Submitted:
15 October 2025
Posted:
16 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. C. trachomatis Interaction and Host Defence Factors
2.1. C. trachomatis Developmental Cycle
2.2. Cervicovaginal Defence Factors Towards C. trachomatis
2.2.1. Cervicovaginal Microbiota
2.2.1. Cervicovaginal Proteins with Anti-Chlamydial Activity
2.2.2. Immune Response
3. Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- World Health Organization. Sexually transmitted infections (STIs). (2022). Available online at: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(STIs) (accessed September 2025).
- European Centre for Disease Prevention and Control. Chlamydia. In: ECDC. Annual Epidemiological Report for 2023. Stockholm: ECDC; 2025 https://www.ecdc.europa.eu/sites/default/files/documents/CHLAM_AER_2023_Report.pdf.
- Akbari, E.; Milani, A.; Seyedinkhorasani. M.; Bolhassani, A. HPV co-infections with other pathogens in cancer development: A comprehensive review. J Med Virol. 2023, 95(11): e29236. [CrossRef]
- Ghasemian, E.; Harding-Esch, E.; Mabey, D.; Holland, M. J. When Bacteria and Viruses Collide: A Tale of Chlamydia trachomatis and Sexually Transmitted Viruses. Viruses. 2023, 15(9), 1954. [CrossRef]
- Adachi, K. N.; Nielsen-Saines, K.; Klausner, J. D. Chlamydia trachomatis Screening and Treatment in Pregnancy to Reduce Adverse Pregnancy and Neonatal Outcomes: A Review. Front Public health. 2021, 9, 531073. [Google Scholar] [CrossRef]
- He, W.; Jin, Y.; Zhu, H.; Zheng, Y.; Qian, J. Effect of Chlamydia trachomatis on adverse pregnancy outcomes: a meta-analysis. Arch Ggynecol obstet. 2020, 302, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.; Filardo, S.; Mattioli, R.; Bozzuto, G.; Molinari, A.; Mosca, L.; Sessa, R. Extra Virgin Olive Oil-Based Formulations: A “Green” Strategy against Chlamydia trachomatis. Int J Mol Sci. 2023, 24, 12701. [Google Scholar] [CrossRef]
- McCullough, A.; Huang, S.; Weber, M. M. Pathogenicity and virulence of Chlamydia trachomatis: Insights into host interactions, immune evasion, and intracellular survival. Virulence. 2025, 16. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; Romano, S.; Sessa, R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms. 2019, 7(5), 140. [Google Scholar] [CrossRef]
- Ouellette, S. P.; Fisher-Marvin, L. A.; Harpring, M.; Lee, J.; Rucks, E. A.; Cox, J. V. Localized cardiolipin synthesis is required for the assembly of MreB during the polarized cell division of Chlamydia trachomatis. PLOS Pathog. 2022, 18, e1010836. [Google Scholar] [CrossRef]
- Cox, J. V.; Abdelrahman, Y. M.; Ouellette, S. P. Penicillin-binding proteins regulate multiple steps in the polarized cell division process of Chlamydia. Sci Rep. 2020, 10, 12588. [Google Scholar] [CrossRef]
- Kozusnik, T.; Adams, S. E.; Greub, G. Aberrant Bodies: An Alternative Metabolic Homeostasis Allowing Survivability? Microorganisms. 2024, 12, 495. [Google Scholar] [CrossRef]
- Fasoulakis, Z.; Papageorgiou, D.; Papanikolaou, A.; Chatziioannou, M.; Sapantzoglou, I.; Pegkou, A.; Daskalakis, G.; Antsaklis, P. Impact of the Female Genital Microbiota on Outcomes of Assisted Reproductive Techniques. Biomedicines. 2025, 13, 1332. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Ala-Jaakkola, R.; Laitila, A.; Maukonen, J. Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Front Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G. M.; Koenig, S. S. K.; McCulle, S. L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C. O.; Brotman, R. M.; Davis, C. C.; Ault, K.; Peralta, L.; Forney, L. J. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci. USA. 2011, 108 (supplement_1), 4680–4687. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Guo, R.; Wang, J.; Zhou, W.; Ling, Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Linhares, I. M.; Summers, P. R.; Larsen, B.; Giraldo, P. C.; Witkin, S. S. Contemporary perspectives on vaginal pH and lactobacilli. Am J Obstet Gynecol. 2011, 204(2), 120.e1-120.e5. [CrossRef]
- O’Hanlon, D. E.; Moench, T. R.; Cone, R. A. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota. PLoS ONE. 2013, 8, e80074. [Google Scholar] [CrossRef] [PubMed]
- Peebles, K.; Velloza, J.; Balkus, J. E.; McClelland, R. S.; Barnabas, R. High Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Sex Transm Dis. 2019, 46, 304–311. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; Sessa, R. Cervicovaginal microbiota in Chlamydia trachomatis and other preventable sexually transmitted infections of public health importance: a systematic umbrella review. New Microbiol. 2025, 48, 5–13. [Google Scholar]
- Di Pietro, M.; Filardo, S.; Simonelli, I.; Pasqualetti, P.; Sessa, R. Cervicovaginal Microbiota Composition in Chlamydia trachomatis Infection: A Systematic Review and Meta-Analysis. Int. J Mol Scie. 2022, 23, 9554. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.; Yuan, H.; Chen, H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol. 2022, 12, 931653. [Google Scholar] [CrossRef]
- Pokorzynski, N. D.; Thompson, C. C.; Carabeo, R. A. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol. 2017, 7, 394. [Google Scholar] [CrossRef]
- Hand, E.; Hood-Pishchany, I.; Darville, T.; O’Connell, C. M. Influence of cervicovaginal microbiota on Chlamydia trachomatis infection dynamics. Microb Cell. 2025, 12, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Pokorzynski, N. D.; Brinkworth, A. J.; Carabeo, R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife. 2019, 8, e42295. [Google Scholar] [CrossRef]
- Borgogna, J.-L. C.; Shardell, M. D.; Yeoman, C. J.; Ghanem, K. G.; Kadriu, H.; Ulanov, A. V.; Gaydos, C. A.; Hardick, J.; Robinson, C. K.; Bavoil, P. M.; Ravel, J.; Brotman, R. M.; Tuddenham, S. The association of Chlamydia trachomatis and Mycoplasma genitalium infection with the vaginal metabolome. Sci Rep. 2020, 10, 3420. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Recuero-Checa, M. A.; Fan, F. Y.; Dean, D. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. Cell Microbiol. 2018, 20, e12801. [Google Scholar] [CrossRef] [PubMed]
- Morselli, S.; Ceccarani, C.; Djusse, M. E.; Laghi, L.; Camboni, T.; Consolandi, C.; Foschi, C.; Severgnini, M.; Marangoni, A. Anti-chlamydial activity of vaginal fluids: new evidence from an in vitro model. Front Cell Infect Microb. 2024, 14, 1403782. [Google Scholar] [CrossRef]
- Parolin, C.; Foschi, C.; Laghi, L.; Zhu, C.; Banzola, N.; Gaspari, V.; D'Antuono, A.; Giordani, B.; Severgnini, M.; Consolandi, C.; Salvo, M.; Cevenini, R.; Vitali, B.; Marangoni, A. Insights into Vaginal Bacterial Communities and Metabolic Profiles of Chlamydia trachomatis Infection: Positioning Between Eubiosis and Dysbiosis. Front Microbiol. 2018, 9, 600. [Google Scholar] [CrossRef]
- Filardo, S.; Di Pietro, M.; Tranquilli, G; Sessa, R. Biofilm in Genital Ecosystem: A Potential Risk Factor for Chlamydia trachomatis Infection. The Canadian journal of infectious diseases & Medical Microbiology. 2019, 1672109. [CrossRef]
- Gong, Z. , Luna, Y., Yu, P., & Fan, H. Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2. PLoS ONE. 2014, 9, e107758. [Google Scholar] [CrossRef]
