Submitted:
01 October 2025
Posted:
02 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
| Application | Virus/ Vector of choice | Host system | Importance of mammalian-host system | References |
|---|---|---|---|---|
| Vaccinology | IFv, DengV, NoV, Sars-Cov2 and potentially any virus that has been identified/sequenced | Mammalian cell lines CEF MDCK HEK293 / 293F MRC5 Vero |
Viral virulence decreases with each cell passage thereby obtaining inactive/live attenuated vaccines. Certain mammalian cell lines are preferred as they perform appropriate PTM’s and protein folding which gives rise to Subunit and Epitope based vaccines. |
S. Furkan Demirden et al., 2024 |
| Gene therapy | AAV, ADV, Lenti/Retrovirus based on desired length of gene expression (transient/stable expression) | HEK293 / 293T MDCK BHK21 |
HEK293 (T) cells are favored for ADV and AAV vector production due to their efficient transfection and consistent viral titre yield FDA approved AAV-RPE65 gene therapy using HEK293 cell line to treat inherited retinal dystrophy [Luxturna®] since 2017 |
Bulcha et al., 2021 |
| CAR-T Cell therapy |
HIV-1 based Lentivirus and γ-Retroviral vectors | HEK293 / 293T / 293F | Viral plasmids are transfected into the host cell for assembly into viral vectors which is then used to genetically modify T cells in CAR-T therapy. HEK293T cell lines, expressing SV40 large T antigen, boost viral vector titres by enhancing replication of transfected plasmids containing the SV40 origin of replication [Ex. FDA approved Kymriah® using HEK293 assembled LV for CD19 directed CAR-T cell therapy] |
Tan et al., 2021 Na Kyung Lee & Jong Wook Chang, 2024 |
| Oncolytic therapy | MG1-derived Maraba virus, Recombinant Poliovirus (PVSRIPO), Augmented HSV-1, VSV-NDV | EB66 suspension quail cells Vero BHK21 HEK293 A549 lung carcinoma epithelial cell line |
Vero cells are interferon-deficient, making them highly susceptible to infection due to defective antiviral defenses. Culturing oncolytic viruses like ADV and HSV require mammalian cell lines to retain viral tropism, infective and viral potency. A549 lung adenocarcinoma cell line is used to assess and screen cytolytic activity of oncolytic viruses and serves as a platform to study host-pathogen interactions i.e., COVID19, IfV. |
Max Planck Institute Sven Göbel et al., 2022 |
2. Cell Cultures & Their History
2.2. Primary Cell Cultures, Cell Strains, Continuous Cell Lines
2.3. Types of Cell Culture Techniques, Cell Lines & Designer Cells
| Parameters | Culture type | References | |
|---|---|---|---|
| Adherent | Suspension (Anchorage independent) | ||
| Definition | Anchorage dependent cells that require a solid surface to grow as a monolayer | Cultivation of cells does not require attachment to a surface as cells float and proliferate freely. | Weiskirchen et al., 2023 |
| Equipment required | T-flasks, microwell plates, roller bottles | Bioreactors, Erlenmeyer shaker flasks, wave bags | S. Furkan Demirden et al., 2024 |
| Rate limiting steps | Surface area for cell growth is often a rate limiting step because over confluence will increase intercellular competition for media and growth factors. Cell detachment or inability to attach to culture flasks will hinder cell growth. |
Concentration of cells within the media of culture vessels creates rate-limiting steps. Therefore, it is essential to monitor the growth rates in suspension cultures over time Shear stress in stirred systems like bioreactors, will lead to cell death if not optimised for. |
Segeritz & Vallier, 2017 |
| Up-stream Scalability | Poor scalability due to limited growth areas which make for good cellular study models to observe cell-to-cell adhesions and polarity. | Scalable for large batch, high-density cultures which is necessary in fields like recombinant proteins production and viral vaccinology. | Durocher, 2002 |
| Applications | Inactivated Influenza vaccine [Flucelvax®] made using MDCK cell line as substrate. | Glutamine synthetase-KO CHO cell line used to cultivate recombinant mAB therapies like Rituximab. | Mellahi et al., 2019 Bart et al., 2016 |
| Examples | HEK293, Vero, MDCK-A, MRC5 | HEK293-F, EB66, SF9/21, MDCK-S | |
