Submitted:
23 September 2025
Posted:
24 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The First Breakthrough:Anti-Angiogenic Agents
3. The Ame Changer: Evolving Immunotherapy Landscape
3.1. Immune Checkpoint Inhibitor Monotherapy
3.2. Combining Immune Checkpoint and Angiogenesis Blockade
3.3. Combining PD-1/PD-L1 and CTLA-4 Blockade
3.4. The Search for Biomarkers
4. The Future Perspective: Novel Combinations and Targets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFP | α-fetoprotein |
| ALBI | Albumin-bilirubin |
| Anti-VEGF | Anti-vascular endothelial growth factor |
| BCLC | Barcelona Clinic Liver Cancer |
| bsAbs | Bispecific antibodies |
| CD4+ | Helper T cells |
| CD8+ | Cytotoxic T lymphocytes |
| CPS | Combined positive score |
| CTLA-4 | Cytotoxic T-lymphocyte–associated protein 4 |
| FDA | The Food and Drug Administration |
| HBV | Hepatitis B virus |
| HCC | Hepatocellular carcinoma |
| HCV | Hepatitis C virus |
| ICI | Immune checkpoint inhibitor |
| ICIs | Immune checkpoint inhibitors |
| irAE | Immune-related adverse events |
| LAG-3 | Lymphocyte-activation gene 3 |
| MDSCs | Myeloid-derived suppressor cells |
| NASH | Non-alcoholic steatohepatitis |
| NK | Natural killer |
| NR | Not reached |
| ODAC | Oncologic Drugs Advisory Committee |
| ORR | Overall response rate |
| PD-1 | Programmed cell death protein-1 |
| PD-L1 | Programmed cell death ligands 1 |
| PD-L2 | Programmed cell death ligands 2 |
| PFS | Progression-free survival |
| PVR | Poliovirus receptor |
| TAM | Tumor-associated macrophage |
| TIGIT | T-cell immunoreceptor with Ig and ITIM domains |
| TIM-3 | T cell immunoglobulin domain and mucin domain 3 |
| TKI | Tyrosine kinase inhibitor |
| TKIs | Tyrosine kinase inhibitors |
| TMB | Tumor mutation burden |
| Tregs | Regulatory T cells |
| VP4 | Thrombus in the main trunk of the portal vein or a contralateral portal vein invasion |
| OS | Overall survival |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; et al. Immunotherapies for hepatocellular carcinoma. Nature Reviews Clinical Oncology. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Chan, S.L.; Dawson, L.A.; Kelley, R.K.; Llovet, J.M.; Meyer, T.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025, 36, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Iñarrairaegui, M.; Melero, I.; Sangro, B. Immunotherapy of Hepatocellular Carcinoma: Facts and Hopes. Clin Cancer Res. 2018, 24, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.S.; Decaens, T. Liver immunotolerance and hepatocellular carcinoma: Patho-physiological mechanisms and therapeutic perspectives. Eur J Cancer. 2017, 87, 101–112. [Google Scholar] [CrossRef]
- Heymann, F.; Tacke, F. Immunology in the liver—From homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 88–110. [Google Scholar] [CrossRef]
- Ringelhan, M.; Pfister, D.; O’Connor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018, 19, 222–232. [Google Scholar] [CrossRef]
- Hanahan D, Robert. Hallmarks of Cancer: The Next Generation. Cell. 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Daniel Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity. 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Mellman, I.; Chen, D.S.; Powles, T.; Turley, S.J. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity. 2023, 56, 2188–2205. [Google Scholar] [CrossRef]
- Brunet, J.-F.; Denizot, F.; Luciani, M.-F.; Roux-Dosseto, M.; Suzan, M.; Mattei, M.-G.; et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature. 1987, 328, 267–270. [Google Scholar] [CrossRef]
- Linsley, P.S.; Brady, W.; Urnes, M.; Grosmaire, L.S.; Damle, N.K.; Ledbetter, J.A. CTLA-4 is a second receptor for the B cell activation antigen B7. The Journal of experimental medicine. 1991, 174, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Freeman, G.J.; Gribben, J.G.; Boussiotis, V.A.; Ng, J.W.; Restivo, V.A.; Lombard, L.A.; et al. Cloning of B7-2: A CTLA-4 Counter-Receptor That Costimulates Human T Cell Proliferation. Science. 1993, 262, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhaya, A. Nobel Prize in Physiology or Medicine – 2018. Resonance 2018, 23, 1359–1366. [Google Scholar] [CrossRef]
- Karp, D.D. Handbook of Targeted Cancer Therapy and Immunotherapy, 3e. Falchook GS, Lim JD, Bronicki J, editors: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2023.
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur J Cancer. 2016, 54, 139–148. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell. 2000, 100, 57–70. [Google Scholar]
- Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; et al. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin Cancer Res. 2019, 25, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N Engl J Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. The Lancet. 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.; Qin, S.; Park, J.-W.; Poon, R.T.P.; Raoul, J.-L.; Philip, P.A.; et al. Brivanib Versus Sorafenib As First-Line Therapy in Patients With Unresectable, Advanced Hepatocellular Carcinoma: Results From the Randomized Phase III BRISK-FL Study. J Clin Oncol. 2013, 31, 3517–3524. [Google Scholar] [CrossRef]
- Cainap, C.; Qin, S.; Huang, W.-T.; Chung, I.J.; Pan, H.; Cheng, Y.; et al. Linifanib Versus Sorafenib in Patients With Advanced Hepatocellular Carcinoma: Results of a Randomized Phase III Trial. J Clin Oncol. 2015, 33, 172–179. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. The Lancet Oncology. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- USFDA FDA grants accelerated approval to pembrolizumab for hepatocellular carcinoma [Intermet]. 2018 Available from: https://www.fda.gov/drugs/fda-grants-accelerated-approval-pembrolizumab-hepatocellular-carcinoma.
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef]
- Wong, J.S.L.; Leung, R.; Cheung, T.T.; Yau, T. Evolution of systemic therapy for advanced HCC patients: Did we make progress in 2022? Hepatol. Commun. 2023, 7. [Google Scholar] [CrossRef]
- Finn, R.S.; Gu, K.; Chen, X.; Merle, P.; Lee, K.-H.; Bouattour, M.; et al. Second-line pembrolizumab for advanced HCC: Meta-analysis of the phase III KEYNOTE-240 and KEYNOTE-394 studies. JHEP Reports. 2025, 7, 101350. [Google Scholar] [CrossRef]
- Seymour, C. ODAC Unanimously Backs Pembrolizumab for Second-line Advanced HCC [Internet]. 2021 [Available from: https://www.onclive.com/view/odac-unanimously-backs-pembrolizumab-for-second-line-advanced-hcc.
- A Phase 1/2, Dose-escalation, Open-label, Non-comparative Study of Nivolumab or Nivolumab in Combination With Ipilimumab in Advanced Hepatocellular Carcinoma Subjects With or Without Chronic Viral Hepatitis; and a Randomized, Open-label Study of Nivolumab vs Sorafenib in Advanced Hepatocellular Carcinoma Subjects Who Are Naive to Systemic Therapy [Internet]. 2012. Available from: https://clinicaltrials.gov/study/NCT01658878.
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. The Lancet Oncology. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracián, A.C.; Acosta-Rivera, M.; et al. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J Hepatol. 2021, 75, 600–609. [Google Scholar] [CrossRef]
- Qin, S.; Kudo, M.; Meyer, T.; Bai, Y.; Guo, Y.; Meng, Z.; et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma. JAMA Oncology. 2023, 9, 1651. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Khan, K.A.; Kerbel, R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nature Reviews Clinical Oncology. 2018, 15, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.B.; Cohen, E.I.; Ocean, A.; Lehrer, D.; Goldenberg, A.; Knox, J.J.; et al. Phase II Trial Evaluating the Clinical and Biologic Effects of Bevacizumab in Unresectable Hepatocellular Carcinoma. J Clin Oncol. 2008, 26, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Motz, G.T.; Coukos, G. The parallel lives of angiogenesis and immunosuppression: Cancer and other tales. Nature Reviews Immunology. 2011, 11, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Scientific Rationale for Combined Immunotherapy with PD-1/PD-L1 Antibodies and VEGF Inhibitors in Advanced Hepatocellular Carcinoma. Cancers 2020, 12, 1089. [Google Scholar] [CrossRef]
- Wu, C.W.-K.; Lui, R.N.-S.; Wong, V.W.-S.; Yam, T.-F.; Yip, T.C.-F.; Liu, K.; et al. Baveno VII Criteria Is an Accurate Risk Stratification Tool to Predict High-Risk Varices Requiring Intervention and Hepatic Events in Patients with Advanced Hepatocellular Carcinoma. Cancers 2023, 15, 2480. [Google Scholar] [CrossRef]
- Allaire, M.; Campion, B.; Demory, A.; Larrey, E.; Wagner, M.; Rudler, M.; et al. Baveno VI and VII criteria are not suitable for screening for large varices or clinically significant portal hypertension in patients with hepatocellular carcinoma. Alimentary Pharmacology & Therapeutics 2023, 58, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Galle, P.R.; Ducreux, M.; Cheng, A.-L.; Reilly, N.; Nicholas, A.; et al. Efficacy and Safety of Atezolizumab plus Bevacizumab versus Sorafenib in Hepatocellular Carcinoma with Main Trunk and/or Contralateral Portal Vein Invasion in IMbrave150. Liver Cancer. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Yang, H.; Kim, I.; Kang, B.; Kim, H.; Kim, H.; et al. Association of High Levels of Antidrug Antibodies Against Atezolizumab With Clinical Outcomes and T-Cell Responses in Patients With Hepatocellular Carcinoma. JAMA Oncology. 2022, 8, 1825. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Xu, J.; Bai, Y.; Xu, A.; Cang, S.; Du, C.; et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2–3 study. The Lancet Oncology. 2021, 22, 977–990. [Google Scholar] [CrossRef]
- Qin, S.; Chan, S.L.; Gu, S.; Bai, Y.; Ren, Z.; Lin, X.; et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. The Lancet. 2023, 402, 1133–1146. [Google Scholar] [CrossRef]
- Vogel, A.; Chan, S.L.; Ren, Z.; Bai, Y.; Gu, S.; Lin, X.; et al. Camrelizumab plus rivoceranib vs sorafenib as first-line therapy for unresectable hepatocellular carcinoma (uHCC): Final overall survival analysis of the phase 3 CARES-310 study. J Clin Oncol. 2024, 42 (Suppl. 16). [Google Scholar] [CrossRef]
- Llovet, J.M.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): A randomised, double-blind, phase 3 trial. The Lancet Oncology. 2023, 24, 1399–1410. [Google Scholar] [CrossRef]
- Finn, R.S.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; et al. LEAP-002 long-term follow-up: Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma. J Clin Oncol. 2025, 43 (Suppl. 16). [Google Scholar] [CrossRef]
- Kelley, R.K.; Rimassa, L.; Cheng, A.-L.; Kaseb, A.; Qin, S.; Zhu, A.X.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology. 2022, 23, 995–1008. [Google Scholar] [CrossRef]
- Yau, T.; Kaseb, A.; Cheng, A.-L.; Qin, S.; Zhu, A.X.; Chan, S.L.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): Final results of a randomised phase 3 study. Lancet Gastroenterol. Hepatol. 2024, 9, 310–322. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Scientific Rationale for Combination Immunotherapy of Hepatocellular Carcinoma with Anti-PD-1/PD-L1 and Anti-CTLA-4 Antibodies. Liver Cancer. 2019, 8, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Kelley, R.K.; Khan, A.A.; Standifer, N.; Zhou, D.; Lim, K.; et al. Exposure-Response Analyses of Tremelimumab Monotherapy or in Combination with Durvalumab in Patients with Unresectable Hepatocellular Carcinoma. Clin Cancer Res. 2023, 29, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Rimassa, L.; Chan, S.L.; Sangro, B.; Lau, G.; Kudo, M.; Reig, M.; et al. Five-year overall survival update from the HIMALAYA study of tremelimumab plus durvalumab in unresectable HCC. J Hepatol. 2025. [Google Scholar] [CrossRef]
- USFDA FDA approves tremelimumab in combination with durvalumab for unresectable hepatocellular carcinoma [Internet]. 2022 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tremelimumab-combination-durvalumab-unresectable-hepatocellular-carcinoma.
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence. 2022, 1. [Google Scholar] [CrossRef]
- A Phase IIIb Single Arm, Open-label, Multicentre Study of Durvalumab and Tremelimumab as First Line Treatment in Participants With Advanced Hepatocellular Carcinoma (SIERRA) [Internet]. 2023. Available from: https://clinicaltrials.gov/study/NCT05883644.
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib. JAMA Oncology. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Tsang, J.; Wong, J.S.L.; Kwok, G.G.W.; Li, B.C.W.; Leung, R.; Chiu, J.; et al. Nivolumab + Ipilimumab for patients with hepatocellular carcinoma previously treated with Sorafenib. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 589–598. [Google Scholar] [CrossRef]
- Melero, I.; Yau, T.; Kang, Y.K.; Kim, T.Y.; Santoro, A.; Sangro, B.; et al. Nivolumab plus ipilimumab combination therapy in patients with advanced hepatocellular carcinoma previously treated with sorafenib: 5-year results from CheckMate 040. Ann Oncol. 2024, 35, 537–548. [Google Scholar] [CrossRef]
- Feng, Y.; Roy, A.; Masson, E.; Chen, T.-T.; Humphrey, R.; Weber, J.S. Exposure–Response Relationships of the Efficacy and Safety of Ipilimumab in Patients with Advanced Melanoma. Clin Cancer Res. 2013, 19, 3977–3986. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. The Lancet Oncology. 2016, 17, 883–895. [Google Scholar] [CrossRef]
- Kudo, M.; Yau, T.; Decaens, T.; Sangro, B.; Qin, S.; Da Fonseca, L.; et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line (1L) therapy for unresectable hepatocellular carcinoma (uHCC): CheckMate 9DW expanded analyses. J Clin Oncol. 2025, 43 (Suppl. 4). [Google Scholar] [CrossRef]
- Yau, T.; Galle, P.R.; Decaens, T.; Sangro, B.; Qin, S.; Da Fonseca, L.G.; et al. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): An open-label, randomised, phase 3 trial. The Lancet. 2025, 405, 1851–1864. [Google Scholar] [CrossRef]
- Kudo, M.; Rimassa, L.; Chan, S.L.; Sangro, B.; Lau, G.; Breder, V.V.; et al. 127O Five-year overall survival (OS) and OS by baseline liver function from the phase III HIMALAYA study of tremelimumab (T) plus durvalumab (D) in unresectable hepatocellular carcinoma (uHCC). Ann Oncol. 2024, 35, S1451–S1452. [Google Scholar] [CrossRef]
- Vogel, A.; Chan, S.L.; Furuse, J.; Tak, W.Y.; Masi, G.; Varela, M.; et al. 79P Outcomes by baseline liver function in patients with unresectable hepatocellular carcinoma treated with tremelimumab and durvalumab in the phase III HIMALAYA study. Ann Oncol. 2022, 33, S1463–S1464. [Google Scholar] [CrossRef]
- Sangro, B.; Kudo, M.; Decaens, T.; Pinter, M.; Yau, T.; Qin, S.; et al. GS-005 Outcomes by liver function in patients with unresectable hepatocellular carcinoma treated with nivolumab plus ipilimumab vs lenvatinib or sorafenib in the CheckMate 9DWtrial. J Hepatol. 2025, 82, S4. [Google Scholar] [CrossRef]
- USFDA FDA grants accelerated approval to nivolumab and ipilimumab combination for hepatocellular carcinoma [Internet]. 2020 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma.
- USFDA FDA approves nivolumab with ipilimumab for unresectable or metastatic hepatocellular carcinoma [Internet]. 2025 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-ipilimumab-unresectable-or-metastatic-hepatocellular-carcinoma.
- USFDA FDA approves nivolumab and hyaluronidase-nvhy for subcutaneous injection [Internet]. 2024 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-and-hyaluronidase-nvhy-subcutaneous-injection.
- Muhammed, A.; D’Alessio, A.; Enica, A.; Talbot, T.; Fulgenzi, C.A.M.; Nteliopoulos, G.; et al. Predictive biomarkers of response to immune checkpoint inhibitors in hepatocellular carcinoma. Expert Rev Mol Diagn. 2022, 22, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Yahoo, N.; Dudek, M.; Knolle, P.; Heikenwälder, M. Role of immune responses in the development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol. 2023, 79, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Piqué-Gili, M.; Torres-Martin, M.; et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol. 2021, 75, 865–878. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, S.; Xia, L.; Sun, Z.; Chan, K.M.; Bernards, R.; et al. Hepatocellular carcinoma: Signaling pathways and therapeutic advances. Signal Transduction and Targeted Therapy. 2025, 10. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; et al. Hepatocellular carcinoma. Nature Reviews Disease Primers. 2021, 7. [Google Scholar] [CrossRef]
- Haber, P.K.; Puigvehí, M.; Castet, F.; Lourdusamy, V.; Montal, R.; Tabrizian, P.; et al. Evidence-Based Management of Hepatocellular Carcinoma: Systematic Review and Meta-analysis of Randomized Controlled Trials (2002–2020). Gastroenterology 2021, 161, 879–898. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Meneghel, P.; Farinati, F.; Russo, F.P.; Pelizzaro, F.; Gambato, M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig Liver Dis. 2024, 56, 579–588. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Suzuki, H.; Lemaitre, L.; Kubota, N.; Hoshida, Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025, 81, 1038–1057. [Google Scholar] [CrossRef] [PubMed]
- Montironi, C.; Castet, F.; Haber, P.K.; Pinyol, R.; Torres-Martin, M.; Torrens, L.; et al. Inflamed and non-inflamed classes of HCC: A revised immunogenomic classification. Gut 2023, 72, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, C.; Dif, L.; Vaché, J.; Basbous, S.; Billottet, C.; Moreau, V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer. 2024, 131, 1871–1880. [Google Scholar] [CrossRef]
- Yang, X.; Yang, C.; Zhang, S.; Geng, H.; Zhu, A.X.; Bernards, R.; et al. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell. 2024, 42, 180–197. [Google Scholar] [CrossRef]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. The Lancet. 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Rebouissou, S.; Nault, J.-C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 2020, 72, 215–229. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Zhao, B.; Ren, L.; Huang, R.; Feng, B.; et al. The predictive value of PD-L1 expression in patients with advanced hepatocellular carcinoma treated with PD-1/PD-L1 inhibitors: A systematic review and meta-analysis. Cancer Medicine. 2023, 12, 9282–9292. [Google Scholar] [CrossRef]
- Zhu, A.X.; Abbas, A.R.; De Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Kohya, R.; Suda, G.; Ohara, M.; Hosoda, S.; Sho, T.; Chuma, M.; et al. Serum FGF21 as a predictor of response to atezolizumab and bevacizumab in HCC. JHEP Reports 2025, 7, 101364. [Google Scholar] [CrossRef]
- Yau, T.; Zagonel, V.; Santoro, A.; Acosta-Rivera, M.; Choo, S.P.; Matilla, A.; et al. Nivolumab Plus Cabozantinib With or Without Ipilimumab for Advanced Hepatocellular Carcinoma: Results From Cohort 6 of the CheckMate 040 Trial. J Clin Oncol. 2023, 41, 1747–1757. [Google Scholar] [CrossRef]
- Randomised, Open-label, Phase II-III Study Evaluating the Benefit of Adding Ipilimumab to the Combination of Atezolizumab and Bevacizumab in Patients With Hepatocellular Carcinoma Receiving First-line Systemic Therapy [Internet]. 2022. Available from: https://clinicaltrials.gov/study/NCT05665348.
- Kraehenbuehl, L.; Weng, C.-H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nature Reviews Clinical Oncology. 2022, 19, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Kreidieh, F.Y.; Tawbi, H.A.; Alexaki, A.; Borghaei, H.; Kandalaft, L.E. Novel Immunotherapeutics: Perspectives on Checkpoints, Bispecifics, and Vaccines in Development. American Society of Clinical Oncology Educational Book. 2023(43). [CrossRef]
- Badhrinarayanan, S.; Cotter, C.; Zhu, H.; Lin, Y.-C.; Kudo, M.; Li, D. IMbrave152/SKYSCRAPER-14: A Phase III study of atezolizumab, bevacizumab and tiragolumab in advanced hepatocellular carcinoma. Future Oncology. 2024, 20, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Chiang, E.Y.; Mellman, I. TIGIT-CD226-PVR axis: Advancing immune checkpoint blockade for cancer immunotherapy. Journal for ImmunoTherapy of Cancer. 2022, 10, e004711. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Hsu, C.-H.; Li, D.; Burgoyne, A.M.; Cotter, C.; et al. Tiragolumab in combination with atezolizumab and bevacizumab in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (MORPHEUS-Liver): A randomised, open-label, phase 1b–2, study. The Lancet Oncology. 2025, 26, 214–226. [Google Scholar] [CrossRef]
- Das, M.; Zhu, C.; Kuchroo, V.K. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017, 276, 97–111. [Google Scholar] [CrossRef]
- Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nature Communications 2016, 7, 10501. [Google Scholar] [CrossRef]
- Acoba, J.D.; Fukaya, E.; Goodyear, S.M.; Kardosh, A. Cobolimab and dostarlimab in the first-line treatment of unresectable hepatoma: A multi-center, single arm, phase 2 trial. J Clin Oncol. 2025, 43 (Suppl. 16). [Google Scholar] [CrossRef]
- Herrera, M.; Pretelli, G.; Desai, J.; Garralda, E.; Siu, L.L.; Steiner, T.M.; et al. Bispecific antibodies: Advancing precision oncology. Trends in Cancer. 2024, 10, 893–919. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Etessami, J.; Valenza, C.; Valdivia, A.; Meric-Bernstam, F.; Felip, E.; et al. Bispecific Antibodies in Hematologic and Solid Tumors: Current Landscape and Therapeutic Advances. American Society of Clinical Oncology Educational Book. 2025, 45. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Brinkmann, U.; Reichert, J.M.; Kontermann, R.E. The present and future of bispecific antibodies for cancer therapy. Nature Reviews Drug Discovery. 2024, 23, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, H.; Bao, Q.; Jin, K.; Liu, M.; Liu, W.; et al. The anti-PD-L1/CTLA-4 bispecific antibody KN046 plus lenvatinib in advanced unresectable or metastatic hepatocellular carcinoma: A phase II trial. Nature Communications 2025, 16. [Google Scholar] [CrossRef]
- A Phase III, Randomised, Open-label, Sponsor-blinded, Multicentre Study of Rilvegostomig in Combination With Bevacizumab With or Without Tremelimumab as First-line Treatment in Patients With Advanced Hepatocellular Carcinoma [Internet]. 2025. Available from: https://clinicaltrials.gov/study/NCT06921785.
- Zhou, J.; Cheng, A.-L.; Ikeda, M.; Lim, H.Y.; Akce, M.; Qin, S.; et al. GEMINI-Hepatobiliary: A phase 2 study of novel first-line immuno-oncology-based treatments in patients with advanced hepatobiliary cancers. J Clin Oncol. 2024, 42 (Suppl. 16), TPS4187–TPS. [Google Scholar] [CrossRef]
- Llovet, J.M.; Pinyol, R.; Yarchoan, M.; Singal, A.G.; Marron, T.U.; Schwartz, M.; et al. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nature Reviews Clinical Oncology. 2024, 21, 294–311. [Google Scholar] [CrossRef]
| Trial | Year of First Publication | Phase | Experimental Arm and Control Arm | PFS (Months) | OS (Months) | ORR (%) | G 3-4 TRAEs (%) |
|---|---|---|---|---|---|---|---|
| 1st line | |||||||
| Anti-PD-1 (monotherapy) | |||||||
| CheckMate-459 | 2022 | III | Nivolumab vs sorafenib | 3.7 vs 3.8 (HR 0.93) | 16.4 vs 14.7 (HR 0.85, p=0.075) | 15 vs 7 | 22 vs 49 |
| RATIONALE-301 | 2023 | III | Tislelizumab vs sorafenib | 2.1 vs 3.4 (HR 1.11) | 15.9 vs 14.1 (HR 0.85) | 14.3 vs 5.4 | 22.2 vs 53.4 |
| Anti-PD-1/PD-L1 and antiangiogenic agents (doublet therapy) | |||||||
| IMbrave150 | 2020 | III | Atezolizumab plus bevacizumab vs sorafenib | 6.9 vs 4.3 (HR 0.65, p<0.001) | 19.2 vs 13.4 (HR 0.66, p<0.001) | 30 vs 11 | 43 vs 46 |
| ORIENT-32 | 2021 | II/III | Sintilimab plus a bevacizumab biosimilar (IBI305) vs Sorafenib | 4.6 vs 2.8 (HR 0.56, p<0.001) | NR vs 10.4 (HR 0.57, p<0.001) | 21 vs 4 | 53 vs 45 |
| COSMIC-312 | 2022 | III | Cabozantinib plus atezolizumab vs sorafenib | 6.9 vs 4.3 (HR 0.74) | 16.5 vs 15.5 (HR 0.98, p=0.87) | 13.0 vs 5 | 66 vs 48 |
| CARES-310 | 2023 | III | Camrelizumab plus rivoceranib vs sorafenib | 5.6 vs 3.7 (HR 0.52, p<0.0001) | 23.8 vs 15.2 (HR 0.64, p<0.0001) | 25 vs 6 | 81 vs 52 |
| LEAP-002 | 2023 | III | Lenvatinib plus pembrolizumab vs lenvatinib | 8.2 vs 8.0 (HR 0.87, p=0.047) | 21.2 vs 19.0 (HR 0.84, p=0.023) | 26.1 vs 17.5 | 62 vs 57 |
| HEPATORCH | 2025 | III | Toripalimab plus bevacizumab vs sorafenib | 5.8 vs 4.0 (HR 0.69, p=0.0086) | 20.0 vs 14.5 (HR 0.76, p=0.039) | 25 vs 6 | 63 vs 61 |
| Anti-PD-1/PD-L1 and anti-CTLA-4 (doublet therapy) | |||||||
| HIMALAYA | 2022 | III | Tremelimumab plus durvalumab (STRIDE) vs sorafenib | 3.78 vs 4.07 (HR 0.90) | 16.43 vs 13.77 (HR 0.76, p=0.0008) | 20.1 vs 5.1 | 50.5 vs 52.4 |
| CheckMate-9DW | 2025 | III | Nivolumab plus ipilimumab vs lenvatinib or sorafenib | 9.1 vs 9.2 (HR 0.87) | 23.7 vs 20.6 (HR 0.79, p=0.018) | 36 vs 13 | 41 vs 42 |
| Anti-PD-1/PD-L1 and antiangiogenic agents (triplet therapy) | |||||||
| CheckMate-040 Cohort 6 | 2022 | I/II | nivolumab, cabozantinib and ipilimumab | 22.1 | 4.3 | 29 | 74 |
| MORPHEUS-Liver | 2025 | Ib/II | Tiragolumab plus atezolizumab and bevacizumab vs atezolizumab and bevacizumab | 12.3 vs 4.2 (HR 0.51) | 28.9 vs 15.1 (HR 0.39) | 43 vs 11 | 33 vs 44 |
| 2nd line | |||||||
| KEYNOTE-224 | 2018 | II | Pembrolizumab | 17 | 25 | ||
| KEYNOTE-240 | 2019 | III | Pembrolizumab vs placebo | 3.0 vs 2.8 (HR 0.718, p=0.0022) | 13.9 vs 10.6 (HR 0.781, p=0.0238) | 18.3 vs 4.4 | 18.6 vs 7.5 |
| KEYNOTE-394 | 2022 | III | Pembrolizumab vs placebo | 2.6 vs 2.3 (HR 0.74, p=0.032) | 14.6 vs 13.0 (HR 0.79, p=0.0180) | 12.7 vs 1.3 | 13.3 vs 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