- Edwards, V. L.; Smith, S. B.; McComb, E. J.; Tamarelle, J.; Ma, B.; Humphrys, M. S.; Gajer, P.; Gwilliam, K.; Schaefer, A. M.; Lai, S. K.; Terplan, M.; Mark, K. S.; Brotman, R. M.; Forney, L. J.; Bavoil, P. M.; Ravel, J. The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia Trachomatis Infection. MBio. 2019, 10. [Google Scholar] [CrossRef]
- Boskey, E. R.; Cone, R. A.; Whaley, K. J.; Moench, T. R. Origins of vaginal acidity: high d/l lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001, 16, 1809–1813. [Google Scholar] [CrossRef]
- Zalambani, C.; Rizzardi, N.; Marziali, G.; Foschi, C.; Morselli, S.; Djusse, M. E.; Naldi, M.; Fato, R.; Calonghi, N.; Marangoni, A. Role of D(−) -Lactic Acid in Prevention of Chlamydia trachomatis Infection in an In Vitro Model of HeLa Cells. Pathogens. 2023, 12, 883. [Google Scholar] [CrossRef]
- Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Mastromarino, P.; Biasucci, A. V.; Rosa, L.; Cutone, A.; Berlutti, F.; Paesano, R.; Valenti, P. Lactobacilli–lactoferrin interplay in Chlamydia trachomatis infection. Pathog Dis. 2017, 75. [Google Scholar] [CrossRef]
- Nardini, P.; Ñahui Palomino, R. A.; Parolin, C.; Laghi, L.; Foschi, C.; Cevenini, R.; Vitali, B.; Marangoni, A. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci Rep. 2016, 6, 29024. [Google Scholar] [CrossRef]
- Mastromarino, P.; Di Pietro, M.; Schiavoni, G.; Nardis, C.; Gentile, M.; Sessa, R. Effects of vaginal lactobacilli in Chlamydia trachomatis infection. Int J Med Microbiol. 2014, 304(5–6), 654–661. [CrossRef]
- Foschi, C.; Parolin, C.; Giordani, B.; Morselli, S.; Luppi, B.; Vitali, B.; Marangoni, A. Lactobacillus crispatus BC1 Biosurfactant Counteracts the Infectivity of Chlamydia trachomatis Elementary Bodies. Microorganisms. 2021, 9, 975. [Google Scholar] [CrossRef]
- Parolin, C.; Frisco, G.; Foschi, C.; Giordani, B.; Salvo, M.; Vitali, B.; Marangoni, A.; Calonghi, N. Lactobacillus crispatus BC5 Interferes With Chlamydia trachomatis Infectivity Through Integrin Modulation in Cervical Cells. Front Microbiol. 2018, 9, 2630. [Google Scholar] [CrossRef]
- Kim, J. W.; Lee, J. S.; Choi, Y. J.; & Kim, C. The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation. Biomolecules. 2025, 15(8), 1174. [CrossRef]
- Filardo, S.; Di Pietro, M.; Tranquilli, G.; Latino, M. A.; Recine, N.; Porpora, M. G.; Sessa, R. Selected Immunological Mediators and Cervical Microbial Signatures in Women with Chlamydia trachomatis Infection. MSystems. 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Spear, G. T.; Kendrick, S. R.; Chen, H. Y.; Thomas, T. T.; Bahk, M.; Balderas, R.; Ghosh, S.; Weinberg, A.; & Landay, A. L. Multiplex Immunoassay of Lower Genital Tract Mucosal Fluid from Women Attending an Urban STD Clinic Shows Broadly Increased IL1ß and Lactoferrin. PLoS ONE. 2011, 6(5), e19560. [CrossRef] [PubMed]
- Sawada, M.; Otsuki, K.; Mitsukawa, K.; Yakuwa, K.; Nagatsuka, M.; Okai, T. Cervical inflammatory cytokines and other markers in the cervical mucus of pregnant women with lower genital tract infection. Int J Gynaecol Obstet. 2006, 92(2), 117–121. [Google Scholar] [CrossRef]
- Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Rosa, L.; Cutone, A.; Frioni, A.; Berlutti, F.; Paesano, R.; Valenti, P. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem Cell Biol. 2017, 95, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.; Trybala, E.; Superti, F.; Johansson, M.; Bergström, T. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans. Virology. 2004, 318, 405–413. [Google Scholar] [CrossRef]
- Ji, Z. S.; Mahley, R. W. Lactoferrin binding to heparan sulfate proteoglycans and the LDL receptor-related protein. Further evidence supporting the importance of direct binding of remnant lipoproteins to HSPG. Arterioscler Thromb. 1994, 14, 2025–2031. [Google Scholar] [CrossRef]
