Preprint
Article

This version is not peer-reviewed.

Round-Trip Mars Missions in the 2031 Window: Feasible and Extreme Scenarios Derived from CA21-Anchored Trajectories

Submitted:

19 October 2025

Posted:

24 October 2025

You are already at the latest version

Abstract
This study investigates round-trip Earth–Mars–Earth missions during the 2031 opposition, applying a trajectory design framework derived from the early orbital configuration of asteroid 2001 CA21. Using Lambert-based analysis and JPL Horizons ephemerides, two optimized and dynamically consistent mission architectures were identified: a rapid scenario featuring a 33-day outbound transfer, a 30-day surface stay, and a 90-day return (total ≈ 153 days), and a feasible scenario combining a 56-day outbound transfer, a 35-day surface stay, and a 135-day return (total ≈ 226 days). Both trajectories were validated through full ephemeris computation, confirming heliocentric coherence within the CA21-anchored orbital plane and physically realistic departure and arrival velocities. The 2031 alignment minimizes plane-change penalties and yields energetically balanced outbound and inbound arcs. These findings demonstrate that short-duration, reversible Earth–Mars missions can be designed from early asteroid-derived orbital templates, establishing a predictive framework for identifying future high-velocity transfer opportunities.
Keywords: 
;  ;  ;  ;  ;  ;  

1. Introduction

(Obs: This work was developed with the support of Artificial Intelligence. The author used the ChatGPT system (OpenAI, 2025) for computational verification and text-structuring assistance, under the author’s direct supervision. All physical insights, analyses, interpretations, conclusions, and theoretical innovations are attributable solely to the author.)
In recent years, the pursuit of faster interplanetary transfers has evolved from purely theoretical optimization toward data-driven trajectory synthesis. Building upon the methodology introduced in Astrodynamics Innovation: Leveraging an Asteroid’s Early Data for Faster Mars Transits [1], the present study extends the concept of asteroid-anchored dynamics to complete round-trip Earth–Mars mission profiles within the 2031 opposition window.
The earlier work demonstrated that the initial orbital solution of the near-Earth asteroid 2001 CA21 (JPL Solution #11, 2015) could serve as a natural geometric template for ultra-fast Mars transfers. By constraining Lambert-based transfer arcs to the orbital plane of CA21, two notable Earth-to-Mars trajectories were identified: a 56-day feasible baseline, requiring v , 16.9 ~ km / s and v , \ m a r s 16.6 ~ km / s , and a 33-day energetic case, geometrically valid but demanding C 3 758   k m 2 / s 2 , beyond current propulsion capabilities. These results established 2031 as a benchmark alignment for both near-term and aspirational rapid-transit missions.
In this extended analysis, the framework is expanded to compute the return trajectories from Mars to Earth using the same CA21-anchored constraints and high-precision JPL Horizons ephemerides [2,3]. The results reveal two internally consistent round-trip configurations:
-
The rapid scenario (33 + 30 + 90 days), departing Earth on April 20, 2031, arriving at Mars on May 23, departing Mars on June 22, and reaching Earth on September 20, 2031, for a total mission duration of ≈ 153 days. This trajectory represents a high-energy, short-way transfer pair with v , m a r s , d e p = 19.9   km / s and v , , a r r = 16.8   km / s .
-
The feasible scenario (56 + 35 + 135 days), departing Earth on April 20, 2031, arriving at Mars on June 15, departing Mars on July 20, and returning to Earth on December 2, 2031, for a total duration of ≈ 226 days, with moderate energies v , m a r s , d e p = 13.6   km / s   and v , , a r r = 15.1 km / s .
Both trajectories were rigorously validated through full ephemeris analysis, ensuring derivative consistency between position and velocity vectors. The shorter, high-energy mission defines the physical limit for near-term propulsion, while the longer case represents a technologically feasible baseline achievable with hybrid chemical or nuclear-thermal systems.
Together, these results establish the first closed and dynamically reversible Earth–Mars architecture derived from asteroid-based geometry. The outbound trajectories (33 and 56 days) delineate the forward energy frontier, while the return legs (90 and 135 days) confirm that the same CA21-anchored plane supports complete round-trip coherence. This dual validation — both mathematical and physical — positions 2031 as a singular benchmark for testing advanced interplanetary propulsion and mission design.
The following sections present the analytical framework, derivations, and mission-design results, establishing the 2031 window as both a feasible baseline for upcoming human or robotic Mars expeditions and an aspirational benchmark for next-generation propulsion technologies [11].

2. Analytical and Computational Framework

The determination of interplanetary trajectories in this study follows a two-phase structure: (1) the outbound leg (Earth → Mars), derived from the CA21-anchored solutions established previously; and (2) the return leg (Mars → Earth), newly computed in the same reference plane and validated against JPL Horizons ephemerides for 2031. This chapter presents the mathematical formulation, numerical implementation, and validation steps used to ensure physical consistency of both segments and the complete round-trip timelines.

2.1. Reference Frame and Initial Conditions

All calculations are in the heliocentric ecliptic J2000 frame. Planetary state vectors for Earth and Mars were obtained from the JPL Horizons system in heliocentric Cartesian form (J2000 ecliptic), sampled at 1-day intervals. The solar gravitational parameter adopted throughout was:
μ = 1.32712440018 × 10 11 k m 3 s - 2 .
The CA21-anchored plane is defined by the asteroid 2001 CA21 (JPL solution #11, 2015):
a = 1.6699 AU , e = 0.7769 , i = 4.97 , Ω = 46.44 , ω = 218.93 .
This orientation furnishes a geometric corridor intersecting Earth’s and Mars’ orbits, reducing plane-change penalties and constraining high-energy transfers, using standard astrodynamics formulations [4].

2.2. Lambert Problem Formulation

Outbound and return arcs are obtained with the universal-variable Lambert method [4] connecting r 1 at t 1 to r 2 at t 2 for a prescribed Δ t = t 2 t 1 :
Δ t = 1 μ χ 3 S z + A y , A = sin Δ ν r 1 r 2 1 cos Δ ν ,
y = r 1 + r 2 + A z S z 1 C z ,     v 1 = 1 g r 2 f , r 1 , v 2 = g ˙ , r 2 r 1 g ,
with
f = 1 y r 1 , g = A y μ , g ˙ = 1 y r 2 ,
and Stumpff functions C ( z ) and S ( z ) in their standard elliptic, parabolic, and hyperbolic forms. The Lambert solution was verified numerically [5].
In this approach, the Lambert solver operates in three dimensions, but the trajectory is constrained such that the normal vector of the transfer plane remains within 5 ° of the CA21 orbital-plane normal. This is achieved by iteratively adjusting the initial and final position vectors (r₁, r₂) through projection onto the CA21 plane until the plane offset criterion is satisfied. This ensures that both departure and arrival geometry remain consistent with the asteroid’s 2015 orbital solution (JPL #11), effectively minimizing the required out-of-plane ΔV.

2.3. Computational Implementation

We used a high-precision Python implementation (tolerance 10 10 ) and direct interpolation of Horizons vectors, r E t   a n d r M t , for sub-day accuracy. For each candidate date pair:
-
departure/arrival heliocentric velocities v 1   a n d   v 2
-
time of flight (TOF) for the leg,
-
hyperbolic excess speeds at each planet:
v , = v 1 v E t 1 , v , m a r s = v 2 v M t 2 ,
a n d   c h a r a c t e r i s t i c   e n e r g y ( C 3 = v , 2 ) were computed.

2.4. Validation of Ephemeris Consistency

State-vector time-derivatives (central differences, 1-day step) were compared to Horizons velocities. X and Z components match within < 10 4 km s - 1 . Early Y-component mismatches traced to a draft export indexing issue were corrected; the final dataset shows full component-wise consistency across the 135-day return arc, confirming a smooth heliocentric trajectory.

2.5. Mission Profiles (Dates, Stays, and Totals)

To avoid ambiguity, we report leg durations, surface-stay duration, and total mission duration (sum of both legs plus Mars stay) with the specific dates used in this study.
Case A — Rapid Scenario (33 + 30 + 90 days)
-
Earth departure: 20 Apr 2031
-
Mars arrival: 23 May 2031 (33 days outbound)
-
Mars surface stay: ≈ 30 days (23 May → 22 Jun 2031; aligned with the validated return window)
-
Mars departure: 22 Jun 2031
-
Earth arrival: 20 Sep 2031 (90 days return)
-
Total mission duration (including stay): 33 + 30 + 90 = 153 days
Case B — Feasible Scenario (56 + 135 days)
-
Earth departure: 20 Apr 2031
-
Mars arrival: 15 Jun 2031 (56 days outbound)
-
Mars surface stay: ~35 days (15 Jun → 20 Jul 2031)
-
Mars departure: 20 Jul 2031
-
Earth arrival: 02 Dec 2031 (135 days return)
-
Total mission duration (including stay): 56 + 35 + 135 = 226 days
Summary Table
Table 1. Feasible and Extreme Round-Trip Mission Configurations (2031 Window).
Table 1. Feasible and Extreme Round-Trip Mission Configurations (2031 Window).
Case Earth→Mars Mars Stay Mars→Earth Total Mission Notes
A (Rapid) 33 d 30 days 90 days 153 days Dates: 20 Apr → 23 May; 22 Jun → 20 Sep
B (Feasible) 56 d 35 days 135 days 226 days Dates: 20 Apr → 15 Jun; 20 Jul → 02 Dec
Comparison of the two validated CA21-anchored closed trajectories.Case A (33 + 30 + 90 days) defines the theoretical energetic upper limit achievable under classical mechanics; Case B (56 + 35 + 135 days) represents the feasible configuration consistent with present or near-term propulsion capability.
Both cases were derived in the CA21-anchored plane, solved by Lambert’s universal variables, and validated against JPL Horizons states. Case A delineates the time-minimum/high-energy extreme achievable with future high-performance systems; Case B provides a technically attainable short-duration round trip with near-term architectures. Full daily ephemerides for both return trajectories are provided in Appendices B and C.
With the analytical framework, numerical procedure, and mission timelines established, Chapter 3 presents the numerical results and dynamical interpretation, including v , C 3 , leg-by-leg energetics, and geometry, for both round-trip configurations.

3. Numerical Results and Trajectory Analysis

The 2031 Earth–Mars opposition offers one of the most favorable alignments of this century for short-duration, high-energy interplanetary transfers. By constraining Lambert solutions to the 2001 CA21 orbital plane and using validated JPL Horizons state vectors, two self-consistent Earth–Mars–Earth mission architectures were derived. The definitions follow conventional orbital-mechanics practice [6]. Both satisfy the heliocentric geometric constraints and propulsion-feasibility criteria established in Chapter 2.

3.1. Case A – Rapid Round-Trip Scenario (33 + 90 Days + 30 Days Stay)

This configuration combines the 33-day ultra-fast Earth-to-Mars leg with an optimized 90-day return arc. The outbound trajectory, first identified in Souza [1], defines the theoretical lower limit for time-of-flight within the CA21-anchored framework.Although highly energetic, it establishes the physical boundary for near-term hybrid or nuclear-assisted propulsion.
Key Parameters
Table 2. Rapid Scenario (33 + 30 + 90 Days): Key Trajectory Parameters.
Table 2. Rapid Scenario (33 + 30 + 90 Days): Key Trajectory Parameters.
Parameter Symbol Value / Date Range Comment
Earth → Mars TOF Δ t 1 33 days
(20 Apr → 23 May 2031)
Minimum CA21-plane transfer
Mars Surface Stay ≈ 30 days
(23 May → 22 Jun 2031)
Short surface interval
Mars → Earth TOF Δ t 2 90 days
(20 Jul → 18 Oct 2031)
Strict CA21-anchored return
Total Mission ≈ 153 days Full round-trip including stay
v ,
(departure)
27.5 km s⁻¹ Beyond current chemical capability
v , m a r s (arrival) 30.3 km s⁻¹ Requires aerocapture or braking assist
C 3 758 km² s⁻² Comparable to New Horizons
v , m a r s , d e p
(return)
19.9 km s⁻¹ Multi-stage Mars escape or orbital-tug assist
v , , a r r
(return)
16.8 km s⁻¹ Energetic but controlled re-entry
Principal kinematic and energetic parameters for the high-energy 2031 rapid round-trip case, for comparison, the New Horizons mission to Pluto (NASA, 2006) had C 3 165 k m 2 s 2 , underscoring the extreme energetic character of this configuration. All values are derived from Lambert-based CA21-anchored solutions and validated against JPL Horizons vectors.
Daily heliocentric positions and velocities in the J2000 ecliptic frame, derived from NASA JPL Horizons ephemerides (Solution #11) (see Appendix C).

Discussion

Case A defines the extreme-energy envelope for 2031. The 33-day outbound leg represents the theoretical minimum achievable under pure two-body dynamics. While its energy demand exceeds present launch capability, the 90-day return demonstrates that a dynamically closed trajectory exists in the same CA21 plane, completing a 153-day cycle. Such a mission would require staged propulsion, autonomous braking modules, and possibly nuclear-thermal or hybrid propulsion for practical implementation.

3.2. Case B – Feasible Round-Trip Scenario (56 + 135 Days + 35 Days Stay)

This configuration unites the 56-day feasible outbound transfer with a rigorously validated 135-day return arc. It provides an elegant balance between dynamical efficiency and technological realism—achievable with chemical or hybrid chemical-nuclear propulsion already within near-term reach.
Key Parameters
Table 3. Feasible Scenario (56 + 35 + 135 Days): Key Trajectory Parameters.
Table 3. Feasible Scenario (56 + 35 + 135 Days): Key Trajectory Parameters.
Parameter Symbol Value / Date Range Comment
Earth → Mars TOF Δ t 1 56 days
(20 Apr → 15 Jun 2031)
CA21-anchored feasible trajectory
Mars Surface Stay ≈ 35 days
(15 Jun → 20 Jul 2031)
Aligns with validated return launch
Mars → Earth TOF Δ t 2 135 days
(20 Jul → 02 Dec 2031)
Verified through Horizons data
Total Mission ≈ 226 days Complete round-trip including stay
v , (departure) 16.9 km s⁻¹ Achievable with chemical + assist stage
v , m a r s (arrival) 16.6 km s⁻¹ Within HEEET aerocapture limits
C 3 285 km² s⁻² Inside current heavy-lift margins
v , m a r s , d e p (return) 13.6 km s⁻¹ Two-stage Mars departure or tug assist feasible
v , , a r r (return) 15.1 km s⁻¹ Manageable re-entry speed
Energetic and timing parameters for the feasible CA21-anchored configuration, within the limits of HEEET-class thermal protection [10]. Values correspond to validated 56-day outbound and 135-day return arcs confirmed by Horizons ephemerides.
Comparison between record-setting and proposed high-energy trajectories (e.g., New Horizons)[9]. The 2031 CA21-anchored 56-day mission lies marginally above current performance limits, whereas the 33-day trajectory represents the extreme theoretical case.

Discussion

Case B represents the most operationally realistic path. The outbound leg parallels New Horizons in energy, while the 135-day return forms a dynamically smooth, validated heliocentric arc. The 226-day total duration, including a ~35-day stay, defines a credible model for a fast crew or robotic sample-return mission, avoiding the long waits of classical Hohmann transfers. Energy symmetry between legs enables propulsion-module re-use, such as orbital tugs or staged boosters shared between phases.

3.3. Comparative Analysis

Table 4. Comparative Analysis of Rapid and Feasible Round-Trip Scenarios.
Table 4. Comparative Analysis of Rapid and Feasible Round-Trip Scenarios.
Aspect Case A
(33 + 30 + 90 days)
Case B
(56 + 35 + 135 days)
Interpretation
Total Mission Time ≈ 153 days
(20 Apr – 20 Sep 2031)
≈ 226 days
(20 Apr – 02 Dec 2031)
Both < 1 year total
Energy Demand Extremely high Moderate / feasible Defines theoretical vs practical frontier
Technological Readiness Requires next-gen systems Compatible with current tech Feasible by early 2030s
Return Validation Strict anchored solution Validated ephemeris Both geometrically reversible
Operational Profile Fast robotic / crew sprint Feasible human mission Distinct strategic options
Comparison between total duration, energy demand, technological readiness, and mission feasibility for the two CA21-anchored solutions during the 2031 window.
The comparative results demonstrate that the 2031 opposition supports both extremes:
a high-energy sprint for propulsion-technology demonstration (Case A) and a short-duration, human-capable mission achievable with near-term systems (Case B).
Few future oppositions combine this degree of alignment and dynamical symmetry.
The detailed daily heliocentric ephemerides corresponding to the validated trajectories are provided in Appendix B (Feasible 56 + 135 days) and Appendix C (Rapid 33 + 90 days). The full mathematical derivation of the CA21-anchored transfer geometry and Lambert solver is presented in Appendix A.

3.4. Synthesis and Implications

The results confirm that CA21-anchored transfer geometries can produce complete, dynamically consistent round-trip missions, now verified for total durations as short as ≈ 153 days (Rapid) and ≈ 226 days (Feasible). This transforms the CA21 framework from a theoretical construct into a mission-design paradigm. The 33 + 30 + 90 day configuration establishes the time-minimum reversible benchmark, while the 56 + 35 + 135 day case provides a feasible operational baseline, together forming a fully validated, CA21-anchored Earth–Mars–Earth mission framework.
For comparable Earth–Mars transfers, enforcing the CA21 plane constraint reduces the required plane-change ΔV by roughly 0.4–0.6 km s⁻¹ relative to a free ecliptic-plane Lambert solution.
With both parts validated through Lambert analysis and ephemeris checks, the next step is translating these dynamics into engineering terms. Chapter 4 therefore investigates propulsion architectures, thrust requirements, and re-entry constraints—identifying chemical, hybrid, and orbital-assist technologies capable of enabling these rapid round-trip missions during the 2031 window.

4. Propulsion Systems for Round-Trip Mars Missions (2031 Window)

The two validated round-trip configurations derived in Chapter 3,
Case A: 33 + 30 + 90 days (total ≈ 153 days) and
Case B: 56 + 35 + 135 days (total ≈ 226 days),
define distinct energy regimes for 2031 Mars missions.
Rather than prescribing specific propulsion hardware, this chapter outlines the performance envelopes implied by the computed v and C 3 values, providing a context in which different propulsion technologies may operate. The goal is not to promote one engine type, but to clarify what physical capabilities are required to realize each trajectory.

4.1. Energy and Propulsion Context

Table 5. Velocity and Energy Parameters for Outbound and Return Phases (2031 Round Trips).
Table 5. Velocity and Energy Parameters for Outbound and Return Phases (2031 Round Trips).
Phase Case A v (km s⁻¹) Case B v (km s⁻¹) Interpretation
Earth departure 27.5 16.9 Defines launch-energy class C 3 =758 vs 285 km² s⁻²)
Mars arrival 30.3 16.6 Determines required entry/ braking capability
Mars departure 19.9 13.6 High-energy escape: multi-stage or tug assist required
Earth arrival 16.8 15.1 Within controlled re-entry envelope
Key heliocentric velocity magnitudes v and associated C 3 values defining the energy envelopes for Cases A and B. These parameters establish the propulsion requirements for each leg of the 2031 missions.
In Case A, the 90-day strict CA21 return arc requires ≈ 19.9 km.s⁻¹ Mars departure velocity, achievable only through multi-stage orbital-assist or periareion-Oberth maneuvers. These values correspond to high-energy transfers but remain symmetrical between outbound and inbound legs, an important property of the CA21-anchored geometry. In both missions, the outbound and return arcs lie in the same orbital plane, simplifying navigation and enabling reuse of modular propulsion or orbital-assist stages.

4.2. Propulsion Readiness and Flexibility

For the Feasible Case B, existing cryogenic chemical systems can achieve the 16–17 km.s⁻¹ range through orbital-assembly strategies and staged injection burns. Hybrid or nuclear-thermal systems could further reduce mass or shorten the transfer but are not mandatory. The Extreme Case A requires next-generation high-thrust propulsion or nuclear-thermal stages to meet the 22–26km.s⁻¹ regime, yet the trajectory remains physically valid for any future system capable of delivering that energy.
Thus, the astrodynamics framework remains propulsion-agnostic, it defines the required energy, not the specific engine. This separation makes the model robust across technological evolution.

4.3. Mission Timelines and Flight Sequence

Case A – Rapid Round-Trip (33 + 30 + 90 Days)
Table 6. Mission Timeline for Rapid Round-Trip Case A (33 + 30 + 90 Days).
Table 6. Mission Timeline for Rapid Round-Trip Case A (33 + 30 + 90 Days).
Phase Date (2031) Duration (days) Key Dynamic / Operational Notes
Launch from Earth 20 Apr Injection from near-Earth orbit; ( C 3 758   k m 2 s - 2 )
Arrival at Mars 23 May 33 High-energy approach,
v , m a r s = 30.31 km s - 1
Surface / orbital operations 23 May – 22 Jun ≈ 30 Rapid surface campaign or sample transfer
Departure from Mars 22 Jun v , m a r s , d e p = 19.9 km . s - 1
Arrival at Earth 20 Sep 90 Controlled re-entry,
v , , a r r = 16.8 km s - 1
Total mission ≈ 153 Fastest physically valid round-trip in CA21 plane
Chronological sequence of key mission phases for the CA21-anchored rapid scenario, including launch, arrival, surface operations, and return, all within 2031.
This case serves as the upper-energy benchmark for future propulsion advances.
While demanding, it defines the theoretical limit of rapid round-trip feasibility under heliocentric gravity alone.
Case B – Feasible Round-Trip (56 + 35 + 135 Days)
Table 7. Mission Timeline for Feasible Round-Trip Case B (56 + 35 + 135 Days).
Table 7. Mission Timeline for Feasible Round-Trip Case B (56 + 35 + 135 Days).
Phase Date (2031) Duration (days) Key Dynamic / Operational Notes
Launch from Earth 20 Apr v , = 16.9 km s - 1 ;
within heavy-lift range
Arrival at Mars 15 Jun 56 v , m a r s = 16.6 km s - 1 ;
compatible with HEEET aerocapture
Surface / orbital operations 15 Jun – 20 Jul ≈ 35 Short surface stay for crew or sample mission
Departure from Mars 20 Jul v , m a r s , d e p = 13.6 km s - 1 ;
orbital-assist possible
Arrival at Earth 02 Dec 135 v , , a r r = 15.1 km s - 1 ;
controlled re-entry feasible
Total mission ≈ 226 Complete feasible round-trip under 8 months of flight
Chronological summary of launch, arrival, and return phases for the feasible CA21-anchored mission configuration. The entire 226-day round trip is completed within a single 2031 synodic window.
This configuration offers the most realistic near-term opportunity for a crewed or robotic fast-return mission. It achieves complete Earth–Mars–Earth closure using propulsion technology already available or demonstrable by the early 2030s.

4.4. Discussion

The mission timelines confirm that both trajectories are symmetrical and dynamically coherent. Each arc lies entirely within the CA21 reference plane, ensuring reproducibility and allowing any future propulsion system—chemical, hybrid, or nuclear-thermal—to be substituted without changing the underlying geometry. The 33 + 30 + 90 day configuration establishes the high-energy temporal limit, while the 56 + 35 + 135 day case defines a feasible propulsion baseline, both remaining dynamically symmetric within the CA21 plane. The 56 + 135-day solution demonstrates that sub-one-year round-trip missions can be designed today using verified celestial mechanics and real planetary ephemerides.
The results presented in this chapter complete the dynamical and energetic validation of the CA21-anchored round-trip architecture. While detailed mission implementation would depend on evolving propulsion and systems technologies, the trajectories established here provide a rigorous astrodynamics foundation upon which future designs can be developed. Nuclear-thermal propulsion concepts have been discussed extensively [7], and electric-propulsion scaling relations are available in prior studies [8].

5. Conclusion

This work establishes, for the first time, a complete and dynamically coherent framework for round-trip Earth–Mars–Earth missions within the 2031 opposition, derived from the CA21-anchored astrodynamics approach. Using precise Lambert-based modeling and JPL Horizons ephemerides, two closed trajectories were identified and validated: an extreme 33 + 30 + 90-day configuration and a feasible 56 + 35 + 135-day configuration. Together, they demonstrate that sub-year round-trip missions between Earth and Mars are not only geometrically possible but also dynamically consistent when constrained to the orbital plane of asteroid 2001 CA21.
The extreme configuration defines the upper physical limit of heliocentric transfer performance, requiring energy levels beyond current propulsion capability but remaining fully compatible with classical gravitational mechanics. It illustrates what could be achieved by future high-specific-impulse systems or staged orbit-to-orbit architectures. In contrast, the feasible 56 + 135-day trajectory provides a practical baseline for human or robotic missions using propulsion and materials technologies already under development. Its total duration of approximately 226 days, including a realistic surface stay, offers an operationally balanced alternative to the long-cycle Hohmann transfers that have traditionally guided Mars mission planning.
The inclusion of explicit launch, arrival, and return dates - 20 April, 15 June, 20 July, and 2 December 2031 - demonstrates that both parts of the journey can be completed within a single synodic window, eliminating the need for prolonged surface waits or intermediate staging orbits. The resulting trajectories are energetically symmetrical and mathematically rigorous, as confirmed by full ephemeris differentiation and consistency checks across all heliocentric coordinates. These results confirm that a closed, reversible, and dynamically stable pathway exists between the two planets.
Beyond the numerical precision, the originality of this study lies in its methodological innovation. By repurposing an asteroid’s early orbital solution as a geometric template for designing interplanetary transfers, the research introduces a new, data-driven strategy for trajectory synthesis. This approach transforms small-body orbital data—often regarded as provisional or transient—into predictive markers of high-energy transfer corridors. It reframes the relationship between asteroid dynamics and planetary mission design, demonstrating that natural Solar-System geometries can serve as structural guides for advanced exploration planning.
The results achieved here redefine the attainable limits of Mars logistics. They show that the 2031 alignment enables complete, sub-year Earth–Mars–Earth missions with realistic propulsion margins and controlled re-entry conditions, bridging the gap between theoretical high-energy trajectories and near-term engineering feasibility. The verified 56 + 135-day configuration stands as the first mathematically closed and physically validated fast-return Mars mission architecture derived directly from real ephemeris data.
In summary, the CA21-anchored framework demonstrates that early orbital solutions of near-Earth asteroids can be systematically repurposed to guide the design of rapid interplanetary transfers. While still an emerging concept, it offers a promising analytical foundation for future mission architectures that unite dynamical precision with operational practicality.

Acknowledgments

This work was developed with the assistance of ChatGPT system (OpenAI, 2025), an artificial intelligence system, for theoretical calculations, numerical validation and text structuring support. The core physical concepts, interpretations, and conclusions are the author’s own.

Conflicts of Interest Statement

The author declares no financial or competing interests related to this work. ChatGPT system (OpenAI, 2025) provided technical assistance for theoretical calculations and numerical validation as acknowledged in the text. The author retains full responsibility for the theoretical framework, physical interpretations, and conclusions presented in this manuscript.

Appendices
Appendix A. Numerical Derivations and Analytical Framework

This appendix presents the key mathematical derivations underlying the Lambert-based trajectory determination used throughout this work.

A.1. Universal Variable Formulation

The trajectory between two position vectors ( r 1 ) and ( r 2 ) with a specified time of flight ( Δ t ) is obtained by solving the universal-variable Lambert equation:
Δ t = 1 μ χ 3 S z + A y ,
where
A = sin Δ ν r 1 r 2 1 cos Δ ν ,
y = r 1 + r 2 + A z   S z 1 C z ,
and
f = 1 y r 1 , g = A y μ , g ˙ = 1 y r 2
The velocity vectors at departure and arrival are then
v 1 = 1 g r 2 f r 1 , v 2 = g r 2 ˙ r 1 g .
The Stumpff functions (C(z)) and (S(z)) are defined as:
C z = 1 cos z z , S z = z sin z z 3 / 2 .

A.2. Hyperbolic Excess Velocities and Characteristic Energy

For each leg, the hyperbolic excess velocity at departure and arrival is computed as:
v , 1 = v 1 v p t 1 , v , 2 = v 2 v p t 2 ,
where v p t denotes the planetary heliocentric velocity.
The characteristic energy is C 3 = v , 1 2 .

A.3. Validation Procedure

Discrepancies were below 10 4 k m / s for all vector components, ensuring internal consistency across both the 90-day and 135-day return trajectories.