| CELL LINE | GROWTH REQUIREMENTS | ENGINEERING STRATEGIES | APPLICATIONS | REFERENCES |
|---|---|---|---|---|
| HEK293T | Adherent/Suspension adapted | Stable transfection of HEK293 with a plasmid encoding SV40 T antigen. | Utilized in suspension culture for high titer rAAV production. | Cell Culture Dish, 2017 |
| HEK293F | Suspension | Subclones of suspension-adapted HEK293 cells were isolated and cloned. | Used for large-scale production of recombinant proteins like rFVIII (NUWIQ®) |
S. Furkan Demirden et al., 2024 |
| HEK293E | Suspension | Stable transfection with plasmid encoding viral EBNA1. | Widely used in transgene expressions due to EBNA1 which enhances cell’s ability for episomal replication of oriP-harboring plasmids. | Tan et al., 2021 |
| HEK293S | Suspension adapted. | Serial passages in modified MEM. | Glycoengineered variants devoid of N-acetylglucosaminyltransferase I (KO-GnTI⁻) are used for high-throughput production of deglycosylatable glycoproteins, excellent for crystallography. | Chang et al., 2007 |
| Sf9/Sf21 | Adapted to adherent and non-adherent conditions, do not require CO2 supplementation and can thrive in serum-free media. | Spodoptera frugiperda 21 was the original line isolated, while their clonal derivative Sf9 was selected for superior suspension growth and stability. | Extensively used in the Baculovirus Expression Vector System (BEVS) for high-yield production of recombinant proteins, virus-like particles (VLPs), and vaccines (Cervarix®). FluBlok®, recombinant hemagglutinin influenza vaccine produced in expresSF+ |
Michał Sułek & Agnieszka Szuster-Ciesielska, 2025 |
| PER.C6® | Human embryonic retinal cells, suspension-based | Created by transfecting retinal cells with a plasmid encoding only E1A and E1B, flanked by known sequences, under a CMV promoter. | PER.C6® used as a production platform for Janssen’s Ad26.COV2. S recombinant vaccine. | S. Furkan Demirden et al., 2024 |
| CHO-S | Chinese Hamster Ovary (suspension) | Long-term adaptation to serum-free suspension | Gold standard for mAB production, Fc-fusion proteins and therapeutic clotting factors due to superior genetic stability and ability to perform human-like PTM’s. | Dumont et al., 2015 |
| EB66® | Duck embryonic stem cells, suspension-based | Proprietary cell line developed by Valvena. Relied on the effects of natural selection and clonal isolation rather than direct genetic manipulation. |
EB66® is a highly permissive platform for MVA-based vectors, sustaining robust transgene expression, superior viral titre compared to CEF, rapid scalability (100Lof rMVA in 3 weeks). | Léon et al., 2016 |
2.4. Cellular and Genetic Engineering
2.5. Transitioning Towards Xeno-Free Alternatives
2.6. Analysing Future Prospects: Applications and Caveats of Serum Free Media & Xeno-Free Substitutes
3. Conclusions: Embracing Change
References
- Arora, M. (2019). Cell Culture Media: A Review. Labome. https://www.labome.com/method/Cell-Culture-Media-A-Review.html.
- Bart, S., Cannon, K., Herrington, D., Mills, R., Forleo-Neto, E., Lindert, K., & Abdul Mateen, A. (2016). Immunogenicity and safety of a cell culture-based quadrivalent influenza vaccine in adults: A Phase III, double-blind, multicenter, randomized, non-inferiority study. Human Vaccines & Immunotherapeutics, 12(9), 2278–2288. [CrossRef]
- Baylis, S. A., Finsterbusch, T., Bannert, N., Blümel, J., & Mankertz, A. (2011). Analysis of porcine circovirus type 1 detected in Rotarix vaccine. Vaccine, 29(4), 690–697. [CrossRef]
- Bellani, C. F., Ajeian, J., Duffy, L., Miotto, M., Groenewegen, L., & Connon, C. J. (2020). Scale-Up Technologies for the Manufacture of Adherent Cells. Frontiers in Nutrition, 7. [CrossRef]
- Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L., & Gao, G. (2021). Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy, 6(1). [CrossRef]
- Cantey, J. B. (2011). Smallpox Variolation During the Revolutionary War. The Pediatric Infectious Disease Journal, 30(10), 821. [CrossRef]
- Cell Culture Dish. (2017, January 19). A Complete System for Viral Vector and Recombinant Protein Production... Cell Culture Dish. https://cellculturedish.com/complete-system-viral-vector-recombinant-protein-production-hek293-cells/.
- Cervera, L., Gutiérrez, S., Gòdia, F., & Segura, M. M. (2011). Optimization of HEK 293 cell growth by addition of non-animal derived components using design of experiments. BMC Proceedings, 5(Suppl 8), P126. [CrossRef]
- Chang, V. T., Crispin, M., Aricescu, A. R., Harvey, D. J., Nettleship, J. E., Fennelly, J. A., Yu, C., Boles, K. S., Evans, E. J., Stuart, D. I., Dwek, R. A., Jones, E. Y., Owens, R. J., & Davis, S. J. (2007). Glycoprotein Structural Genomics: Solving the Glycosylation Problem. Structure, 15(3), 267–273. [CrossRef]
- Charles, A., Travers, P., Walport, M., & Shlomchik, M. J. (2015). Immunological memory. Nih.gov; Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK27158/.
- Chu, C., Lugovtsev, V., Golding, H., Betenbaugh, M., & Shiloach, J. (2009). Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14802–14807. [CrossRef]
- Chu, C., Lugovtsev, V., Golding, H., Betenbaugh, M., & Shiloach, J. (2009). Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14802–14807. [CrossRef]
- Database, G. (2025). ST6GALNAC5 Gene - GeneCards | SIA7E Protein | SIA7E Antibody. Genecards.org. https://www.genecards.org/cgi-bin/carddisp.pl?gene=ST6GALNAC5.
- De Wachter, C., Van Landuyt, L., & Callewaert, N. (2018). Engineering of Yeast Glycoprotein Expression. Advances in Biochemical Engineering/Biotechnology, 10.1007/10_2018_69. [CrossRef]
- Dill, V., Hoffmann, B., Zimmer, A., Beer, M., & Eschbaumer, M. (2018). Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virology Journal, 15(1). [CrossRef]
- Donini, R., Haslam, S. M., & Kontoravdi, C. (2021). Glycoengineering Chinese hamster ovary cells: a short history. Biochemical Society Transactions, 49(2), 915–931. [CrossRef]
- Dumont, J., Euwart, D., Mei, B., Estes, S., & Kshirsagar, R. (2015). Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Critical Reviews in Biotechnology, 36(6), 1110–1122. [CrossRef]
- Durocher, Y. (2002). High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research, 30(2), 9e9. [CrossRef]
- Eissenberg, J. C. (2024). Telomeres, Cancer & Aging: Live Long & Prosper? Missouri Medicine, 110(1), 10. https://pmc.ncbi.nlm.nih.gov/articles/PMC6179622/.
- Faisst, S. (1999). PROPAGATION OF VIRUSES | Animal. Encyclopedia of Virology, 1408–1413.
- Fang, Z., Lyu, J., Li, J., Li, C., Zhang, Y., Guo, Y., Wang, Y., Zhang, Y., & Chen, K. (2022). Application of bioreactor technology for cell culture-based viral vaccine production: Present status and future prospects. Frontiers in Bioengineering and Biotechnology, 10(10). [CrossRef]
- Frenzel, A., Hust, M., & Schirrmann, T. (2013). Expression of Recombinant Antibodies. Frontiers in Immunology, 4. [CrossRef]
- Frost, I., Sati, H., Garcia-Vello, P., Hasso-Agopsowicz, M., Lienhardt, C., Gigante, V., & Beyer, P. (2023). The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. The Lancet Microbe, 4(2), e113–e125. [CrossRef]
- Gomez, P. L., Robinson, J. M., & Rogalewicz, J. A. (2013). Vaccine manufacturing. Vaccines, 44–57. [CrossRef]
- Goochee, C. F., Gramer, M. J., Andersen, D. C., Bahr, J. B., & Rasmussen, J. R. (1991). The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology (Nature Publishing Company), 9(12), 1347–1355. [CrossRef]
- Harada, Y., Takahashi, H., Trusheim, H., Roth, B., Mizuta, K., Asumi Hirata--Saito, Teruko Ogane, Takato Odagiri, Tashiro, M., & Yamamoto, N. (2019). Comparison of suspension MDCK cells, adherent MDCK cells, and LLC--MK2 cells for selective isolation of influenza viruses to be used as vaccine seeds. Influenza and Other Respiratory Viruses, 14(2), 204–209. [CrossRef]
- Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37(3), 614–636. [CrossRef]
- Huhn, S., Chang, M., Kumar, A., Liu, R., Jiang, B., Betenbaugh, M., Lin, H., Nyberg, G., & Du, Z. (2022). Chromosomal instability drives convergent and divergent evolution toward advantageous inherited traits in mammalian CHO bioproduction lineages. IScience, 25(4), 104074. [CrossRef]
- Human Cell Strains in Vaccine Development. (n.d.). Cpp-Hov.netlify.app. https://historyofvaccines.org/vaccines-101/how-are-vaccines-made/human-cell-strains-vaccine-development.
- Human Gene Therapy. (2020). Live and Let Live: The Remarkable Story of HEK293 Cells. Mary Ann Liebert, a Part of Sage; Human Gene Therapy.
- Invitrogen. (2010). Cell Culture Basics. https://www.vanderbilt.edu/viibre/CellCultureBasicsEU.pdf.
- J. Olshansky, S., & Hayflick, L. (2017). The Role of the WI-38 Cell Strain in Saving Lives and Reducing Morbidity. AIMS Public Health, 4(2), 127–138. [CrossRef]
- Jacobtorweihe, L. (2024). Oncolytic Virus Production. Mpi-Magdeburg.mpg.de. https://www.mpi-magdeburg.mpg.de/4420890/Oncolytic-virus-production.
- JALURIA, P., BETENBAUGH, M., KONSTANTOPOULOS, K., FRANK, B., & SHILOACH, J. (2007). Application of microarrays to identify and characterize genes involved in attachment dependence in HeLa cells. Metabolic Engineering, 9(3), 241–251. [CrossRef]
- Jemal Mohammed, Abebe Mengesha, Birhanu Hurisa, Demise Mulugeta, Abate Waldetensai, Yeweynshet Tesera, Worku Gemechu, Ayele Bizuneh, Dejene Getachaw, & Asnake Desalegn. (2021). Sequential Adaptation of Vero Cell Lines in Serum Free Medium for Fixed Rabies Virus Propagation. International Journal of Applied Science - Research and Review, 0(0). https://www.primescholars.com/articles/sequential-adaptation-of-vero-cell-lines-in-serum-free-medium-for-fixed-rabies-virus-propagation-95451.html.
- Julaey, M., Hosseini, M., & Amani, H. (2016). Stem Cells Culture Bioreactor Fluid Flow, Shear Stress and Microcarriers Dispersion Analysis Using Computational Fluid Dynamics. Journal of Applied Biotechnology Reports, 3(2), 425–431. https://www.biotechrep.ir/article_69217.html.
- Kang, J. Y., Oh, M.-K., Joo, H., Park, H. S., Chae, D.-H., Kim, J., Lee, H.-R., Oh, I.-H., & Yu, K.-R. (2020). Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity. Journal of Clinical Medicine, 9(9), 2913–2913. [CrossRef]
- Karnieli, O., Friedner, O. M., Allickson, J. G., Zhang, N., Jung, S., Fiorentini, D., Abraham, E., Eaker, S. S., Yong, T. K., Chan, A., Griffiths, S., Wehn, A. K., Oh, S., & Karnieli, O. (2017). A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy, 19(2), 155–169. [CrossRef]
- Kennedy, R., & Poland, G. A. (2009). Smallpox. Vaccines for Biodefense and Emerging and Neglected Diseases, 685–711. [CrossRef]
- Kiesslich, S., & Kamen, A. A. (2020). Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnology Advances, 44, 107608. [CrossRef]
- Kingston, R. E., Chen, C. A., & Rose, J. K. (2003). Calcium Phosphate Transfection. Current Protocols in Molecular Biology, 63(1), 9.1.1–9.1.11. [CrossRef]
- Kodack, D. P., Farago, A. F., Dastur, A., Held, M. A., Dardaei, L., Friboulet, L., von Flotow, F., Damon, L. J., Lee, D., Parks, M., Dicecca, R., Greenberg, M., Kattermann, K. E., Riley, A. K., Fintelmann, F. J., Rizzo, C., Piotrowska, Z., Shaw, A. T., Gainor, J. F., & Sequist, L. V. (2017). Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care. Cell Reports, 21(11), 3298–3309. [CrossRef]
- Kosloski, M. P., Miclea, R. D., & Balu-Iyer, S. V. (2009). Role of Glycosylation in Conformational Stability, Activity, Macromolecular Interaction and Immunogenicity of Recombinant Human Factor VIII. The AAPS Journal, 11(3), 424. [CrossRef]
- Kumar, S. (2018, March 14). Optimized Media for Cell Culture. GEN - Genetic Engineering and Biotechnology News. https://www.genengnews.com/resources/optimized-media-for-cell-culture/.
- Lagerwall, C., Shahin, H., Abdallah, S., Steinvall, I., Elmasry, M., Sjöberg, F., & El-Serafi, A. T. (2021). Xeno-free workflow exhibits comparable efficiency and quality of keratinocytes isolated from human skin biopsies. Regenerative Therapy, 18, 401–407. [CrossRef]
- Lai, T.-Y., Cao, J., Ou-Yang, P., Tsai, C.-Y., Lin, C.-W., Chen, C.-C., Tsai, M.-K., & Lee, C.-Y. (2022). Different methods of detaching adherent cells and their effects on the cell surface expression of Fas receptor and Fas ligand. Scientific Reports, 12(1), 5713. [CrossRef]
- Léa Bourigault, Bresson, C., Jean, C., Christophe Chevalard, Kloutz, M., Soulet, D., Pelissier, F., Richard, S., Bassard, I., Sève, N., Cédric Charretier, & Pain, B. (2025). Characterization of a suspension Vero cell line for viral vaccine production. Npj Vaccines, 10(1). [CrossRef]
- Lee, D. Y., Lee, S. Y., Yun, S. H., Jeong, J. W., Kim, J. H., Kim, H. W., Choi, J. S., Kim, G.-D., Joo, S. T., Choi, I., & Hur, S. J. (2022). Review of the current research on fetal bovine serum and the development of cultured meat. Food Science of Animal Resources, 42(5), 775–799. [CrossRef]
- Leland, D. S., & Ginocchio, C. C. (2007). Role of Cell Culture for Virus Detection in the Age of Technology. Clinical Microbiology Reviews, 20(1), 49–78. [CrossRef]
- Léon, A., David, A.-L., Madeline, B., Guianvarc’h, L., Dureau, E., Champion-Arnaud, P., Hebben, M., Huss, T., Chatrenet, B., & Schwamborn, K. (2016). The EB66® cell line as a valuable cell substrate for MVA-based vaccines production. Vaccine, 34(48), 5878–5885. [CrossRef]
- Leroux-Roels, I., & Leroux-Roels, G. (2009). Current status and progress of prepandemic and pandemic influenza vaccine development. Expert Review of Vaccines, 8(4), 401–423. [CrossRef]
- Li, E., Brown, S. L., Stupack, D. G., Puente, X. S., Cheresh, D. A., & Nemerow, G. R. (2001). Integrin αvβ1 Is an Adenovirus Coreceptor. Journal of Virology, 75(11), 5405–5409. [CrossRef]
- Lin, Y.-C., Boone, M., Meuris, L., Lemmens, I., Van Roy, N., Soete, A., Reumers, J., Moisse, M., Plaisance, S., Drmanac, R., Chen, J., Speleman, F., Lambrechts, D., Van de Peer, Y., Tavernier, J., & Callewaert, N. (2014). Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nature Communications, 5(1). [CrossRef]
- Lucey, B. P., Nelson-Rees, W. A., & Hutchins, G. M. (2009). Henrietta Lacks, HeLa Cells, and Cell Culture Contamination. Archives of Pathology & Laboratory Medicine, 133(9), 1463–1467. [CrossRef]
- Ma, B., Guan, X., Li, Y., Shang, S., Li, J., & Tan, Z. (2020). Protein Glycoengineering: An Approach for Improving Protein Properties. Frontiers in Chemistry, 8. [CrossRef]
- Mahla Chalak, Mahdi Hesaraki, Seyedeh Nasim Mirbahari, Yeganeh, M., Abdi, S., Rajabi, S., & Farhid Hemmatzadeh. (2024). Cell Immortality: In Vitro Effective Techniques to Achieve and Investigate Its Applications and Challenges. Life, 14(3), 417–417. [CrossRef]
- Malm, M., Saghaleyni, R., Lundqvist, M., Giudici, M., Chotteau, V., Field, R., Varley, P. G., Hatton, D., Grassi, L., Svensson, T., Nielsen, J., & Rockberg, J. (2020). Evolution from adherent to suspension: systems biology of HEK293 cell line development. Scientific Reports, 10(1). [CrossRef]
- Mani, I., Arazoe, T., & Singh, V. (2021). CRISPR-Cas systems for genome editing of mammalian cells. Progress in Molecular Biology and Translational Science, 15–30. [CrossRef]
- Max Planck Institute. (2024). Oncolytic Virus Production. Mpi-Magdeburg.mpg.de. https://www.mpi-magdeburg.mpg.de/4420890/Oncolytic-virus-production.