- Stallmann, S.; Hegemann, J. H. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell Microbiol. 2016, 18(5), 761–775. [Google Scholar] [CrossRef]
- Donati, M.; di Leo, K.; Benincasa, M.; Cavrini, F. , Accardo, S. ; Moroni, A.; Gennaro, R.; Cevenini, R. Activity of Cathelicidin Peptides against Chlamydia spp. Antimicrob Agents Chemother. 2005, 49, 1201–1202. [Google Scholar] [CrossRef]
- Wilton, Z. E. R.; Jamus, A. N.; Core, S. B.; Frietze, K. M. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens. 2025, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, H. , Fang, C.; Li, Z. Insights into innate immune cell evasion by Chlamydia trachomatis. Front Immunol. 2024, 15. [Google Scholar] [CrossRef]
- Mao, H.; Dumas, E. K.; Starnbach, M. N. Chlamydia trachomatis impairs T cell priming by inducing dendritic cell death. Infect Immun. 2025, 93. [Google Scholar] [CrossRef]
- Guo, Y.; Stulz, S. v.; Kessie, D. K.; Vollmuth, N.; Torcellan, T.; Knobeloch, K.-P.; Gasteiger, G.; Rudel, T. Secreted ISG15 induced by Chlamydia trachomatis infection exerts immunomodulatory effects on IFN-γ defense and inflammation. PLOS Pathogens. 2025, 21, e1013315. [Google Scholar] [CrossRef] [PubMed]
- Reitano, J. R.; Coers, J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis. 2024, 82. [Google Scholar] [CrossRef]
- Vollmuth, N.; Schlicker, L.; Guo, Y.; Hovhannisyan, P.; Janaki-Raman, S.; Kurmasheva, N.; Schmitz, W.; Schulze, A.; Stelzner, K.; Rajeeve, K.; Rudel, T. C-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis. Elife. 2022, 11. [Google Scholar] [CrossRef]
- Challagundla, N.; Shah, D.; Dalai, S. K.; Agrawal-Rajput, R. IFN-γ insufficiency during mouse intra-vaginal Chlamydia trachomatis infection exacerbates alternative activation in macrophages with compromised CD40 functions. Int Immunopharmacol. 2024, 131, 111821. [Google Scholar] [CrossRef]
- Dong, M.; Dong, Y.; Bai, J.; Li, H.; Ma, X.; Li, B.; Wang, C.; Li, H.; Qi, W.; Wang, Y.; Fan, A.; Han, C.; Xue, F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol. 2023, 13, 1124591. [Google Scholar] [CrossRef]
- Raimondi, S.; Candeliere, F.; Amaretti, A.; Foschi, C.; Morselli, S.; Gaspari, V.; Rossi, M.; Marangoni, A. Vaginal and Anal Microbiome during Chlamydia trachomatis Infections. Pathogens. 2021, 10, 1347. [Google Scholar] [CrossRef]
- Ziklo, N.; Huston, W. M.; Taing, K.; Katouli, M.; & Timms, P. In vitro rescue of genital strains of Chlamydia trachomatis from interferon-γ and tryptophan depletion with indole-positive, but not indole-negative Prevotella spp. BMC Microbiol. 2016, 16(1), 286. [CrossRef]
- Walsh, S. C.; Reitano, J. R.; Dickinson, M. S.; Kutsch, M.; Hernandez, D.; Barnes, A. B.; Schott, B. H.; Wang, L.; Ko, D. C.; Kim, S. Y.; Valdivia, R. H.; Bastidas, R. J.; Coers, J. The bacterial effector GarD shields Chlamydia trachomatis inclusions from RNF213-mediated ubiquitylation and destruction. Cell host Microbe. 2022, 30, 1671–1684e9. [Google Scholar] [CrossRef] [PubMed]
- Sherrid, A. M.; Hybiske, K. Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells. Infect Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed]
- Zuck, M.; Ellis, T.; Venida, A.; Hybiske, K. Extrusions are phagocytosed and promote Chlamydia survival within macrophages. Cell Microbiol. 2017, 19, e12683. [Google Scholar] [CrossRef] [PubMed]
- Zuck, M.; Sherrid, A.; Suchland, R.; Ellis, T.; Hybiske, K. Conservation of extrusion as an exit mechanism for Chlamydia. Pathog Dis. 2016, 74, ftw093. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products refer ed to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
