Preprint
Article

This version is not peer-reviewed.

Astrodynamics Innovation: Leveraging an Asteroid’s Early Data for Faster Mars Transits

Submitted:

03 February 2026

Posted:

04 February 2026

You are already at the latest version

Abstract
Early orbital predictions for the near-Earth asteroid 2001 CA21 — based on 2015 JPL Horizons data — revealed a trajectory with an eccentricity of 0.777, a perihelion of 0.373 AU, and an aphelion extending to 2.967 AU. While subsequent refinements altered the asteroid’s actual orbit, these initial parameters provided a valuable reference template for designing rapid Earth–Mars transfers. By anchoring transfer-plane geometry to the CA21 orbital solution, we identified novel mission opportunities capable of drastically reducing interplanetary travel times.Our analysis highlights the 2031 opposition as the most favorable case: a 56-day transfer with , only marginally exceeding the New Horizons record, and , challenging but potentially addressable with aerocapture or braking tug concepts. A 33-day extreme trajectory is also geometrically possible in 2031, though requiring departure energies ( ) and arrival speeds ( ) well beyond current or near-term propulsion systems.Earlier opportunities in 2027 and 2029, while closer in time, impose even higher energetic barriers (departure velocities ~19 km/s, arrival ~17.5–20 km/s), underscoring the counterintuitive reality that shorter Earth–Mars distances do not guarantee lower transfer energy.This study therefore proposes a new methodological framework: using early asteroid orbital predictions as trajectory templates to identify both feasible and aspirational rapid-transit missions. By linking NEO orbital geometry with Lambert-based transfer analysis, we establish practical benchmarks for propulsion and capture technologies, demonstrating that 2031 provides a near-term achievable baseline, while also defining the aspirational frontier of one-month Mars missions.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated