Submitted:
04 October 2025
Posted:
10 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mathematical Formulation of Physic-Grounded Vision Models
3. Embodied Context and Human-Centric Design Principles
4. Architectural Abstractions and System-Level Integration
5. Comparative Perspectives and Emerging Benchmarks
6. Challenges, Limitations, and Open Research Directions
7. Ethical, Social, and Philosophical Considerations
8. Interdisciplinary Integration and Cross-Domain Synergies
9. Concluding Reflections and Long-Term Outlook
References
- Sharkey, N.E.; Sharkey, A.J. Adaptive generalisation. Artificial Intelligence Review 1993, 7, 313–328. [Google Scholar] [CrossRef]
- Xu, C.; Cao, B.T.; Yuan, Y.; Meschke, G. Transfer learning based physics-informed neural networks for solving inverse problems in tunneling. arXiv e-prints 2022, pp. arXiv–2205.
- Hao, Z.; Liu, S.; Zhang, Y.; Ying, C.; Feng, Y.; Su, H.; Zhu, J. Physics-informed machine learning: A survey on problems, methods and applications. arXiv preprint arXiv:2211.08064 2022.
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.
- de Wolff, T.; Lincopi, H.C.; Martí, L.; Sanchez-Pi, N. Mopinns: an evolutionary multi-objective approach to physics-informed neural networks. In Proceedings of the Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 228–231.
- Mowlavi, S.; Nabi, S. Optimal control of PDEs using physics-informed neural networks. Journal of Computational Physics 2023, 473, 111731. [Google Scholar] [CrossRef]
- Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Transactions on evolutionary computation 2013, 18, 378–393. [Google Scholar] [CrossRef]
- Iwata, T.; Tanaka, Y.; Ueda, N. Meta-learning of Physics-informed Neural Networks for Efficiently Solving Newly Given PDEs. arXiv preprint arXiv:2310.13270 2023.
- Tang, Y.; Tian, Y.; Ha, D. Evojax: Hardware-accelerated neuroevolution. In Proceedings of the Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 308–311.
- Yu, G.; Ma, L.; Jin, Y.; Du, W.; Liu, Q.; Zhang, H. A survey on knee-oriented multiobjective evolutionary optimization. IEEE transactions on evolutionary computation 2022, 26, 1452–1472. [Google Scholar] [CrossRef]
- Eason, J.; Cremaschi, S. Adaptive sequential sampling for surrogate model generation with artificial neural networks. Computers & Chemical Engineering 2014, 68, 220–232. [Google Scholar] [CrossRef]
- Mazé, F.; Ahmed, F. Diffusion models beat gans on topology optimization. In Proceedings of the Proceedings of the AAAI conference on artificial intelligence, 2023, Vol. 37, pp. 9108–9116.
- Goswami, S.; Anitescu, C.; Chakraborty, S.; Rabczuk, T. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics 2020, 106, 102447. [Google Scholar] [CrossRef]
- Wang, S.; Sankaran, S.; Perdikaris, P. Respecting causality for training physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering 2024, 421, 116813. [Google Scholar] [CrossRef]
- Pellegrin, R.; Bullwinkel, B.; Mattheakis, M.; Protopapas, P. Transfer learning with physics-informed neural networks for efficient simulation of branched flows. arXiv preprint arXiv:2211.00214 2022.
- Garbet, X.; Idomura, Y.; Villard, L.; Watanabe, T. Gyrokinetic simulations of turbulent transport. Nuclear Fusion 2010, 50, 043002. [Google Scholar] [CrossRef]
- Chakraborty, S. Transfer learning based multi-fidelity physics informed deep neural network. Journal of Computational Physics 2021, 426, 109942. [Google Scholar] [CrossRef]
- Cao, L.; Hong, H.; Jiang, M. Fast Solving Partial Differential Equations via Imitative Fourier Neural Operator. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024, pp. 1–8.
- Cheng, S.; Alkhalifah, T. Meta-PINN: Meta learning for improved neural network wavefield solutions. arXiv preprint arXiv:2401.11502 2024.
- Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M.W. Characterizing possible failure modes in physics-informed neural networks. Advances in Neural Information Processing Systems 2021, 34, 26548–26560. [Google Scholar]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence 2021, 44, 5149–5169. [Google Scholar] [CrossRef]
- Wandel, N.; Weinmann, M.; Neidlin, M.; Klein, R. Spline-pinn: Approaching pdes without data using fast, physics-informed hermite-spline cnns. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2022, Vol. 36, pp. 8529–8538.
- Kharazmi, E.; Cai, M.; Zheng, X.; Zhang, Z.; Lin, G.; Karniadakis, G.E. Identifiability and predictability of integer-and fractional-order epidemiological models using physics-informed neural networks. Nature Computational Science 2021, 1, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Zhou, L.; Ong, Y.S.; Chen, Z.; Hou, Y. Half a dozen real-world applications of evolutionary multitasking, and more. IEEE Computational Intelligence Magazine 2022, 17, 49–66. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.; Jo, M.; Lim, H.; Lee, K.; Lee, D.; Hong, S.; Park, N. Parameterized physics-informed neural networks for parameterized PDEs. arXiv preprint arXiv:2408.09446 2024.
- Shi, Z.; Hu, Z.; Lin, M.; Kawaguchi, K. Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators. arXiv preprint arXiv:2412.00088 2024.
- Wu, H.; Luo, H.; Ma, Y.; Wang, J.; Long, M. RoPINN: Region Optimized Physics-Informed Neural Networks. arXiv preprint arXiv:2405.14369 2024.
- Markidis, S. The old and the new: Can physics-informed deep-learning replace traditional linear solvers? Frontiers in big Data 2021, p. 92.
- Peiró, J.; Sherwin, S. Finite difference, finite element and finite volume methods for partial differential equations. Handbook of Materials Modeling: Methods 2005, pp. 2415–2446.
- Zhang, D.; Lu, L.; Guo, L.; Karniadakis, G.E. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics 2019, 397, 108850. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Tan, K.C. A survey on evolutionary neural architecture search. IEEE transactions on neural networks and learning systems 2021, 34, 550–570. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, J.; Yao, Q.; Yang, G. A neural network-based PDE solving algorithm with high precision. Scientific Reports 2023, 13, 4479. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, X.; Wang, C.; Jin, Y. An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 2019, 24, 380–393. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Wong, J.C.; Chiu, P.H.; Ooi, C.; Dao, M.H.; Ong, Y.S. LSA-PINN: Linear boundary connectivity loss for solving PDEs on complex geometry. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN). IEEE, 2023, pp. 1–10.
- Jin, Y.; Wang, H.; Chugh, T.; Guo, D.; Miettinen, K. Data-driven evolutionary optimization: An overview and case studies. IEEE Transactions on Evolutionary Computation 2018, 23, 442–458. [Google Scholar] [CrossRef]
- Yuan, G.; Zhuojia, F.; Jian, M.; Xiaoting, L.; Haitao, Z. CURRICULUM-TRANSFER-LEARNING BASED PHYSICS-INFORMED NEURAL NETWORKS FOR LONG-TIME SIMULATION OF NONLINEAR WAVE. 力学学报 2023, 56, 1–11. [Google Scholar]
- Wang, Y.; Zhong, L. NAS-PINN: neural architecture search-guided physics-informed neural network for solving PDEs. Journal of Computational Physics 2024, 496, 112603. [Google Scholar] [CrossRef]
- Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 2018.
- Gupta, A.; Mishra, B. Neuroevolving monotonic PINNs for particle breakage analysis. In Proceedings of the 2024 IEEE Conference on Artificial Intelligence (CAI). IEEE, 2024, pp. 993–996.
- Gokhale, G.; Claessens, B.; Develder, C. Physics informed neural networks for control oriented thermal modeling of buildings. Applied Energy 2022, 314, 118852. [Google Scholar] [CrossRef]
- Deb, K.; Ehrgott, M. On Generalized Dominance Structures for Multi-Objective Optimization. Mathematical and Computational Applications 2023, 28, 100. [Google Scholar] [CrossRef]
- Banerjee, C.; Nguyen, K.; Fookes, C.; George, K. Physics-informed computer vision: A review and perspectives. ACM Computing Surveys 2024, 57, 1–38. [Google Scholar] [CrossRef]
- Cao, L.; Zheng, Z.; Ding, C.; Cai, J.; Jiang, M. Genetic programming symbolic regression with simplification-pruning operator for solving differential equations. In Proceedings of the International Conference on Neural Information Processing. Springer, 2023, pp. 287–298.