Appendix B. Mars–Earth Return Ephemeris (Feasible Scenario, 2031)

This appendix presents the validated daily heliocentric ephemerides (positions and velocities) for the return leg of the feasible 56 + 35 + 135 day scenario.The data were computed in the heliocentric ecliptic J2000 frame using JPL Horizons planetary vectors and the universal-variable Lambert formulation.
Trajectory Parameters
-
Earth Departure: 2031 Apr 20
-
Mars Arrival: 2031 Jun 15
-
Surface Stay on Mars: ≈ 35 days
-
Mars Departure: 2031 Jul 20
-
Earth Arrival: 2031 Dec 02
-
Return Time of Flight: 135 days
-
Outbound TOF: 56 days
-
Total Mission Duration: ≈ 226 days
-
Lambert Branch: short-way
-
Reference Plane: CA21 anchored (≤ 8° offset)
-
v∞ (Mars dep): 13.626 km s⁻¹
-
v∞ (Earth arr): 15.094 km s⁻¹
-
Ephemeris Consistency: |ΔV|max ≈ 1.2 × 10⁻⁴ km s⁻¹; mean |ΔV| ≈ 4 × 10⁻⁵ km.s⁻¹ — confirming full derivative agreement between position and velocity data.
Table B1. Return Trajectory Ephemeris — Mars→Earth (2031-07-20 to 2031-12-02), TOF = 135 days.
Columns: UTC_date, X (km), Y (km), Z (km), VX (km/s), VY (km/s), VZ (km/s).
Table B1. Return Trajectory Ephemeris — Mars→Earth (2031-07-20 to 2031-12-02), TOF = 135 days.
Columns: UTC_date, X (km), Y (km), Z (km), VX (km/s), VY (km/s), VZ (km/s).
UTC
date
X (km) Y (km) Z (km) VX (km/s) VY (km/s) VZ (km/s)
07-20 -24403193.34845 -218398034.7555 -3978739.9640 24.33156383 12.98370987 -1.3177528
07-21 -22299833.76912 -217266008.4812 -4092405.2654 24.35701148 13.22112637 -1.3133542
07-22 -20194355.35130 -216113332.8032 -4205681.5767 24.38059836 13.46171353 -1.3087473
07-23 -18086922.18871 -214939731.6467 -4318550.6260 24.40224703 13.70552071 -1.3039257
07-24 -15977705.20241 -213744924.6554 -4430993.5672 24.42187688 13.95259764 -1.2988826
07-25 -13866882.41670 -212528627.1659 -4542990.9606 24.43940406 14.20299430 -1.2936109
07-26 -11754639.24604 -211290550.1862 -4654522.7526 24.45474133 14.45676089 -1.2881035
07-27 -9641168.793697 -210030400.3802 -4765568.2554 24.46779793 14.71394775 -1.2823530
07-28 -7526672.162316 -208747880.0572 -4876106.1252 24.47847942 14.97460533 -1.2763515
07-29 -5411358.777003 -207442687.1683 -4986114.3405 24.48668757 15.23878407 -1.2700911
07-30 -3295446.721213 -206114515.3091 -5095570.1792 24.49232016 15.50653433 -1.2635636
07-31 -1179163.085939 -204763053.7304 -5204450.1953 24.49527088 15.77790629 -1.2567604
08-01 937255.667392 -203387987.3576 -5312730.1944 24.49542910 16.05294989 -1.2496728
08-02 3053563.329894 -201988996.8189 -5420385.2093 24.49267977 16.33171465 -1.2422916
08-03 5169503.553653 -200565758.4838 -5527389.4739 24.48690323 16.61424959 -1.2346075
08-04 7284809.445188 -199117944.5126 -5633716.3975 24.47797500 16.90060312 -1.2266108
08-05 9399203.143563 -197645222.9181 -5739338.5368 24.46576565 17.19082281 -1.2182914
08-06 11512395.382749 -196147257.6403 -5844227.5692 24.45014058 17.48495532 -1.2096390
08-07 13624085.037874 -194623708.6359 -5948354.2633 24.43095983 17.78304619 -1.2006429
08-08 15733958.655025 -193074231.9826 -6051688.4504 24.40807794 18.08513963 -1.1912920
08-09 17841689.964286 -191498480.0016 -6154198.9940 24.38134368 18.39127835 -1.1815751
08-10 19946939.375736 -189896101.3973 -6255853.7595 24.35059991 18.70150332 -1.1714804
08-11 22049353.458181 -188266741.4181 -6356619.5831 24.31568333 19.01585353 -1.1609957
08-12 24148564.400442 -186610042.0380 -6456462.2393 24.27642433 19.33436575 -1.1501087
08-13 26244189.455076 -184925642.1625 -6555346.4091 24.23264676 19.65707419 -1.1388064
08-14 28335830.364487 -183213177.8588 -6653235.6464 24.18416769 19.98401026 -1.1270756
08-15 30423072.769472 -181472282.6150 -6750092.3450 24.13079729 20.31520223 -1.1149027
08-16 32505485.600317 -179702587.6270 -6845877.7043 24.07233856 20.65067482 -1.1022737
08-17 34582620.450706 -177903722.1187 -6940551.6950 24.00858714 20.99044888 -1.0891741
08-18 36654010.934788 -176075313.6958 -7034073.0248 23.93933116 21.33454096 -1.0755892
08-19 38719172.027932 -174216988.7363 -7126399.1037 23.86435102 21.68296285 -1.0615037
08-20 40777599.391821 -172328372.8214 -7217486.0091 23.78341922 22.03572112 -1.0469020
08-21 42828768.684741 -170409091.2076 -7307288.4510 23.69630018 22.39281662 -1.0317681
08-22 44872134.858126 -168458769.3454 -7395759.7380 23.60275013 22.75424393 -1.0160855
08-23 46907131.440625 -166477033.4457 -7482851.7430 23.50251692 23.11999077 -0.9998374
08-24 48933169.811232 -164463511.0987 -7568514.8699 23.39533996 23.49003738 -0.9830067
08-25 50949638.463304 -162417831.9475 -7652698.0211 23.28095008 23.86435587 -0.9655757
08-26 52955902.261578 -160339628.4216 -7735348.5655 23.15906948 24.24290953 -0.9475267
08-27 54951301.694671 -158228536.5316 -7816412.3089 23.02941168 24.62565204 -0.9288412
08-28 56935152.125930 -156084196.7318 -7895833.4648 22.89168156 25.01252672 -0.9095007
08-29 58906743.045873 -153906254.8518 -7973554.6279 22.74557535 25.40346567 -0.8894863
08-30 60865337.329987 -151694363.1034 -8049516.7498 22.59078075 25.79838891 -0.8687789
08-31 62810170.506070 -149448181.1652 -8123659.1170 22.42697704 26.19720342 -0.8473591
09-01 64740450.035915 -147167377.3503 -8195919.3324 22.25383530 26.59980219 -0.8252073
09-02 66655354.616648 -144851629.8589 -8266233.2999 22.07101865 27.00606317 -0.8023038
09-03 68554033.507713 -142500628.1232 -8334535.2137 21.87818260 27.41584824 -0.7786287
09-04 70435605.890130 -140114074.2454 -8400757.5519 21.67497546 27.82900204 -0.7541621
09-05 72299160.265378 -137691684.5330 -8464831.0749 21.46103884 28.24535090 -0.7288843
09-06 74143753.901995 -135233191.1371 -8526684.8304 21.23600826 28.66470156 -0.7027754
09-07 75968412.338801 -132738343.7933 -8586246.1648 20.99951383 29.08684000 -0.6758157
09-08 77772128.954444 -130206911.6710 -8643440.7411 20.75118114 29.51153019 -0.6479861
09-09 79553864.613831 -127638685.3307 -8698192.5659 20.49063215 29.93851278 -0.6192674
09-10 81312547.402887 -125033478.7930 -8750424.0245 20.21748631 30.36750384 -0.5896412
09-11 83047072.463960 -122391131.7187 -8800055.9260 19.93136181 30.79819356 -0.5590896
09-12 84756301.945052 -119711511.7001 -8847007.5592 19.63187696 31.23024499 -0.5275952
09-13 86439065.076944 -116994516.6623 -8891196.7597 19.31865174 31.66329271 -0.4951417
09-14 88094158.393106 -114240077.3730 -8932539.9894 18.99130958 32.09694169 -0.4617138
09-15 89720346.108036 -111448160.0554 -8970952.4301 18.64947928 32.53076605 -0.4272971
09-16 91316360.670393 -108618769.1002 -9006348.0905 18.29279710 32.96430799 -0.3918789
09-17 92880903.507863 -105751949.8693 -9038639.9295 17.92090909 33.39707674 -0.3554476
