Louis K, et al. Comparative toxicity of mono- and bifunctional alkylating homologues of sulphur mustard in human skin keratinocytes [J]. Toxicology, 2017, 382: 36-46. [CrossRef]
- Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 Rev. A.03 [Z]. Wallingford, CT. 2016.
- Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. J Chem Phys, 2010, 132(15): 154104. [CrossRef]
- Özgül C, Nazıroğlu M. TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion [J]. Physiology & Behavior, 2012, 106(2): 122-8. [CrossRef]
- Cui X, Mi T Y, Xiao X, et al. Topical glutathione amino acid precursors protect skin against environmental and oxidative stress [J]. Journal of the European Academy of Dermatology and Venereology, 2024, 38: 3-11. [CrossRef]
- Niu B Y, Zhou Y X, Liao K X, et al. “Pincer movement”: Reversing cisplatin resistance based on simultaneous glutathione depletion and glutathione S-transferases inhibition by redox-responsive degradable organosilica hybrid nanoparticles [J]. Acta Pharmaceutica Sinica B, 2022, 12(4): 2074-88. [CrossRef]
- O’Donovan D J, Katkin J P, Tamura T, et al. Gene transfer of mitochondrially targeted glutathione reductase protects H441 cells from t-butyl hydroperoxide-induced oxidant stresses [J]. American Journal of Respiratory Cell and Molecular Biology, 1999, 20(2): 256-63. [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).