- Lu, L.; Jin, P.; Karniadakis, G.E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193 2019.
- Sung, N.; Wong, J.C.; Ooi, C.C.; Gupta, A.; Chiu, P.H.; Ong, Y.S. Neuroevolution of physics-informed neural nets: benchmark problems and comparative results. In Proceedings of the Proceedings of the Companion Conference on Genetic and Evolutionary Computation, 2023, pp. 2144–2151.
- Wong, J.C.; Ooi, C.C.; Gupta, A.; Ong, Y.S. Learning in sinusoidal spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence 2022, 5, 985–1000. [Google Scholar] [CrossRef]
- Viana, F.A.; Subramaniyan, A.K. A survey of Bayesian calibration and physics-informed neural networks in scientific modeling. Archives of Computational Methods in Engineering 2021, 28, 3801–3830. [Google Scholar] [CrossRef]
- Jin, G.; Wong, J.C.; Gupta, A.; Li, S.; Ong, Y.S. Fourier warm start for physics-informed neural networks. Engineering Applications of Artificial Intelligence 2024, 132, 107887. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM review 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Khoo, Y.; Lu, J.; Ying, L. Solving parametric partial differential equations using the neural convolution. SIAM Journal on Scientific Computing 2021, 43, A1697–A1719. [Google Scholar]
- Musekamp, D.; Kalimuthu, M.; Holzmüller, D.; Takamoto, M.; Niepert, M. Active Learning for Neural PDE Solvers. In Proceedings of the Proceedings of the 13th International Conference on Learning Representations (ICLR), 2025.
- Fang, Z.; Zhan, J. Deep physical informed neural networks for metamaterial design. IEEE Access 2019, 8, 24506–24513. [Google Scholar] [CrossRef]
- Pham, V.T.; Le, T.L.; Tran, T.H.; Nguyen, T.P. Hand detection and segmentation using multimodal information from Kinect. In Proceedings of the 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), 2020, pp. 1–6. [CrossRef]
- Chen, Y.; Koohy, S. Gpt-pinn: Generative pre-trained physics-informed neural networks toward non-intrusive meta-learning of parametric pdes. Finite Elements in Analysis and Design 2024, 228, 104047. [Google Scholar] [CrossRef]
- Stanley, K.O.; Clune, J.; Lehman, J.; Miikkulainen, R. Designing neural networks through neuroevolution. Nature Machine Intelligence 2019, 1, 24–35. [Google Scholar] [CrossRef]
- Psaros, A.F.; Kawaguchi, K.; Karniadakis, G.E. Meta-learning PINN loss functions. Journal of computational physics 2022, 458, 111121. [Google Scholar] [CrossRef]
- Penwarden, M.; Zhe, S.; Narayan, A.; Kirby, R.M. A metalearning approach for physics-informed neural networks (PINNs): Application to parameterized PDEs. Journal of Computational Physics 2023, 477, 111912. [Google Scholar] [CrossRef]
- Négiar, G.; Mahoney, M.W.; Krishnapriyan, A.S. Learning differentiable solvers for systems with hard constraints. arXiv preprint arXiv:2207.08675 2022.
- Han, J.; Jentzen, A.; E, W. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences 2018, 115, 8505–8510. [Google Scholar] [CrossRef]
- Yang, S.; Tian, Y.; He, C.; Zhang, X.; Tan, K.C.; Jin, Y. A gradient-guided evolutionary approach to training deep neural networks. IEEE Transactions on Neural Networks and Learning Systems 2021, 33, 4861–4875. [Google Scholar] [CrossRef]
- Cao, L.; Lin, Z.; Tan, K.C.; Jiang, M. Interpretable Solutions for Multi-Physics PDEs Using T-NNGP 2025.
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mechanica Sinica 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Z.; Fuest, F.; Jeon, Y.J.; Gray, C.; Karniadakis, G.E. Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. Journal of Fluid Mechanics 2021, 915, A102. [Google Scholar] [CrossRef]
- Heldmann, F.; Berkhahn, S.; Ehrhardt, M.; Klamroth, K. PINN training using biobjective optimization: The trade-off between data loss and residual loss. Journal of Computational Physics 2023, 488, 112211. [Google Scholar] [CrossRef]
- Zhou, M.; Mei, G. Transfer Learning-Based Coupling of Smoothed Finite Element Method and Physics-Informed Neural Network for Solving Elastoplastic Inverse Problems. Mathematics 2023, 11, 2529. [Google Scholar] [CrossRef]
- Cohen, T.; Welling, M. Group equivariant convolutional networks. In Proceedings of the International conference on machine learning. PMLR, 2016, pp. 2990–2999.
- Nichol, A.; Schulman, J. Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999 2018, 2, 4. [Google Scholar]
- Molnar, J.P.; Grauer, S.J. Flow field tomography with uncertainty quantification using a Bayesian physics-informed neural network. Measurement Science and Technology 2022, 33, 065305. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, D.Q.; Yang, S.; Sun, G. Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints. IEEE transactions on cybernetics 2018, 49, 1642–1656. [Google Scholar] [CrossRef] [PubMed]
- Miikkulainen, R.; Forrest, S. A biological perspective on evolutionary computation. Nature Machine Intelligence 2021, 3, 9–15. [Google Scholar] [CrossRef]
- Lai, X.; Wang, S.; Guo, Z.; Zhang, C.; Sun, W.; Song, X. Designing a shape–performance integrated digital twin based on multiple models and dynamic data: a boom crane example. Journal of Mechanical Design 2021, 143, 071703. [Google Scholar] [CrossRef]
- Tang, K.; Wan, X.; Yang, C. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations. Journal of Computational Physics 2023, 476, 111868. [Google Scholar] [CrossRef]
- Qin, T.; Beatson, A.; Oktay, D.; McGreivy, N.; Adams, R.P. Meta-pde: Learning to solve pdes quickly without a mesh. arXiv preprint arXiv:2211.01604 2022.
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on knowledge and data engineering 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Lau, G.K.R.; Hemachandra, A.; Ng, S.K.; Low, B.K.H. PINNACLE: PINN Adaptive ColLocation and Experimental points selection. arXiv preprint arXiv:2404.07662 2024.
- Huhn, Q.A.; Tano, M.E.; Ragusa, J.C. Physics-informed neural network with fourier features for radiation transport in heterogeneous media. Nuclear Science and Engineering 2023, 197, 2484–2497. [Google Scholar] [CrossRef]
- Xiong, Y.; Duong, P.L.T.; Wang, D.; Park, S.I.; Ge, Q.; Raghavan, N.; Rosen, D.W. Data-driven design space exploration and exploitation for design for additive manufacturing. Journal of Mechanical Design 2019, 141, 101101. [Google Scholar] [CrossRef]
- Baxter, J.; Caruana, R.; Mitchell, T.; Pratt, L.Y.; Silver, D.L.; Thrun, S. Learning to learn: Knowledge consolidation and transfer in inductive systems. In Proceedings of the NIPS Workshop, http://plato. acadiau. ca/courses/comp/dsilver/NIPS95_LTL/transfer. workshop, 1995.
- Xu, C.; Cao, B.T.; Yuan, Y.; Meschke, G. Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering 2023, 405, 115852. [Google Scholar] [CrossRef]
- Lu, B.; Moya, C.; Lin, G. NSGA-PINN: a multi-objective optimization method for physics-informed neural network training. Algorithms 2023, 16, 194. [Google Scholar] [CrossRef]
- Mahmoudabadbozchelou, M.; Jamali, S. Rheology-informed neural networks (RhINNs) for forward and inverse metamodelling of complex fluids. Scientific reports 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Li, H.; Zheng, F.; Kong, F.; Dao, M.; Karniadakis, G.E.; Suresh, S. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proceedings of the National Academy of Sciences 2021, 118, e2100697118. [Google Scholar] [CrossRef] [PubMed]
- Mattey, R.; Ghosh, S. A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations. Computer Methods in Applied Mechanics and Engineering 2022, 390, 114474. [Google Scholar] [CrossRef]
- Wang, Q.; Song, L.; Guo, Z.; Li, J.; Feng, Z. A Novel Multi-Fidelity Surrogate for Efficient Turbine Design Optimization. Journal of Turbomachinery 2024, 146. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Karniadakis, G.E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics 2021, 425, 109913. [Google Scholar] [CrossRef]
- Kapoor, T.; Wang, H.; Núñez, A.; Dollevoet, R. Transfer learning for improved generalizability in causal physics-informed neural networks for beam simulations. Engineering Applications of Artificial Intelligence 2024, 133, 108085. [Google Scholar] [CrossRef]
- Gao, Y.; Cheung, K.C.; Ng, M.K. Svd-pinns: Transfer learning of physics-informed neural networks via singular value decomposition. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2022, pp. 1443–1450.
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Computing Surveys 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Al Noman, A.; Tasneem, Z.; Sahed, M.F.; Muyeen, S.; Das, S.K.; Alam, F. Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework. Renewable and Sustainable Energy Reviews 2022, 168, 112531. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, L.; Karniadakis, G.E.; Dal Negro, L. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics express 2020, 28, 11618–11633. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895 2020.
- Huang, H.M.; Raponi, E.; Duddeck, F.; Menzel, S.; Bujny, M. Topology optimization of periodic structures for crash and static load cases using the evolutionary level set method. Optimization and Engineering 2024, 25, 1597–1630. [Google Scholar] [CrossRef]
- Ollivier, Y.; Arnold, L.; Auger, A.; Hansen, N. Information-geometric optimization algorithms: A unifying picture via invariance principles. Journal of Machine Learning Research 2017, 18, 1–65. [Google Scholar]
- Hennigh, O.; Narasimhan, S.; Nabian, M.A.; Subramaniam, A.; Tangsali, K.; Fang, Z.; Rietmann, M.; Byeon, W.; Choudhry, S. NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework. In Proceedings of the Computational Science–ICCS 2021: 21st International Conference, Krakow, Poland, June 16–18, 2021, Proceedings, Part V. Springer, 2021, pp. 447–461.
- Davi, C.; Braga-Neto, U. Multi-Objective PSO-PINN. In Proceedings of the 1st Workshop on the Synergy of Scientific and Machine Learning Modeling@ ICML2023, 2023.
- Zhang, T.; Yan, R.; Zhang, S.; Yang, D.; Chen, A. Application of Fourier feature physics-information neural network in model of pipeline conveying fluid. Thin-Walled Structures 2024, 198, 111693. [Google Scholar] [CrossRef]
| Dimension | Traditional Vision Models | Vision-Language Foundation Models | Physic-Ground Vision Foundation Models |
|---|---|---|---|
| Generalization Across Tasks | Narrow, task-specific, requiring retraining | Broad generalization across perception tasks but weak on dynamics | Strong generalization, especially in tasks requiring physical reasoning and interaction |
| Interpretability | Limited interpretability, black-box features | Partially interpretable through multimodal alignment | Enhanced interpretability via physically meaningful latent variables |
| Robustness to Out-of-Distribution Scenarios | Fragile, easily fails under distribution shift | More robust than traditional, but fails in physically implausible cases | High robustness due to grounding in physical constraints and dynamics |
| Adaptability in HCI Contexts | Requires explicit reprogramming for new contexts | Can adapt linguistically but not physically | Adaptable to new contexts by leveraging invariants such as gravity, friction, and object permanence |
| Alignment with Human Physical Intuition | Weak, often counterintuitive outputs | Moderate, can describe scenarios linguistically but lacks causal reasoning | Strong alignment, anticipates outcomes in ways consistent with human embodied cognition |
| Computational Complexity | Moderate, efficient for specific tasks | High due to large-scale multimodal training | Very high due to integration of physical simulations and multimodal inputs |
| Applications in HCI | Limited to recognition, detection, tracking | Strong for multimodal interfaces (vision + language) | Broad spectrum: robotics, AR/VR, assistive technologies, collaborative systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).