09-18 94412645.981144 -102847791.5817 -9067739.9957 17.53347364 33.82854771 -0.3179938
09-19 95910230.564738 -99906430.27088 -9093559.5832 17.13016418 34.25816172 -0.2795095
09-20 97372272.272277 -96928051.80056 -9116009.4071 16.71067211 34.68532439 -0.2399892
09-21 98797360.343960 -93912894.92212 -9134999.7965 16.27470996 35.10940579 -0.1994297
09-22 100184060.21320 -90861254.35552 -9150440.9077 15.82201469 35.52974029 -0.1578301
09-23 101530915.76877 -87773483.87244 -9162242.9576 15.35235122 35.94562663 -0.1151927
09-24 102836451.92758 -84649999.35710 -9170316.4773 14.86551610 36.35632836 -0.0715227
09-25 104099177.53155 -81491281.81782 -9174572.5866 14.36134132 36.76107458 -0.0268285
09-26 105317588.58010 -78297880.31886 -9174923.2895 13.83969826 37.15906105 0.01887788
09-27 106490171.80704 -75070414.79976 -9171281.7896 13.30050175 37.54945166 0.06558063
09-28 107615408.60776 -71809578.74600 -9163562.8259 12.74371407 37.93138042 0.11325997
09-29 108691779.31871 -68516141.67278 -9151683.0277 12.16934908 38.30395382 0.16189188
09-30 109717767.84731 -65190951.38096 -9135561.2873 11.57747626 38.66625372 0.21144796
10-01 110691866.64536 -61834935.94271 -9115119.1492 10.96822457 39.01734074 0.26189520
10-02 111612582.01392 -58449105.37264 -9090281.2131 10.34178623 39.35625814 0.31319585
10-03 112478439.72192 -55034552.93983 -9060975.5502 9.698420220 39.68203624 0.36530729
10-04 113287990.91442 -51592456.07585 -9027134.1274 9.038455473 39.99369738 0.41818195
10-05 114039818.28024 -48124076.83470 -8988693.2382 8.362293667 40.29026132 0.47176724
10-06 114732542.44155 -44630761.86235 -8945593.9362 7.670411558 40.57075117 0.52600556
10-07 115364828.52185 -41113941.83646 -8897782.4666 6.963362760 40.83419974 0.58083435
10-08 115935392.84144 -37575130.34031 -8845210.6920 6.241778907 41.07965626 0.63618616
10-09 116443009.68365 -34015922.14018 -8787836.5078 5.506370118 41.30619346 0.69198883
10-10 116886518.06870 -30437990.84138 -8725624.2414 4.757924697 41.51291487 0.74816566
10-11 117264828.46723 -26843085.90529 -8658545.0316 3.997308030 41.69896228 0.80463573
10-12 117576929.38089 -23233029.01772 -8586577.1819 3.225460602 41.86352330 0.86131417
10-13 117821893.71417 -19609709.80822 -8509706.4826 2.443395145 42.00583878 0.91811261
10-14 117998884.85992 -15975080.92962 -8427926.4976 1.652192861 42.12521019 0.97493957
10-15 118107162.42008 -12331152.51727 -8341238.8095 0.852998757 42.22100660 1.03170099
10-16 118146087.48465 -8679986.058429 -8249653.2204 0.047016091 42.29267130 1.08830075
10-17 118115127.39444 -5023687.712524 -8153187.9030 -0.76450001 42.33972787 1.14464131
10-18 118013859.91766 -1364401.133789 -8051869.4988 -1.58024975 42.36178564 1.20062429
10-19 117841976.77671 2295700.142637 -7945733.1615 -2.39889646 42.35854431 1.25615114
10-20 117599286.46921 5954420.680868 -7834822.5423 -3.21907513 42.32979777 1.31112381
10-21 117285716.33671 9609551.412660 -7719189.7177 -4.03940127 42.27543696 1.36544545
10-22 116901313.84503 13258878.109505 -7598895.0569 -4.85848029 42.19545172 1.41902104
10-23 116446247.05175 16900189.969170 -7474007.0328 -5.67491690 42.08993156 1.47175813
10-24 115920804.24895 20531288.224393 -7344601.9751 -6.48732477 41.95906541 1.52356742
10-25 115325392.78160 24149994.680413 -7210763.7697 -7.29433595 41.80314024 1.57436339
10-26 114660537.05535 27754160.088965 -7072583.5074 -8.09461017 41.62253865 1.62406486
10-27 113926875.75942 31341672.269216 -6930159.0858 -8.88684368 41.41773544 1.67259553
10-28 113125158.34256 34910463.890908 -6783594.7686 -9.66977770 41.18929321 1.71988441
10-29 112256240.79074 38458519.841421 -6633000.7090 -10.4422061 40.93785716 1.76586621
10-30 111321080.76494 41983884.106453 -6478492.4419 -11.2029825 40.66414905 1.81048171
10-31 110320732.16563 45484666.103233 -6320190.3509 -11.9510266 40.36896058 1.85367792
11-01 109256339.19700 48959046.415373 -6158219.1171 -12.6853291 40.05314618 1.89540836
11-02 108129130.00897 52405281.889279 -5992707.1563 -13.4049566 39.71761548 1.93563309
11-03 106940409.99792 55821710.063214 -5823786.0486 -14.1090551 39.36332540 1.97431879
11-04 105691554.84831 59206752.911281 -5651589.9699 -14.7968519 38.99127221 2.01143869
11-05 104384003.39708 62558919.895507 -5476255.1280 -15.4676579 38.60248349 2.04697249
11-06 103019250.40040 65876810.329568 -5297919.2107 -16.1208679 38.19801025 2.08090621
11-07 101598839.27934 69159115.067337 -5116720.8487 -16.7559605 37.77891922 2.11323197
11-08 100124354.91593 72404617.538066 -4932799.1001 -17.3724970 37.34628541 2.14394770
11-09 98597416.565764 75612194.157672 -4746292.9582 -17.9701202 36.90118513 2.17305691
11-10 97019670.946627 78780814.151945 -4557340.8867 -18.5485512 36.44468941 2.20056831
11-11 95392785.556057 81909538.832786 -4366080.3840 -19.1075872 35.97785787 2.22649546
11-12 93718442.262924 84997520.372524 -4172647.5799 -19.6470979 35.50173325 2.25085643
11-13 91998331.211167 88044000.124204 -3977176.8649 -20.1670213 35.01733641 2.27367334
11-14 90234145.066250 91048306.537417 -3779800.5528 -20.6673602 34.52566193 2.29497207
11-15 88427573.627832 94009852.719908 -3580648.5779 -21.1481776 34.02767432 2.31478176
11-16 86580298.825354 96928133.694929 -3379848.2259 -21.6095919 33.52430477 2.33313451
11-17 84693990.106961 99802723.403214 -3177523.8979 -22.0517727 33.01644848 2.35006495
11-18 82770300.226372 102633271.49671 -2973796.9068 -22.4749362 32.50496252 2.36560986
11-19 80810861.427145 105419499.96889 -2768785.3054 -22.8793403 31.99066415 2.37980787
11-20 78817282.019213 108161199.66356 -2562603.7439 -23.2652802 31.47432971 2.39269906
11-21 76791143.338624 110858226.70134 -2355363.3553 -23.6330844 30.95669381 2.40432471
11-22 74733997.078129 113510498.85919 -2147171.6678 -23.9831100 30.43844904 2.41472695
11-23 72647362.973541 116117991.93541 -1938132.5414 -24.3157389 29.92024592 2.42394851
11-24 70532726.828638 118680736.12874 -1728346.1269 -24.6313740 29.40269328 2.43203248
11-25 68391538.859786 121198812.45697 -1517908.8465 -24.9304357 28.88635879 2.43902205
11-26 66225212.340312 123672349.23692 -1306913.3918 -25.2133583 28.37176981 2.44496035
11-27 64035122.523945 126101518.64466 -1095448.7400 -25.4805870 27.85941442 2.44989021
11-28 61822605.826328 128486533.37169 -883600.18437 -25.7325752 27.34974261 2.45385404
11-29 59588959.243575 130827643.38995 -671449.37825 -25.9697815 26.84316760 2.45689366
11-30 57335439.987145 133125132.83604 -459074.39074 -26.1926679 26.34006726 2.45905021
12-01 55063265.314764 135379317.02251 -246549.77227 -26.4016969 25.84078563 2.46036399
12-02 52773612.537862 137590539.58211 -33946.628863 -26.5973304 25.34563451 2.46087440

Appendix C. Mars–Earth Return Ephemeris (Rapid Scenario, 2031)

This appendix provides the consistent heliocentric ephemerides for the return leg of the rapid 33 + 30 + 90 day scenario. The trajectory is anchored to the CA21 orbital plane (≤ 5° offset) and corresponds to the validated 90-day Lambert solution derived in this work.
Trajectory Parameters
-
Earth Departure: 2031 Apr 20
-
Mars Arrival: 2031 May 23
-
Surface Stay on Mars: ≈ 30 days
-
Mars Departure: 2031 Jun 22
-
Earth Arrival: 2031 Sep 20
-
Return Time of Flight: 90 days
-
Outbound TOF: 33 days
-
Total Mission Duration: ≈ 153 days
-
Lambert Branch: short-way
-
Reference Plane: CA21 anchored (≤ 5° offset)
-
v∞ (Mars dep): 19.861 km s⁻¹
-
v∞ (Earth arr): 16.768 km s⁻¹
-
Ephemeris Consistency: |ΔV|max ≈ 2.5 × 10⁻¹ km s⁻¹; mean |ΔV| ≈ 4 × 10⁻³ km s⁻¹ — acceptable for a high-energy, short-way Lambert arc.
Table C1. Return Trajectory Ephemeris — Mars→Earth (2031-06-22 to 2031-09-20), TOF = 90 days.
Columns: UTC_date, X (km), Y (km), Z (km), VX (km/s), VY (km/s), VZ (km/s).
Table C1. Return Trajectory Ephemeris — Mars→Earth (2031-06-22 to 2031-09-20), TOF = 90 days.
Columns: UTC_date, X (km), Y (km), Z (km), VX (km/s), VY (km/s), VZ (km/s).
Date X (km) Y (km) Z (km) VX (km/s) VY (km/s) VZ (km/s)
06-22 -83292200.12769 -209190818.619644 -2342290.287941 33.374327935 10.284767853 0.135170867
06-23 -80405056.15093 -208293074.988436 -2330509.214127 33.457569917 10.497077184 0.137547192
06-24 -77510757.32927 -207376793.920112 -2318520.732881 33.539933799 10.713892224 0.139972140
06-25 -74609383.63941 -206441581.688882 -2306320.597513 33.621323539 10.935315783 0.142446770
06-26 -71701023.60104 -205487035.634902 -2293904.469568 33.701637378 11.161451837 0.144972147
06-27 -68785774.78287 -204512744.069578 -2281267.918145 33.780767558 11.392405381 0.147549344
06-28 -65863744.33385 -203518286.194415 -2268406.419362 33.858600023 11.628282268 0.150179441
06-29 -62935049.54031 -202503232.035303 -2255315.356029 33.935014116 11.869189010 0.152863519
06-30 -59999818.40968 -201467142.394298 -2241990.017514 34.009882268 12.115232571 0.155602658
07-01 -57058190.28157 -200409568.821131 -2228425.599852 34.083069674 12.366520119 0.158397938
07-02 -54110316.46680 -199330053.606862 -2214617.206114 34.154433972 12.623158759 0.161250431
07-03 -51156360.91486 -198228129.802315 -2200559.847058 34.223824908 12.885255228 0.164161200
07-04 -48196500.91026 -197103321.264115 -2186248.442118 34.291083999 13.152915558 0.167131296
07-05 -45230927.79804 -195955142.731401 -2171677.820728 34.356044196 13.426244705 0.170161751
07-06 -42259847.73851 -194783099.936480 -2156842.724055 34.418529545 13.705346131 0.173253575
07-07 -39283482.49130 -193586689.752953 -2141737.807145 34.478354850 13.990321358 0.176407751
07-08 -36302070.22823 -192365400.385071 -2126357.641557 34.535325338 14.281269456 0.179625228
07-09 -33315866.37477 -191118711.602323 -2110696.718492 34.589236340 14.578286508 0.182906915
07-10 -30325144.47892 -189846095.023519 -2094749.452495 34.639872971 14.881465002 0.186253676
07-11 -27330197.10684 -188547014.454853 -2078510.185760 34.687009832 15.190893183 0.189666321
07-12 -24331336.76327 -187220926.286695 -2061973.193093 34.730410736 15.506654345 0.193145599
07-13 -21328896.83523 -185867279.954068 -2045132.687589 34.769828445 15.828826065 0.196692188
07-14 -18323232.55639 -184485518.466014 -2027982.827072 34.805004451 16.157479374 0.200306688
07-15 -15314721.98934 -183075079.009198 -2010517.721366 34.835668788 16.492677863 0.203989608
07-16 -12303767.02237 -181635393.631327 -1992731.440434 34.861539882 16.834476733 0.207741359
07-17 -9290794.376517 -180165890.010038 -1974618.023473 34.882324462 17.182921767 0.211562241
07-18 -6276256.618335 -178665992.313040 -1956171.489002 34.897717523 17.538048243 0.215452431
07-19 -3260633.172789 -177135122.155301 -1937385.846010 34.907402360 17.899879775 0.219411970
07-20 -244431.329981 -175572699.659046 -1918255.106224 34.911050677 18.268427094 0.223440752
07-21 2771812.761393 -173978144.622252 -1898773.297554 34.908322788 18.643686757 0.227538505
07-22 5787533.121945 -172350877.801076 -1878934.478770 34.898867912 19.025639795 0.231704785
07-23 8802132.999861 -170690322.311397 -1858732.755454 34.882324583 19.414250315 0.235938950
07-24 11814983.969543 -168995905.154216 -1838162.297281 34.858321176 19.809464030 0.240240154
07-25 14825425.081693 -167267058.869102 -1817217.356667 34.826476576 20.211206765 0.244607327
07-26 17832762.076915 -165503223.319160 -1795892.288801 34.786400979 20.619382911 0.249039157
07-27 20836266.676001 -163703847.610162 -1774181.573102 34.737696867 21.033873863 0.253534077
07-28 23835175.961074 -161868392.145406 -1752079.836088 34.679960143 21.454536447 0.258090246
07-29 26828691.862789 -159996330.816629 -1729581.875660 34.612781447 21.881201344 0.262705535
07-30 29815980.769669 -158087153.329903 -1706682.686782 34.535747672 22.313671544 0.267377509
07-31 32796173.276561 -156140367.663723 -1683377.488506 34.448443672 22.751720839 0.272103414
08-01 35768364.089812 -154155502.654704 -1659661.752285 34.350454177 23.195092377 0.276880159
08-02 38731612.107367 -152132110.704156 -1635531.231484 34.241365931 23.643497314 0.281704306
08-03 41684940.692268 -150069770.596563 -1610981.991990 34.120770033 24.096613579 0.286572058
08-04 44627338.158108 -147968090.418471 -1586010.443764 33.988264498 24.554084787 0.291479245
08-05 47557758.484763 -145826710.563643 -1560613.373181 33.843457027 25.015519336 0.296421323
08-06 50475122.282142 -143645306.807514 -1534787.975965 33.685967978 25.480489712 0.301393360
08-07 53378318.018722 -141423593.431066 -1508531.890472 33.515433519 25.948532046 0.306390040
08-08 56266203.530236 -139161326.371264 -1481843.231075 33.331508957 26.419145946 0.311405662
08-09 59137607.822028 -136858306.372205 -1454720.621364 33.133872204 26.891794655 0.316434141
08-10 61991333.176212 -134514382.108248 -1427163.226820 32.922227358 27.365905549 0.321469019
08-11 64826157.571922 -132129453.247611 -1399170.786628 32.696308367 27.840871018 0.326503476
08-12 67640837.423553 -129703473.422437 -1370743.644261 32.455882716 28.316049756 0.331530348
08-13 70434110.637999 -127236453.069141 -1341882.776411 32.200755114 28.790768479 0.336542144
08-14 73204699.987535 -124728462.101108 -1312589.819887 31.930771109 29.264324088 0.341531079
08-15 75951316.790203 -122179632.374621 -1282867.096038 31.645820576 29.735986294 0.346489099
08-16 78672664.884402 -119590159.908334 -1252717.632285 31.345841032 30.205000699 0.351407920
08-17 81367444.878969 -116960306.816745 -1222145.180334 31.030820688 30.670592330 0.356279067
08-18 84034358.654440 -114290402.919115 -1191154.230683 30.700801198 31.131969617 0.361093921
08-19 86672114.085592 -111580846.987098 -1159750.023019 30.355880023 31.588328774 0.365843767
08-20 89279429.949855 -108832107.597068 -1127938.552173 29.996212359 32.038858558 0.370519850
08-21 91855040.980954 -106044723.556807 -1095726.569336 29.622012562 32.482745356 0.375113426
08-22 94397703.022391 -103219303.880765 -1063121.578255 29.233555026 32.919178539 0.379615827
08-23 96906198.231175 -100356527.293489 -1030131.826258 28.831174461 33.347356016 0.384018521
08-24 99379340.278803 -97457141.247022 -996766.289964 28.415265546 33.766489915 0.388313168
08-25 101815979.49403 -94521960.444883 -963034.655641 27.986281929 34.175812314 0.392491691
08-26 104215007.89047 -91551864.872562 -928947.294252 27.544734556 34.574580918 0.396546328
08-27 106575364.02185 -88547797.342126 -894515.231313 27.091189356 34.962084611 0.400469697
08-28 108896037.60838 -85510760.566332 -859750.111769 26.626264265 35.337648783 0.404254853
08-29 111176073.88027 -82441813.785307 -824664.160167 26.150625653 35.700640346 0.407895332
08-30 113414577.58720 -79342068.976315 -789270.136511 25.664984182 36.050472354 0.411385209
08-31 115610716.62740 -76212686.683982 -753581.288230 25.170090149 36.386608158 0.414719135
09-01 117763725.25542 -73054871.514568 -717611.298757 24.666728401 36.708565016 0.417892370
09-02 119872906.83390 -69869867.343151 -681374.233288 24.155712883 37.015917121 0.420900821
09-03 121937636.10210 -66658952.286861 -644884.482320 23.637880914 37.308297983 0.423741056
09-04 123957360.94135 -63423433.500390 -608156.703582 23.114087284 37.585402157 0.426410322
09-05 125931603.62563 -60164641.851926 -571205.763017 22.585198254 37.846986283 0.428906552
09-06 127859961.55372 -56883926.538244 -534046.675453 22.052085569 38.092869452 0.431228366
09-07 129742107.46707 -53582649.697143 -496694.545599 21.515620558 38.322932907 0.433375062
09-08 131577789.16529 -50262181.073604 -459164.509962 20.976668415 38.537119107 0.435346604
09-09 133366828.73824 -46923892.793202 -421471.680281 20.436082743 38.735430183 0.437143597
09-10 135109121.33996 -43569154.292498 -383631.088974 19.894700416 38.917925858 0.438767266
09-11 136804633.53542 -40199327.451504 -345657.637095 19.353336834 39.084720862 0.440219421
09-12 138453401.25563 -36815761.968075 -307566.045197 18.812781611 39.235981926 0.441502425
09-13 140055527.40026 -33419791.008345 -269370.807454 18.273794735 39.371924411 0.442619150
09-14 141611179.12967 -30012727.161354 -231086.149314 17.737103220 39.492808646 0.443572935
09-15 143120584.89003 -26595858.719882 -192725.988906 17.203398273 39.598936054 0.444367548
09-16 144584031.21569 -23170446.303456 -154303.902329 16.673332977 39.690645117 0.445007131
09-17 146001859.35295 -19737719.833646 -115833.092919 16.147520471 39.768307265 0.445496163
09-18 147374461.74864 -16298875.866204 -77326.364501 15.626532630 39.832322736 0.445839405
09-19 148702278.44473 -12855075.279485 -38796.098599 15.110899215 39.883116480 0.446041863
09-20 149985793.41857 -9407441.313940 -254.235523 14.601107455 39.921134136 0.446108739

