Submitted:
08 December 2025
Posted:
09 December 2025
You are already at the latest version
Abstract
Keywords:
Introduction
The Hypermetabolic Phase of Sepsis
The Hypometabolic Phase of Sepsis
Hyperglycaemia
Hyperinsulinemia
Glucose Plus Insulin
The Pyruvate Dehydrogenase Complex
Thiamine
Summary
Conclusions
References
- Morrissey, R.; Lee, J.; Baral, N.; Tauseef, A.; Sood, A.; Mirza, M.; Jabbar, A.B.A. Demographic and regional trends of sepsis mortality in the United States, 1999–2022. BMC Infect. Dis. 2025, 25, 1–12. [Google Scholar] [CrossRef]
- Verma, A.A. Toward the Rigorous Evaluation of Early Warning Scores. JAMA Netw. Open 2024, 7, e2438966–e2438966. [Google Scholar] [CrossRef]
- Kvidera, S.; Horst, E.; Abuajamieh, M.; Mayorga, E.; Fernandez, M.S.; Baumgard, L. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef]
- Luna-Reyes, I.; Pérez-Hernández, E.G.; Delgado-Coello, B.; Ávila-Rodríguez, M.Á.; Mas-Oliva, J. Peptide VSAK maintains tissue glucose uptake and attenuates pro-inflammatory responses caused by LPS in an experimental model of the systemic inflammatory response syndrome: a PET study. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Preau, S.; Vodovar, D.; Jung, B.; Lancel, S.; Zafrani, L.; Flatres, A.; Oualha, M.; Voiriot, G.; Jouan, Y.; Joffre, J.; et al. Energetic dysfunction in sepsis: a narrative review. Ann. Intensiv. Care 2021, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, G.; Wang, X.; Liu, D. Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cell. Mol. Life Sci. 2022, 79, 1–15. [Google Scholar] [CrossRef]
- Zijlmans, W.C.; van Kempen, A.A.; Serlie, M.J.; Sauerwein, H.P. Glucose metabolism in children: influence of age, fasting, and infectious diseases. Metabolism 2009, 58, 1356–1365. [Google Scholar] [CrossRef]
- Zijlmans, W.C.; van Kempen, A.A.; Serlie, M.J.; Kager, P.A.; Sauerwein, H.P. Adaptation of glucose metabolism to fasting in young children with infectious diseases: a perspective. J. Pediatr. Endocrinol. Metab. 2014, 27, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Mandadzhiev, N. The contemporary role of lactate in exercise physiology and exercise prescription – a review of the literature. Folia Medica 2025, 67, e144693. [Google Scholar] [CrossRef]
- Nuyttens, L.; Heyerick, M.; Heremans, G.; Moens, E.; Roes, M.; Van Dender, C.; De Bus, L.; Decruyenaere, J.; Dewaele, J.; Vandewalle, J.; et al. Unraveling mitochondrial pyruvate dysfunction to mitigate hyperlactatemia and lethality in sepsis. Cell Rep. 2025, 44, 116032. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis—Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8. [Google Scholar] [CrossRef]
- Inghammar, M.; Sunden-Cullberg, J. Prognostic significance of body temperature in the emergency department vs the ICU in Patients with severe sepsis or septic shock: A nationwide cohort study. PLOS ONE 2020, 15, e0243990. [Google Scholar] [CrossRef]
- Greco, E.; Arulkumaran, N.; Dyson, A.; Singer, M. Mitochondrial uncoupling contributes to fever in sepsis. Intensiv. Care Med. Exp. 2014, 2, 1–2. [Google Scholar] [CrossRef]
- Guimarães, N.C.; Alves, D.S.; Vilela, W.R.; De-Souza-Ferreira, E.; Gomes, B.R.; Ott, D.; Murgott, J.; de Souza, P.E.N.; de Sousa, M.V.; Galina, A.; et al. Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain, Behav. Immun. 2021, 92, 90–101. [Google Scholar] [CrossRef]
- Wasyluk, W; Zwolak, A. Metabolic Alterations in Sepsis. J Clin Med 2021, 10, 2412. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, B.; Yavari, R.; Badalzadeh, R.; Mahmoodpoor, A. An Overview on Mitochondrial-Based Therapies in Sepsis-Related Myocardial Dysfunction: Mitochondrial Transplantation as a Promising Approach. Can. J. Infect. Dis. Med Microbiol. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Sharma, A.; Davis, A.; Shekhawat, P.S. Hypoglycemia in the preterm neonate: etiopathogenesis, diagnosis, management and long-term outcomes. Transl. Pediatr. 2017, 6, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.S.; Carcillo, J.A.; Linde-Zwirble, W.T.; Clermont, G.; Lidicker, J.; Angus, D.C. The Epidemiology of Severe Sepsis in Children in the United States. Am. J. Respir. Crit. Care Med. 2003, 167, 695–701. [Google Scholar] [CrossRef]
- Li, L.; Sunderland, N.; Rathnayake, K.; Westbrook, J. Sepsis epidemiology in Australian Public Hospitals, a nationwide longitudinal study (2013-2018). Infect. Dis. Heal. 2021, 26, S9. [Google Scholar] [CrossRef]
- Joachim, R.B.; Altschuler, G.M.; Hutchinson, J.N.; Wong, H.R.; A Hide, W.; Kobzik, L. The relative resistance of children to sepsis mortality: from pathways to drug candidates. Mol. Syst. Biol. 2018, 14, e7998. [Google Scholar] [CrossRef]
- Bier, D; Leake, R; Haymond, M; Arnold, K; Gruenke, L; Sperling, M; Kipnis, D. Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes 1977, 26(11), 1016–23. [Google Scholar] [CrossRef] [PubMed]
- Kuzawa, C.W.; Chugani, H.T.; Grossman, L.I.; Lipovich, L.; Muzik, O.; Hof, P.R.; Wildman, D.E.; Sherwood, C.C.; Leonard, W.R.; Lange, N. Metabolic costs and evolutionary implications of human brain development. Proc. Natl. Acad. Sci. 2014, 111, 13010–13015. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, A; Metcalf, B; Hosking, J; Streeter, A; Voss, L; Wilkin, T. Age Before Stage: Insulin Resistance Rises Before the Onset of Puberty. Diabetes Care 2012, 35, 536–41. [Google Scholar] [CrossRef]
- Amiel, S.A.; Sherwin, R.S.; Simonson, D.C.; Lauritano, A.A.; Tamborlane, W.V. Impaired Insulin Action in Puberty. New Engl. J. Med. 1986, 315, 215–219. [Google Scholar] [CrossRef]
- Drewry, A.M.M.; Mohr, N.M.; Ablordeppey, E.A.; Dalton, C.M.B.; Doctor, R.J.B.; Fuller, B.M.M.; Kollef, M.H.; Hotchkiss, R.S. Therapeutic Hyperthermia Is Associated With Improved Survival in Afebrile Critically Ill Patients With Sepsis: A Pilot Randomized Trial. Crit. Care Med. 2022, 50, 924–934. [Google Scholar] [CrossRef]
- Nogi, M.; Kawakami, R.; Ishihara, S.; Hirai, K.; Nakada, Y.; Nakagawa, H.; Ueda, T.; Nishida, T.; Onoue, K.; Soeda, T.; et al. Low Insulin Is an Independent Predictor of All-Cause and Cardiovascular Death in Acute Decompensated Heart Failure Patients Without Diabetes Mellitus. J. Am. Hear. Assoc. 2020, 9, e015393. [Google Scholar] [CrossRef]
- Levenbrown, Y.; Penfil, S.; Rodriguez, E.; Zhu, Y.; Hossain, J.; Bhat, A.M.; Hesek, A.; O’Neil, K.B.; Tobin, K.; Shaffer, T.H. Use of insulin to decrease septic shock-induced myocardial depression in a porcine model. Inflammation 2013, 36, 1494–502. [Google Scholar] [CrossRef]
- Robinson, M.M.; Soop, M.; Sohn, T.S.; Morse, D.M.; Schimke, J.M.; Klaus, K.A.; Nair, K.S. High Insulin Combined With Essential Amino Acids Stimulates Skeletal Muscle Mitochondrial Protein Synthesis While Decreasing Insulin Sensitivity in Healthy Humans. J. Clin. Endocrinol. Metab. 2014, 99, E2574–E2583. [Google Scholar] [CrossRef]
- Karwi, Q.G.; Wagg, C.S.; Altamimi, T.R.; Uddin, G.M.; Ho, K.L.; Darwesh, A.M.; Seubert, J.M.; Lopaschuk, G.D. Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovasc. Diabetol. 2020, 19, 1–14. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; Chen, Y.; Wang, T.; Zeng, Q. Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury. Exp. Ther. Med. 2018, 15, 3967–3975. [Google Scholar] [CrossRef] [PubMed]
- Rusavy, Z.; Sramek, V.; Lacigova, S.; Novak, I.; Tesinsky, P.; A Macdonald, I. Influence of insulin on glucose metabolism and energy expenditure in septic patients. Crit. Care 2004, 8, R213–20. [Google Scholar] [CrossRef] [PubMed]
- Holger, J.S.; Dries, D.J.; Barringer, K.W.; Peake, B.J.; Flottemesch, T.J.; Marini, J.J. Cardiovascular and Metabolic Effects of High-dose Insulin in a Porcine Septic Shock Model. Acad. Emerg. Med. 2010, 17, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Woodske, M.E.; Yokoe, T.; Zou, B.; Romano, L.C.B.; Rosa, T.C.B.; Garcia-Ocana, A.; Alonso, L.C.; O’dOnnell, C.P.; McVerry, B.J. Hyperinsulinemia predicts survival in a hyperglycemic mouse model of critical illness*. Crit. Care Med. 2009, 37, 2596–2603. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Kulp, G.A.; Kraft, R.; Finnerty, C.C.; Mlcak, R.; Lee, J.O.; Herndon, D.N. Intensive Insulin Therapy in Severely Burned Pediatric Patients. Am. J. Respir. Crit. Care Med. 2010, 182, 351–359. [Google Scholar] [CrossRef]
- Gauglitz, G.G.; Toliver-Kinsky, T.E.; Williams, F.N.; Song, J.; Cui, W.; Herndon, D.N.; Jeschke, M.G. Insulin increases resistance to burn wound infection-associated sepsis. Crit. Care Med. 2010, 38, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.; Merante, F.; Weisel, R.D.; Shirai, T.; Ikonomidis, J.S.; Cohen, G.; Tumiati, L.C.; Shiono, N.; Li, R.-K.; Mickle, D.A.; et al. Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. J. Thorac. Cardiovasc. Surg. 1998, 116, 485–494. [Google Scholar] [CrossRef]
- Lu, G.; Cui, P.; Lu, Z.; Zhang, L.; Kissoon, N. Insulin Control of Blood Glucose and GLUT4 Expression in the Skeletal Muscle of Septic Rats. West Indian Med J. 2015, 64, 62–70. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Baek, M.S.; Kim, Y.S.; Seo, J.; Huh, J.W.; Lim, C.-M.; Koh, Y.; Hong, S.-B. Glucose-insulin-potassium correlates with hemodynamic improvement in patients with septic myocardial dysfunction. J. Thorac. Dis. 2016, 8, 3648–3657. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, Q.; Mao, L.; Wu, J.; An, S.; Chen, Z.; Zhang, W. The Pyruvate Dehydrogenase Complex in Sepsis: Metabolic Regulation and Targeted Therapy. Front. Nutr. 2021, 8, 783164. [Google Scholar] [CrossRef]
- Shimada, B.K.; Boyman, L.; Huang, W.; Zhu, J.; Yang, Y.; Chen, F.; Kane, M.A.; Yadava, N.; Zou, L.; Lederer, W.J.; et al. Pyruvate-Driven Oxidative Phosphorylation is Downregulated in Sepsis-Induced Cardiomyopathy: A Study of Mitochondrial Proteome. Shock 2021, 57, 553–564. [Google Scholar] [CrossRef]
- Mainali, R.; Zabalawi, M.; Long, D.; Buechler, N.; Quillen, E.; Key, C.-C.; Zhu, X.; Parks, J.S.; Furdui, C.; Stacpoole, P.W.; et al. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. eLife 2021, 10. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Li, S.; Xu, F.; Zheng, X.; Huang, T.; Lyu, J.; Yin, H. Thiamine supplementation may be associated with improved prognosis in patients with sepsis. Br. J. Nutr. 2022, 130, 239–248. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Jo, E.-J.; Eom, J.S.; Mok, J.; Kim, M.-H.; Kim, K.U.; Park, H.-K.; Lee, M.K.; Lee, K. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J. Crit. Care 2018, 47, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Ryoo, S.M.; Park, J.E.; Jo, Y.H.; Jang, D.-H.; Suh, G.J.; Kim, T.; Kim, Y.-J.; Kim, S.; Cho, H.; et al. Combination therapy of vitamin C and thiamine for septic shock: a multi-centre, double-blinded randomized, controlled study. Intensiv. Care Med. 2020, 46, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P. THIAMINE AND HIGH DOSE INSULIN TREATMENT FOR SEPSIS. Central Asian J. Med Hypotheses Ethic- 2023, 4, 77–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