- McPherson, C. E. (2008). Development of a novel recombinant influenza vaccine in insect cells. Biologicals, 36(6), 350–353. [CrossRef]
- Medicine, N. A. of, National Academies of Sciences, E., Division, H. and M., Health, B. on G., Response, C. on A. I. of V. D. and S. C. to A. P. and S. I. P. and, Ashby, E., Jefferson, K. M. P., Yadav, P., & Anupindi, R. (2021). Critical Components for Vaccine Manufacturing. In www.ncbi.nlm.nih.gov. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK580000/.
- Mehrbod, P., Fotouhi, F., Irani Mokhtari, G., Mohammadpour, A., & Farahmand, B. (2015). Comparison of Vero and MDCK cell lines transfected with human siat7e gene for conversion to suspension culture. Vaccine Research, 2(4), 69–73. [CrossRef]
- Mellahi, K., Brochu, D., Gilbert, M., Perrier, M., Ansorge, S., Durocher, Y., & Henry, O. (2019). Process intensification for the production of rituximab by an inducible CHO cell line. Bioprocess and Biosystems Engineering, 42(5), 711–725. [CrossRef]
- Michał Sułek, & Agnieszka Szuster-Ciesielska. (2025). The Bioengineering of Insect Cell Lines for Biotherapeutics and Vaccine Production: An Updated Review. Vaccines, 13(6), 556–556. [CrossRef]
- Milstein, R. L. (2024). Viral genetics. EBSCO. https://www.ebsco.com/research-starters/health-and-medicine/viral-genetics.
- Mirasol, F. (2023, July 2). Choosing the Right Expression System for Complex Modalities. BioPharm International. https://www.biopharminternational.com/view/choosing-the-right-expression-system-for-complex-modalities?
- MORGAN, J. F., MORTON, H. J., & PARKER, R. C. (1950, January). Nutrition of animal cells in tissue culture; initial studies on a synthetic medium. Proceedings of the Society for Experimental Biology and Medicine. [CrossRef]
- MP Biomedicals. (2025). FastGro Synthetic, Animal Free, Chemically Defined FBS Replacement. Mpbio.com. https://www.mpbio.com/us/092640049-fastgro-synthetic-animal-free-chemically-defined-fbs-replacement-cf?queryID=a9249482cd4e8b5248942be953f0346b&objectID=54778&indexName=MpBio_Production_Store_us_products.
- Na Kyung Lee, & Jong Wook Chang. (2024). Manufacturing Cell and Gene Therapies: Challenges in Clinical Translation. Annals of Laboratory Medicine, 44(4), 314–323. [CrossRef]
- Novo Nordisk Pharmtec. (2024, May 23). Case Study: Improving Influenza virus production in HEK293 cells. Novo Nordisk Pharmatech. https://novonordiskpharmatech.com/case-study/boosting-influenza-virus-production-in-hek293-cells-with-recombinant-insulin/.
- Olsen, J. V., Ong, S.-E., & Mann, M. (2004). Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics: MCP, 3(6), 608–614. [CrossRef]
- Paillet, C., Forno, G., Soldano, N., Kratje, R., & Etcheverrigaray, M. (2011). Statistical optimization of influenza H1N1 production from batch cultures of suspension Vero cells (sVero). Vaccine, 29(41), 7212–7217. [CrossRef]
- Park, A., Lee, Y.-J., Jo, E., Park, G.-H., Heo, S.-Y., Koh, E.-J., Lee, S.-H., Cha, S.-H., & Heo, S.-J. (2024). Serum-Free Media Formulation Using Marine Microalgae Extracts and Growth Factor Cocktails for Madin-Darby Canine Kidney and Vero Cell Cultures. International Journal of Molecular Sciences, 25(18), 9881. [CrossRef]
- Park, R. (2023, March 21). Recombinant Protein Expression in Mammalian Cells: Techniques and Applications | evitria. Evitria; evitria. https://www.evitria.com/recombinant-antibodies/recombinant-protein-expression-mammalian-cells/.
- Pollard, A. J., & Bijker, E. M. (2020). A Guide to vaccinology: from Basic Principles to New Developments. Nature Reviews Immunology, 21(21), 1–18. [CrossRef]
- Pontifical Academy for Life Statement: Moral Reflections on Vaccines Prepared from Cells Derived from Aborted Human Foetuses. (2019). The Linacre Quarterly, 86(2-3), 182–187. [CrossRef]
- Puck, T. T., Cieciura, S. J., & Robinson, A. (1958). GENETICS OF SOMATIC MAMMALIAN CELLS. Journal of Experimental Medicine, 108(6), 945–956. [CrossRef]
- Rhim, J. S., Schell, K., Creasy, B., & Case, W. (1969). Biological Characteristics and Viral Susceptibility of an African Green Monkey Kidney Cell Line (Vero). Experimental Biology and Medicine, 132(2), 670–678. [CrossRef]
- Richter, M., Piwocka, O., Musielak, M., Piotrowski, I., Suchorska, W. M., & Trzeciak, T. (2021). From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Frontiers in Cell and Developmental Biology, 9. [CrossRef]
- Riedel, S. (2005). Edward Jenner and the history of smallpox and vaccination. Baylor University Medical Center Proceedings, 18(1), 21–25. [CrossRef]
- S. Furkan Demirden, Ilgin Kimiz-Gebologlu, & Oncel, S. S. (2024). Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS Omega, 9(15). [CrossRef]
- Schütz, A., Bernhard, F., Berrow, N. S., Buyel, J. F., Frederico Ferreira-da-Silva, Jurgen Haustraete, van, Hoffmann, J., Ario de Marco, Peleg, Y., Suppmann, S., Unger, T., Vanhoucke, M., Witt, S., & Remans, K. (2023). A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protocols, 4(4), 102572–102572. [CrossRef]
- Sai, G., Kennedy, H. M., Braatz, R. D., Mehrman, S. J., Polson, S. W., & Rombel, I. T. (2024). HEK-Omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. ArXiv.org. https://arxiv.org/abs/2408.13374.
- Scott, C., & Haley, B. (2022, May 24). Genome Editing for Cell-Line Development. Bioprocessintl.com. https://www.bioprocessintl.com/cell-line-development/genome-editing-for-cell-line-development.
- Segeritz, Charis-P., & Vallier, L. (2017). Cell Culture. Basic Science Methods for Clinical Researchers, 1(1), 151–172. [CrossRef]
- Sharma, M., Kumar, R., Sharma, S., Thomas, B., Kapatia, G., Singh, G., Bal, A., Ram, J., Bhasin, M., Guptasarma, P., & Luthra-Guptasarma, M. (2019). Sustained exposure to trypsin causes cells to transition into a state of reversible stemness that is amenable to transdifferentiation. BioRxiv. [CrossRef]
- Stibbs, D., Couto, P. S., & Rafiq, Q. (2025). ESTABLISHING SUSPENSION-ADAPTED HUMAN MESENCHYMAL STROMAL CELLS FOR SCALABLE EXTRACELLULAR VESICLE MANUFACTURING. Cytotherapy, 27(5), S89. [CrossRef]
- Subbiahanadar Chelladurai, K., Selvan Christyraj, J. D., Rajagopalan, K., Yesudhason, B. V., Venkatachalam, S., Mohan, M., Chellathurai Vasantha, N., & Selvan Christyraj, J. R. S. (2021). Alternative to FBS in animal cell culture - An overview and future perspective. Heliyon, 7(8), e07686. [CrossRef]
- Sven Göbel, Kortum, F., Karim Jaén Chavez, Jordan, I., Volker Sandig, Reichl, U., Altomonte, J., & Genzel, Y. (2022). Cell-line screening and process development for a fusogenic oncolytic virus in small-scale suspension cultures. Applied Microbiology and Biotechnology, 106(13-16), 4945–4961. [CrossRef]
- Swan, S. Y., Hairunnaja, M. A., Samsuddin, N., Mahmood, S., Abd Aziz, M. A., & Arifin, M. A. (2024, August 5). A Review on the Development of Microcarriers for Cell Culture Applications. Upm.edu.my. http://www.pertanika.upm.edu.my/pjst/browse/regular-issue?article=JST-4607-2023.
- Tan, E., Chin, C. S. H., Lim, Z. F. S., & Ng, S. K. (2021). HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Frontiers in Bioengineering and Biotechnology, 9(796991). [CrossRef]
- Tsuji, K., Ojima, M., Otabe, K., Horie, M., Koga, H., Sekiya, I., & Muneta, T. (2017). Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells. Cell Transplantation, 26(6), 1089–1102. [CrossRef]
- Tuszyner, A. (2025, June 6). Mammalian cell lines as a platform for protein vaccine production. Mabion; Mabion S.A. https://www.mabion.eu/science-hub/articles/mammalian-cell-lines-as-a-platform-for-protein-vaccine-production/.
- Uhler, R., Popa-Wagner, R., Kröning, M., Brehm, A., Rennert, P., Seifried, A., Peschke, M., Krieger, M., Guido Kohla, Christoph Kannicht, Wiedemann, P., Hafner, M., & Rosenlöcher, J. (2021). Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with humanN-glycosylation and improved pharmacokinetics. Glycobiology, 31(7), 859–872. [CrossRef]
- Usta, S. N., Scharer, C. D., Xu, J., Frey, T. K., & Nash, R. J. (2014). Chemically defined serum-free and xeno-free media for multiple cell lineages. Annals of Translational Medicine, 2(10), 97. [CrossRef]
- Weber, T., Atena Malakpour-Permlid, Chary, A., D’Alessandro, V., Haut, L., Seufert, S., Wenzel, E. V., Hickman, J., Bieback, K., Wiest, J., Dirks, W. G., Coecke, S., & Stina Oredsson. (2025). Fetal bovine serum: how to leave it behind in the pursuit of more reliable science. Frontiers in Toxicology, 7. [CrossRef]
- Weiskirchen, S., Schröder, S. K., Buhl, E. M., & Weiskirchen, R. (2023). A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells, 12(5), 682. [CrossRef]
- White, E. (2001). Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene, 20(54), 7836–7846. [CrossRef]
- Yang, Z., Wang, J., Wang, X., Duan, H., He, P., Yang, G., Liu, L., Cheng, H., Wang, X., Pan, J., Zhao, J., Yu, H., Yang, B., Liu, Y., & Lin, J. (2020). Immunogenicity and protective efficacy of an EB66® cell culture-derived duckTembusu virus vaccine. Avian Pathology, 49(5), 448–456. [CrossRef]
- Yao, T., & Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16(2), 99–117. [CrossRef]
- Yeo-Teh, N., Ito, Y., & Jha, S. (2018). High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. International Journal of Molecular Sciences, 19(6), 1706. [CrossRef]
- Yuan, J., Xu, W. W., Jiang, S., Yu, H., & Poon, H. F. (2018). The Scattered Twelve Tribes of HEK293. Biomedical and Pharmacology Journal, 11(2), 621–623. https://biomedpharmajournal.org/vol11no2/the-scattered-twelve-tribes-of-hek293/. [CrossRef]
- Zhang, J., Qiu, Z., Wang, S., Liu, Z., Qiao, Z., Wang, J., Duan, K., Xuanxuan Nian, Ma, Z., & Yang, X. (2023). Suspended cell lines for inactivated virus vaccine production. Expert Review of Vaccines, 22(1), 468–480. [CrossRef]
- ZHANG, Z. (2010). Mammalian Cell Culture for Biopharmaceutical Production. Manual of Industrial Microbiology and Biotechnology, Third Edition, 157–178. [CrossRef]
- Zhao, C. (2023). Cell culture: in vitro model system and a promising path to in vivo applications. Journal of Histotechnology, 46(1), 1–4. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).