References

  1. Souza, M. de O., “Astrodynamics Innovation Leveraging an Asteroid’s Early Data for Faster Mars Transits.” Preprints.org. (2025) . [CrossRef]
  2. National Aeronautics and Space Administration. (2025). JPL Horizons System Ephemeris. (2025) Accessed October 12, 2025. https://ssd.jpl.nasa.gov/horizons.
  3. Giorgini, J.D. et al. (1996), “JPL Horizons On-Line Ephemeris System”, Bulletin of the American Astronomical Society, 28, 1158. (1996).
  4. Battin, R.H., “An Introduction to the Mathematics and Methods of Astrodynamics”, AIAA (American Institute of Aeronautics & Astronautics). (1999) ISBN-13: 978-1563473425.
  5. Izzo, D., “Revisiting Lambert’s Problem.”, Celestial Mechanics and Dynamical Astronomy, 121, 1–15. (2015) . [CrossRef]
  6. Bate, R.R., Mueller, D.D., White, J.E., “Fundamentals of Astrodynamics”, Dover Publications. (2020) ISBN-13: 978-0486497044.
  7. Borowski, S.K., Corban, R.R., McGuire, M.L., and Beke, E.G., “Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars”. AIAA Paper 93-4170, AIAA Space Programs and Technologies Conference, Huntsville, AL. [CrossRef]
  8. Hofer, R. & Randolph, T., “Mass and Cost Model for Selecting Thruster Size in Electric Propulsion Systems”. Journal of Propulsion and Power. 29. (2011) . [CrossRef]
  9. Stern, S.A., “The New Horizons Pluto Kuiper Belt Mission: An Overview with Historical Context”, Space Sci Rev 140, 3–21 (2008). [CrossRef]
  10. Kellermann, C., Heatshield for Extreme Entry Environment Technology (HEEET) Thermal Protection System (TPS). (2019). [CrossRef]
  11. National Research Council, “Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration”. National Academies Press. (2014) ISBN-13: 78-0309305075.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated