Submitted:
20 September 2025
Posted:
22 September 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Geochemical analysis
2.2. Fluid inclusions measurements
2.3. Stable isotope measurements
2.3.1. Oxygen Isotope Analysis
2.3.2. Sulfur Isotope Analysis
3. Geology Setting
3.1. Regional Geology and Tectonic Setting
3.2. Ore Deposit Geological Characteristics
3.2.1. Conglomerate
3.2.2. Andesitic and Basaltic Andesite
3.2.3. Pyroxene Andesite
3.2.4. Hornblende-Pyroxene Andesite
3.2.5. Basalt, Olivine Basalt, and Microgabbro
3.2.6. Agglomerate
3.2.7. Limestone
3.2.8. Marl and Siltstone




4. Discussion
4.1. Ore Mineralogy and Paragenetic Sequence
4.2. Alteration
4.3. Fluid Inclusions


| Sample N. | Mineralization Type | Mineral | phase | Tice | TICE+ | salinity | Th V-L | Th L-V | Tutec | THH | THT | ||
| S4 | Mlc+Az+Cal | Calcite | L+V | (-2)-(-5/5) | 2/0-5/5 | 3/38-9/09 | 135-210 | -36/3 | 135-210 | ||||
| S7 | Mlc+Az+Cal | Calcite | L+V | (-2/7)-(9/2) | 2/7-9/2 | 4/48-12/63 | 176-330 | -43 | 176-330 | ||||
| S7 | Mlc+Az+Cal | Calcite | V+L | (-7/8)-(-8/20) | 7/8-8/2 | 11/19-11/6 | 265-341 | 265-341 | |||||
| S6 | Cct+Cal | Calcite | L+V | (-1/8)-(-9/4) | 1/8-9/4 | 3/08-13/17 | 90-386 | -49/6 | 90-386 | ||||
| S9 | Cct+Cal | Calcite | L+V | (-2)-(-5) | 2/0-5/0 | 3/39-7/86 | 149-275 | -37/2 | 149-275 | ||||
| S9 | Cct+Cal | Calcite | V+L | (-5/7)-(-5/8) | 5/7-5/8 | 8/76-8/98 | 280-300 | 280-300 | |||||
| S15 | Cct+Bn+Ccp+Mag+Qtz | Quartz | L+V | (-2)-(-9/6) | 2/0-9/6 | 3/39-13/38 | 100-234 | -39 | 100-234 | ||||
| S15 | Cct+Bn+Ccp+Mag+Qtz | Quartz | L+V+S | -8 | 8 | 11/55 | 280 | 280 | |||||
4.4. Stable Isotopes
4.4.1. Sulfur Isotopes
4.4.2. Oxygen Isotopes
4.5. Geochemistry of Major and Trace Elements
| Sample | SiO2 | Al2O3 | Na2O | MgO | K2O | TiO2 | CaO | Fe2O3 | Ag | Pb | Cu | Mo | Bi | Fe | Co | Ni | Ti | Sb |
| CH.M-12A | 64/05 | 18 | 3/9 | 0/46 | 3/66 | 0/58 | 2/95 | 5/17 | 0/6 | 15 | 1068 | 2/2 | 0/05 | 35794 | 8/2 | 29 | 4456 | 1/1 |
| CH.M-13A | 63/9 | 17/69 | 3/76 | 0/26 | 3/17 | 0/63 | 2/68 | 7/07 | 31/9 | 23 | >5% | 3/8 | 0/05 | 35658 | 4/2 | 18 | 3139 | 2/2 |
| CH.M-15A | 57/85 | 16/75 | 3/84 | 0/01 | 4/12 | 0/74 | 2/31 | 5/38 | >10 | 38 | >1000 | 6/82 | 0/46 | 41000 | 4/9 | 13/8 | 3800 | 1/33 |
| CH.M-16A | 61/25 | 17/16 | 5/38 | 1/46 | 3/67 | 0/63 | 5/71 | 4/2 | 0/42 | 22 | 541 | 3/01 | 0/16 | 37900 | 8/4 | 19/6 | 4000 | 0/58 |
| CH.M-17A | 60/75 | 16/85 | 4/99 | 0/05 | 4/66 | 0/63 | 6/81 | 4/92 | 0/43 | 20 | 575 | 3/75 | 0/12 | 34700 | 6/2 | 16/2 | 3900 | 0/84 |
| CH.M-17B | 59/64 | 18/25 | 5/15 | 1/66 | 3/75 | 0/66 | 6/01 | 4/69 | 0/44 | 22 | 458 | 3/25 | 0/14 | 32000 | 4/2 | 17/3 | 3400 | 0/84 |
| CH.M-18A | 61/35 | 18/7 | 5/97 | 0/05 | 4/97 | 0/71 | 5/23 | 3/18 | 0/5 | 14 | 1068 | 2/1 | 0/05 | 3421 | 2/3 | 29 | 3215 | 1/5 |
| CH.M-18B | 63/85 | 18/63 | 4/75 | 0/35 | 4/08 | 0/55 | 2/68 | 6/07 | 0/14 | 17 | 397 | 2/79 | 0/11 | 32200 | 9/9 | 18/7 | 0/44 | 1/84 |
| Se.Sa-01 | 63/3 | 18/51 | 4/65 | 0/43 | 4/01 | 0/61 | 2/64 | 5/64 | 0/1 | 2 | 54 | 2 | 0/1 | 38519 | 20 | 31 | 3776 | <0.5 |
| Se.Sa-02 | 61/9 | 17/36 | 5/05 | 0/27 | 3/56 | 0/58 | 4/85 | 4/15 | 0/1 | 4 | 40 | 0/1 | 0/1 | 47492 | 23/5 | 37 | 4245 | <0.5 |
| Se.Sa-03 | 60/85 | 16/65 | 4/86 | 0/05 | 4/61 | 0/6 | 6/45 | 4/73 | 0/1 | 4 | 63 | 0/1 | 0/1 | 48663 | 24/6 | 38 | 3605 | 1 |
| Se.Sa-04 | 60/55 | 16/85 | 4/91 | 0/06 | 4/15 | 0/62 | 6/15 | 4/68 | 0/1 | 9 | 6186 | 0/1 | 0/1 | 37322 | 10 | 46 | 2650 | <0.5 |
| Se.Sa-05 | 59/85 | 18/15 | 4/94 | 1/45 | 3/74 | 0/65 | 6/82 | 4/72 | 0/7 | 32 | 284 | 0/1 | 0/1 | 45855 | 25/4 | 52 | 3746 | <0.5 |
| Se.Sa-06 | 62/75 | 16/95 | 4/7 | 0/85 | 3/64 | 0/66 | 2/95 | 4/33 | 0/1 | 16 | 153 | 0/1 | 0/1 | 45710 | 26 | 54 | 3712 | <0.5 |
| Se.Sa-07 | 63/9 | 17/35 | 3/84 | 0/46 | 4/01 | 0/6 | 2/63 | 6/1 | 0/1 | 3 | 40 | 0/1 | 0/1 | 27859 | 5/1 | 5 | 2572 | <0.5 |
| Se.Sa-08 | 64/1 | 18/24 | 3/95 | 0/48 | 3/59 | 0/58 | 2/24 | 5/08 | 0/1 | 4 | 138 | 0/1 | 0/1 | 54893 | 40/6 | 299 | 3802 | <0.5 |
| Se.Sa-09 | 64 | 18/52 | 4/15 | 0/49 | 3/68 | 0/57 | 2/18 | 5/04 | 0/1 | 7 | 29 | 1 | 0/1 | 54821 | 39/5 | 282 | 3446 | <0.5 |
| Se.Sa-10 | 62/8 | 17/15 | 4/86 | 0/64 | 3/62 | 0/63 | 2/9 | 4/3 | 0/1 | 6 | 19 | 0/1 | 0/1 | 53398 | 41/8 | 329 | 3458 | <0.5 |
| Se.Sa-11 | 61/65 | 17/25 | 5/03 | 1/15 | 3/61 | 0/61 | 4/86 | 4/72 | 0/1 | 5 | 25 | 0/1 | 0/1 | 48511 | 44/4 | 467 | 2298 | <0.5 |
| Se.Sa-12 | 60/75 | 17/45 | 5/14 | 1/04 | 3/74 | 0/59 | 4/74 | 4/66 | 0/1 | 3 | 16 | 0/1 | 0/1 | 52377 | 49/6 | 506 | 2671 | <0.5 |
| Tl | Li | Be | Na | K | Ca | Mg | Al | Ga | Cs | Rb | Ba | Sr | Th | U | Y | Zr | Hf | Nb | Ta |
| 0/55 | 11 | 4/9 | 31348 | 34626 | 24966 | 2871 | 7465 | 15/2 | 4/8 | 94 | 613 | 316 | 4/35 | 1/2 | 14/4 | 119 | 3/08 | 5/5 | 0/4 |
| 0/41 | 10 | 3/9 | 27389 | 28248 | 18024 | 1856 | 6497 | 15/2 | 3/9 | 79 | 420 | 315 | 4/29 | 1/5 | 14/5 | 18 | 3/12 | 4/6 | 0/31 |
| 0/6 | 15/8 | 1/1 | 32600 | 35200 | 13500 | 2400 | 2/66 | 15/2 | 5/39 | 74/3 | 254 | 132 | 2/7 | 0/3 | 8/7 | 109 | 3/78 | 4/7 | 0/46 |
| 0/51 | 22/6 | 1/4 | 36600 | 36200 | 47700 | 3900 | 4/17 | 18/6 | 5/67 | 78/2 | 368 | 223 | 3/9 | 0/3 | 18 | 128 | 3/65 | 5/4 | 0/43 |
| 0/58 | 18/5 | 1/2 | 35700 | 38100 | 34500 | 1400 | 2/56 | 17/3 | 6/69 | 101 | 400 | 184 | 3/2 | 0/2 | 15 | 110 | 3/15 | 4/9 | 0/37 |
| 0/56 | 17/3 | 1/5 | 35723 | 37512 | 35000 | 1290 | 2/36 | 16/2 | 6/78 | 122 | 359 | 190 | 3/2 | 0/2 | 15 | 110 | 3/14 | 5/3 | 0/25 |
| 0/39 | 10 | 3/9 | 30221 | 36620 | 23230 | 2781 | 7365 | 15 | 4 | 802 | 512 | 312 | 3/9 | 1/3 | 14 | 100 | 3/04 | 5/2 | 0/26 |
| 0/56 | 20/6 | 1/3 | 29000 | 42100 | 32220 | 4100 | 3450 | 17/8 | 5/51 | 86/1 | 398 | 173 | 4/5 | 0/2 | 20/6 | 142 | 4/15 | 6 | 0/48 |
| <0.1 | 14 | 0/2 | 22946 | 7106 | 47451 | >2% | 75884 | 15/1 | 0/7 | 13 | 126 | 197 | 0/91 | 0/3 | 15/5 | 48 | 1/75 | 8/1 | 0/83 |
| <0.1 | 12 | 0/2 | 23126 | 6382 | 53087 | >2% | 81673 | 15/4 | 1 | 10 | 105 | 272 | 0/84 | 0/4 | 15/5 | 49 | 1/81 | 4/6 | 0/57 |
| 0/16 | 3 | 0/2 | 19532 | 2373 | 55661 | >2% | 82422 | 15/8 | 1/7 | 6 | 61 | 141 | 0/28 | 0/2 | 17/2 | 42 | 1/64 | 4/9 | 0/6 |
| <0.1 | <1 | 0/2 | 1761 | 244 | >10% | 7241 | 89852 | 15/7 | <0/5 | <1 | 14 | 43/7 | 0/68 | 0/9 | 9/3 | 28 | 1/29 | 6/4 | 0/58 |
| 0/15 | 6 | 0/2 | 25505 | 3146 | 48663 | >2% | 86485 | 16 | 0/9 | 3 | 60 | 196 | <0.1 | 0/2 | 11/8 | 33 | 1/32 | 5/4 | 0/53 |
| <0.1 | 7 | 0/2 | 24429 | 3515 | 54628 | >2% | 88529 | 16/1 | 0/9 | 4 | 61 | 182 | <0.1 | 0/2 | 12/9 | 33 | 1/36 | 4/5 | 0/5 |
| 0/1 | 18 | 0/2 | 26564 | 16425 | 17194 | 9009 | 70541 | 15/9 | 1/8 | 42 | 92 | 169 | 0/33 | 0/4 | 35/7 | 62 | 2/16 | 4/1 | 0/39 |
| <0.1 | 17 | 0/2 | 15347 | 8660 | 66205 | >2% | 68084 | 15/6 | 2/5 | 17 | 110 | 330 | 0/71 | 0/3 | 13/1 | 37 | 1/54 | 5/6 | 0/62 |
| <0.1 | 32 | 0/2 | 12006 | 7428 | 48237 | >2% | 62404 | 16/3 | 1/1 | 9 | 105 | 264 | 0/58 | 0/34 | 11/6 | 34 | 1/34 | 5/2 | 0/66 |
| <0.1 | 33 | 0/2 | 12023 | 7004 | 64240 | >2% | 59380 | 16/7 | 1/4 | 13 | 89 | 274 | 0/47 | 0/2 | 11/3 | 33 | 1/33 | 4/9 | 0/49 |
| <0.1 | 39 | 0/2 | 2871 | 3508 | 42747 | >2% | 34053 | 16/6 | 0/7 | <1 | 55 | 121 | 0/2 | 0/3 | 6/9 | 21 | 1/02 | 3/7 | 0/34 |
| 0/1 | 40 | 0/2 | 4524 | 1614 | 40212 | >2% | 42514 | 16/3 | 4/7 | 2 | 20 | 89/4 | 0/39 | 0/3 | 8/7 | 25 | 1/09 | 3/8 | 0/36 |
| P | La | Ce | Pr | Nd | Sm | Eu | Er | Gd | Tb | Dy | Ho | Tm | Yb | Lu |
| 1090 | 13 | 30 | 3/93 | 13/7 | 2/98 | 1 | 1/66 | 3/26 | 0/47 | 3/07 | 0/39 | 0/27 | 1/8 | 0/29 |
| 1237 | 11 | 26 | 3/7 | 12/6 | 2/89 | 0/95 | 1/61 | 3/26 | 0/46 | 3/05 | 0/39 | 0/27 | 1/7 | 0/26 |
| 1000 | 4/6 | 9/91 | 1/35 | 5/8 | 1/5 | 0/6 | 1/3 | 0 | 0/27 | 1/85 | 0/39 | 0/21 | 1/4 | 0/23 |
| 1000 | 8/9 | 19/5 | 2/6 | 11 | 3/02 | 1/04 | 2/34 | 0 | 0/5 | 3/37 | 0/68 | 0/33 | 2/3 | 0/36 |
| 800 | 5/6 | 13/5 | 1/82 | 8/02 | 2/35 | 0/92 | 1/77 | 0 | 0/42 | 2/78 | 0/57 | 0/3 | 1/8 | 0/3 |
| 900 | 6/1 | 12/5 | 1/73 | 9/26 | 2/36 | 0/77 | 1/8 | 0 | 0/32 | 2/45 | 0/58 | 0/21 | 2 | 0/23 |
| 1032 | 12 | 32 | 2/9 | 12/8 | 2/7 | 1 | 1/56 | 0 | 0/41 | 2/8 | 0/34 | 0/24 | 1/6 | 0/29 |
| 1000 | 7/4 | 18 | 2/31 | 10/8 | 3/24 | 1/02 | 2/5 | 3/39 | 0/52 | 3/3 | 0/74 | 0/32 | 2/5 | 0/41 |
| 407 | 6 | 7 | 1 | 6/9 | 0/22 | 0/67 | 1/34 | 2/16 | 0/39 | 2/79 | 0/39 | 0/3 | 1/9 | 0/31 |
| 523 | 7 | 7 | 1/33 | 7/4 | 0/21 | 0/66 | 1/29 | 2/23 | 0/39 | 3/07 | 0/39 | 0/29 | 2/1 | 0/3 |
| 278 | 4 | 4 | 0/66 | 4/7 | 0/02 | 0/43 | 1/57 | 2/1 | 0/42 | 3/33 | 0/65 | 0/31 | 2/1 | 0/32 |
| 397 | 8 | 7 | 1/1 | 5 | 0/02 | 0/31 | 0/81 | 1/97 | 0/31 | 2/1 | 0/58 | 0/2 | 1/4 | 0/18 |
| 195 | 3 | 1 | 0/28 | 2/5 | 0/02 | 0/35 | 1/19 | 1/79 | 0/32 | 2/41 | 0/57 | 0/22 | 1/7 | 0/21 |
| 205 | 3 | 2 | 0/28 | 2/4 | 0/02 | 0/33 | 1/13 | 1/78 | 0/32 | 2/46 | 0/58 | 0/21 | 1/8 | 0/17 |
| 590 | 6 | 8 | 1/46 | 7/8 | 0/48 | 0/8 | 2/86 | 2/93 | 0/67 | 5/06 | 0/64 | 0/54 | 3/3 | 0/53 |
| 656 | 7 | 8 | 1/43 | 7/2 | 0/26 | 0/7 | 1 | 2/36 | 0/39 | 2/88 | 0/43 | 0/2 | 1/8 | 0/23 |
| 619 | 7 | 8 | 1/44 | 7/4 | 0/12 | 0/66 | 1/13 | 2/13 | 0/36 | 2/51 | 0/42 | 0/23 | 1/6 | 0/17 |
| 594 | 7 | 7 | 1/43 | 7/9 | 0/02 | 0/6 | 1 | 2/29 | 0/36 | 2/5 | 0/71 | 0/17 | 1/6 | 0/21 |
| 373 | 4 | 3 | 0/66 | 3/7 | 0/02 | 0/36 | 0/67 | 1/76 | 0/24 | 1/97 | 0/67 | 0/1 | 1 | 0/15 |
| 432 | 5 | 5 | 0/86 | 4/3 | 0/02 | 0/23 | 0/76 | 1/92 | 0/32 | 2/18 | 0/65 | 0/12 | 1/3 | 0/24 |
4.6. Tectono-Magmatic Model
5. Conclusion
References
- Alipour-Asll, M., Geochemistry, fluid inclusions and sulfur isotopes of the Govin epithermal Cu–Au mineralization, Kerman province, SE Iran. J. Geochem. Expl. 2019. 196, 156–172, https://doi.org/10.1016/j.gexplo.2018.09.011.
- Rajabpour, Sh., Jiang, S.Y., Lehmann, B., Abedini, A., Gregory, D.D., Fluid inclusion and O-H–C isotopic,9 constraints on the origin and evolution of ore-forming fluids of the Cenozoic volcanic-hosted Kuh Pang copper deposit, Central Iran. Ore Geol. Rev. 2018. 94, 277–289, https://doi.org/10.1016/j.oregeorev.2018.02.003.
- Hassanpour, Sh., Alirezai, S. The Eocene Masjed Daghi Porphyry Cu-Au Deposit, NW Iran: An Example of Island Arc-Type Porphyry Systems. Earth Sciences Journal, 2017. pp. 43–58. https://www.magiran.com/p1738413.
- Meskini Siahmard, Sh., Ferdoust, F., Rezaei Kahkhaei, M. Geological, Alteration, and Geochemical Studies of the Gheysari Copper Deposit, West Toroud, Semnan Province. Earth Sciences Research Journal (ESRJ), Shahid Beheshti University, 2021. https://doi.org/10.48308/ESRJ.2021.100883.
- Campus, F., Distroto Minero Punta del cobre, modelo interpretative. Rev. Geol. Chile, 1980. 11, 51–76.
- Wilson, N.S.F., Zentilli, M., The role of organic matter in the genesis of the El Soldado volcanic-hosted manto-type Cu deposit, Chile. Econ. Geol. 1999. 94, 1115–1136, https://doi.org/10.2113/gsecongeo.94.7.1115 .
- Ruiz, C., Aguirre, L., Corvalan, J., Klohn, C., Klohn, E., Levi, B., Geología y yacimientos Metalíferos de Chile. Instituto de Investigaciones Geol´ ogicas, Santiago, Chile, 1965. p. 302.
- Ruiz, C., Peebles, F., Geología, Distribuci´on y g´ enesis de los Yacimientos Metalíferos Chilenos. Editorial Universitaria, Santiago, Chile, 1988. p. 305.
- Palacios, C., Subvolcanic copper deposits in the Coastal Range of northern Chile. Zentralblatt für Geologie und Pal¨aontologie, Teil I, 1985, H.9/10, Stuttgart, 1986. p. 1605–1615, https://doi.org/10.1127/zbl_geol_pal_1/1985/1986/1605.
- Vivallo, W., Henríquez, F., Genesis común de los dep´ositos estratoligados y vetiformes de cobre del Jur´ asico Medio a Superior en la Cordillera de la Costa, Regi´ on de Antofagasta, Chile. Revista Geol´ogica de Chile, 1998. 25 (2), 199–228, https://doi.org/10.4067/S0716-02081998000200006.
- Losert, J., Genesis of copper mineralizations and associated alterations in the Jurassic volcanic rocks of the Buena Esperanza mining area, Departamento de Geología, Universidad. de Chile, 1973. 40, 64.
- Sato, T., Manto type copper deposits in Chile: a review. Bull. Geol. Surv. Jpn, 1984. 35, 565–582.
- Tosdal, R.M., Munizaga, F., Lead sources in Mesozoic and Cenozoic Andean ore deposits, north-central Chile (30–34 ◦ S). Mineral. Deposita, 2003. 38, 234–250, https://doi.org/10.1007/s00126-002-0307-2.
- Merinero, R., Ortega, L., Lunar, R., Pi˜na, R., C´ardenes, V., Framboidal chalcopyrite and bornite constrain redox conditions during formation of their host rocks in the copper stratabound mineralization of Picachos, north-central Chile. Ore Geol. Rev. 2019. 112, 103037, https://doi.org/10.1016/j.oregeorev.2019.103037.
- Kojima, S., Trist´a-Aguilera, D., Hayashi, K., Genetic aspects of the manto-type copper deposits based on geochemical studies of north Chilean deposits. Resour. Geol, 2009. 59 (1), 87–98, https://doi.org/10.1111/j.1751-3928.2008.00081.x.
- Samani, B., Mining evaluation report of Gavkoshte-Mohredraz region in the northwest of Dehbid. Geological Survey of Iran, 1998.
- Fazeli, A., Type of the copper mineralization at Veshnaveh deposit, south of Qom. [Unpublished M.Sc. thesis], Tehran, Kharazmi university, Iran, 2002. p. 157.
- Boveiri Konari, M., Rastad, E., Rashidnejad Omran, N., Volcanic redbed-type copper mineralization in the Keshtmahaki, Southern Sanandaj-Sirjan Zone, southeastern Iran. 11 th SGA Biennial Meeting Let’s Talk Ore Deposits, 2011. 26-29 Sept, Antofagasta, Chile.
- Abolipour, M., Rastad, E., Rashidnejad Omran, N., Manto-type copper mineralization in pyrobitumen-bearing porphyritic andesite, Koshkoiye district of Rafsanjan, Dehaj-Sardoiye subzone, 2015. Sci. Q. J. Geosci. 24 (95), 123–144.
- Alizadeh, V., Momenzadeh, M., Emami, M.H., Petrography, geochemistry, mineralogy, fluid inclusions and mineralization study of Vorezg-Qayen copper deposit. Sci. Q. J. Geosci. 2013. 22 (86), 47–58.
- Maghfouri, S., Movahednia, M., 2015. Investigation of geology and mineralization of Abbas Abad copper deposit and comparison with manto-type deposit. 18 th Symposium of the Geological Society of Iran, Tarbiat Modares University, Tehran, Iran (in Persian with English abstract).
- Maghfouri, S., Hosseinzadeh, M.R., Moayyed, M., Movahednia, M., Choulet, F., Geology, mineralization and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto-type deposit, northern Zanjan, Iran. Ore Geol. Rev., 2017. 81, 10–22, https://doi.org/10.1016/j.oregeorev.2016.12.007.
- Kaboodi, Z., Ghaderi, M., Rastad, E., Mineralogy, texture and structure and genetic model of Kahak Manto-type copper deposit in the Eocene volcano-sedimentary sequence, south Qom. Sci. Q. J. Geosci. 2019. 29 (113), 145–154.
- Fazli, N., Ghaderi, M., Movahednia, M., Maghfouri, S., Manto-type copper mineralization in the central part of the Urumieh-Dokhtar magmatic arc (Qom-Saveh region) with emphasis on the East Narbaghi deposit, northeast Saveh. Iranian J. Geol. 2021. 15 (59), 69–90, https://doi.org/10.22059/ijg.2021.302909.1072.
- Jiba, Z., Ghaderi, M., Maghfouri, S., Geology, mineralogy, and fluid inclusion studies of the Yamaghan Manto-type Cu (Ag) deposit, southeast Zanjan, NW Iran. Adv. Appl. Geol. 2021. 11 (3), 594–615.
- Salehi, L., Rasa, I., Sulfur isotopic characteristics of the chalcocite in Madan Bozorg Cu deposits, Abbas Abad, NE Iran, 2016. In: 34 th Geosciences Congress, Tehran, Iran.
- Glennie, K.W., Cretaceous tectonic evolution of Arabia’s eastern plate margin: A tale of two oceans, in Middle East models of Jurassic/Cretaceous carbonate systems. SEPM (Society for Sedimentary Geology) Special Publication, 2000. 69, 9–20, https://doi.org/10.2110/pec.00.69.0009.
- Rossetti, F., Nasrabady, M., Vignaroli, G., Theye, T., Gerdes, A., Razavi, M., Moin Vaziri, H. Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): Implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran, 2010. Terra Nova 22, 26–34, https://doi.org/10.1111/j.1365-3121.2009.00912.x.
- Maghfouri, S., Geology, Mineralogy, Geochemistry, and Genesis of Cu Mineralization within Late Cretaceous Volcano-Sedimentary Sequence in Southwest of Sabzevar, with Emphasis on the Nudeh Deposit. Unpublished M.Sc. thesis, Tarbiat Modares University, Iran, 2012. 312 p. (in Persian with English abstract).
- Soltani, A., Mineralogy, geochemistry and genesis of the Abri, Rahbari, and Cheshmeh Marziyeh cu deposit, NW Darooneh. M.Sc. Thesis, Shahrood University of Technology, Iran. 2016. 191 p.
- Monazzami Bagherzadeh, R., Karimpour, M. H., Farmer, J. L., Stern, C., Santos, J. F., Ribeiro, S., Rahimi, B., and Haidarian Shahri, M. R., Geochronology, petrology and geochemistry of intermediate and mafic Rocks of the Bornaward plutonic complex (northwest of Bardeskan, Iran). Journal of Economic Geology, 2018-2019. Vol. 10, No. 2, P: 425–448.
- Rezaeihamid, R., Tale Fazel, A., Mineralogy, minerals- chemistry and sulfur isotope geochemistry of Baharieh copper deposit (NE Kashmar): implications for ore genesis. Journal of Petrology, 10 Year, 2019. No.39, PP: 53–78.
- Jabari, A., Malekzadeh Shafaroudi, A., & Karimpoor, M. H., The stratabound (mantle-type) copper deposit of Kal Abri in the Eocene volcano-sedimentary complex, NW Bardaskan, NE Iran. Journal of Advanced Applied Geology, 2016. 23.
- Ramezaniabbakhsh, T., Karimpour, M. H., Azizi, H., Rahimi, B., and Saadat, S., Metallogeny of mantle-copper deposits, special view in Nasim copper deposit, northwest of Bardaskan, Khorasan Razavi, Iran. Journal of Economic Geology, 2023. Vol. 15. No. 1, PP: 143-174, DOI: 10.22067/ECONG.2023.81591.1071.
- Ebrahimi. S., Arab-Amiri. A., Ghanbari. H., Mineralogy, alteration, fluid inclusion and stable isotopes studies of the Sharifabad-Bardeskan copper deposit, NE Iran., Scientific Quarterly Journal, GEOSCIENCES, 2020. Vol. 30, No. 117, p:135-146.
- Heidari, M., Study of Geochemistry, Sulfur Stable isotopes, and Genesis of Madan Bozorg Copper Deposit (Abbasabad, East of Shahroud). Unpublished M.Sc. thesis, Bu-Ali Sina University, Iran, 2012. 169 p. (in Persian with English abstract).
- Taefi, N., Mousivand, F., Sadeghian, M., Mineralogy, geochemistry, and genesis of copper mineralization in the Grik and Gurkhan Southeast of Shahrood. 6 th Symposium of Iranian Society of Economic Geology, University of Birjand, Birjand, Iran, 2014. (in Persian with English abstract).
- Entezari Harsini, A., Geology, Geochemistry, Mineralization, Genesis and Isotope studies of Golcheshmeh deposit, South Neyshabour, Northeastern Iran. Unpublished Ph.D. thesis, Ferdowsi University of Mashhad, Iran, 2017. 310 p. (in Persian with English abstract).
- Rezapanah Khour, H., Investigation of Geology, Alteration and the Cu Mineralization in Cheshmeh-Hadi Area, Bardaskan (Khorasan Razavi Province, Northeast Iran). Unpublished M.Sc. thesis. Shahid Bahonar University of Kerman, Iran, 2016. 148 p. (in Persian with English abstract).
- Aghanabati, A., Geology of Iran. Geological Survey of Iran, Tehran, Iran, 2004, 586 p.
- Alavi, M., Sedimentary and structural characteristics of the Paleo Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 1991. 103:983-992, https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2.
- Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R.J., HokieFlincs_H 2 O-NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H 2 O-NaCl. Comput. Geosci, 2012. 49, 334–337. https://doi.org/10.1016/j.cageo.2012.01.022.
- Eftekharnejad, J., Tectonic division of Iran with respect to sedimentary basins. J. Iran. Petrol. Soc. 1981. 82, 19–28 in Persian.
- Shahrabi. M., Hosseini. M., Shabani. K., Geological survey and Mineral Exploration of Iran, 1:250,000 Bardeskan quadrangle, 2007.
- Ghaeni. F., Moussavi Harami. R., Geological survey and Mineral Exploration of Iran, Ferdowsi university of Mashhad, 1:100,000 Doruneh geological map, 2007.
- Zentilli, M., Munizaga, F., Graves, M.C., Boric, R., Wilson, N.S.F., Mukhopadhyay, P.K., Snowdon, L.R., Hydrocarbon involvement in the genesis of ore deposits: an example in Cretaceous strata-bound (manto-type) copper deposits of central Chile. Int. Geol. Rev., 1997. 39, 1–21, https://doi.org/10.1080/00206819709465257.
- Wilson, N.S.F., Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile. Int. J. Coal Geol., 2000. 43, 53–82, https://doi.org/10.1016/S0166-5162(99)00054-3.
- Herazo, A., Reich, M., Barra, F., Morata, D., Real, I.D., Pag` es, A., Assessing the role of bitumen in the formation of stratabound Cu-(Ag) deposits: Insights from the Lorena deposit, Las Luces district, northern Chile. Ore Geol. Rev., 2020. 124, 103639, https://doi.org/10.1016/j.oregeorev.2020.103639.
- Dissanayake, C.B., Gold and other metals in graphite. In: Parnell, J., Kucha, H. and Landais, P. (eds.), Bitumen in Ore Deposits. Society for Geology Applied to Mineral Deposits., 1993. SP. 9, 138–152, https://doi.org/10.1007/978-3-642-85806-2_9.
- Wilson, N.S.F., Zentilli, M., The role of organic matter in the genesis of the El Soldado volcanic-hosted manto-type Cu deposit, Chile. Econ. Geol., 1999. 94, 1115–1136, https://doi.org/10.2113/gsecongeo.94.7.1115.
- Merinero, R., Ortega, L., Lunar, R., Pi˜na, R., C´ardenes, V., Framboidal chalcopyrite and bornite constrain redox conditions during formation of their host rocks in the copper stratabound mineralization of Picachos, north-central Chile. Ore Geol. Rev., 2019. 112, 103037, https://doi.org/10.1016/j.oregeorev.2019.103037.
- Sheppherd. T.J., Rankin. A.H., Alderton. D.H.M., A Practical Guide to Fluid Inclusion Studies, Blackie and Son, 1985. 239 pp.
- Bodnar, R.J., A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties on inclusion fluids, 1983. Economic Geology 78, 534–542, https://doi.org/10.2113/gsecongeo.78.3.535.
- Hedenquist J.W. and Henley R.W., The important of CO2 on freezing point measurements of fluid inclusion: evidence from active geothermal system and implication for epithermal ore deposition. Econ., 1985. Geol., 80: 1379-1406, https://doi.org/10.2113/gsecongeo.80.5.1379.
- Kant, W., Warmada, W., Idrus, A., Setijadji, L.D., Watanabe, K., Fluid inclusion study of the polymetalic epithermal quartz veins at Soripesa Prospect Area, Sumbawa island, Indonesia. Journal of Applied Geology., 2012. 4, 77-89, https://doi.org/10.22146/jag.7199.
- Wilkinson, J.J., Fluid Inclusions in Hydrothermal Ore Deposits., 2001. Lithos 55, 229-272, https://doi.org/10.1016/S0024-4937(00)00047-5.
- Haas, J.L., The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, 1971. Economic Geology 66, 940-946, https://doi.org/10.2113/gsecongeo.66.6.940.
- Pirajno, F., Hydrothermal Mineral Deposits, Principle and Fundamental Concept for the Exploration Geologist, 2009. Springer, 706 p.
- Kesler S. E. Ore-forming fluids. Elements, 2005. 1(1), pp. 13-18, https://doi.org/10.2113/gselements.1.1.13.
- Zhang, Y.G., Frantz, J.D., Determination of the homogenisation temperatures and densities of superficial fluids in the system NaCl-KCl-CaCl 2-H 2 O using synthetic f luids inclusions, 1987. Chem. Geol. 64, 335–345. https://doi.org/10.1016/0009-2541 (87)90012-X.
- Lattanzi, P., Applications of fluid inclusions in the study and exploration of mineral deposits, 1991. Europian Journal of Mineral. 3, 689–697, https://doi.org/10.1127/ejm/3/4/0689.
- Beane, R.E., The magmatic-meteoric transition. Geothermal Resources Council, 1983. Special Report 13, 245–253.
- Hoefs, J., Stable Isotope Geochemistry, 2004. Springer- Verlog, Berlin, 287p, https://doi.org/10.1007/978-3-662-05406-2.
- Méheut M, Lazzeri M, Balan E, Mauri F., Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochimica et Cosmochimica Acta., 2007. 71: 3170-3181, https://doi.org/10.1016/j.gca.2007.04.012.
- Li YB, Liu JM., Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta., 2006. 70: 1789 – 1795, https://doi.org/10.1016/j.gca.2005.12.015.
- Ohmoto, H., & Goldhaber, M.B., Sulfur and Carbon Isotope: In Barnes, H.L., (ed), Geochemistry of Hydrothermal Ore Deposits, 1997. 3rd ed., New York, John Wiley & Sons, p. 517- 611.
- Marini L, Moretti R., Accornero M. Sulfur Isotopes in Magmatic-Hydrothermal Systems, Melts, and Magmas, 2011. In: Behrens H, Webster J, editors. Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes. Berlin, Boston: De Gruyter; p. 423-492. doi:10.1515/9781501508370-014.
- Hoefs, J., Stable Isotope Geochemistry (8th ed.), 2021. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-77692-3.
- Fazli, N., Ghaderi, M., Movahednia, M., Li, J.W., Lentz, D.R., Yan, S., Geology and genesis of the North Narbaghi Cu-Ag deposit in the Urumieh-Dokhtar magmatic arc, Iran: fluid inclusion and stable isotope constraints. Ore Geol, 2022. Rev. 144, 104801, https://doi.org/10.1016/j.oregeorev.2022.104801.
- Zamanian, H., Dolatshahi, S., Yang, X., Karimzadeh S.A,m., Meshkani, S.A., Geochemical, fluid inclusion and O-H-S isotope constraints on the origin of the Rangraz copper deposit, Central Iran. Ore Geology Reviews, Volume 128, January. 2021, 103877, https://doi.org/10.1016/j.oregeorev.2020.103877.
- Zamanian, H.; Tale Fazel, E.; Sameti, M.; Asadi Haroni, H.; Yang, X., The petrogenesis and metallogenesis of the Kalchuyeh epithermal gold deposit, central Iran: Constraints from geochemistry, fluid inclusion, and H–O–S isotopes. Journal of Asian Earth Sciences, 2023, Article 105505. DOI: 10.1016/j.jseaes.2022.105505.
- Latifi Saii, F., Mirnejad, H., Alipour Asl, M., & Niroomand, S., Evaluating the Au mineralization in the Darrehzar vein system (Pariz area — Kerman Province), with emphasis on fluid inclusion and sulfur isotope studies. Advanced Applied Geology, 2014-2015 4(4), 65–75.
- Downes, P. M., Yerranderie, a Late Devonian silver–gold–lead intermediate sulfidation epithermal district, eastern Lachlan Orogen, New South Wales, Australia. Resource Geology, 2007. 57(1), 1–23. https://doi.org/10.1111/j.1751-3928.2006.00001.x.
- Liu, Y., Zhang, J., & Li, Y., Genesis of the Zhijiadi Ag–Pb–Zn Deposit, Central North China Craton: Constraints from Fluid Inclusions and Stable Isotope Data. Geofluids, 2017. Article ID 4153618. https://doi.org/10.1155/2017/4153618.
- Niu, S.-D., Li, S.-R., Santosh, M., Zhang, D.-H., Li, Z.-D., Shan, M.-J., Lan, Y.-X., & Gao, D.-R., Mineralogical and isotopic studies of base metal sulfides from the Jiawula Ag–Pb–Zn deposit, Inner Mongolia, NE China. Journal of Asian Earth Sciences, 2016. 115, 480–494. https://doi.org/10.1016/j.jseaes.2015.10.020.
- Mango, H., Oreskes, N., & Zantop, H., Origin of epithermal Ag–Au–Cu–Pb–Zn mineralization in Guanajuato, Mexico. Mineralium Deposita, 2013. 49(1), 119–143. https://doi.org/10.1007/s00126-013-0502-2.
- Rice, C. M., McCoyd, R. J., Boyce, A. J., & Marchev, P., Stable isotope study of the mineralization and alteration in the Madjarovo Pb–Zn district, south-east Bulgaria. Mineralium Deposita, 2007. 42(7), 691–713. https://doi.org/10.1007/s00126-007-0130-x.
- Yilmaz, H., Oyman, T., Nuran Sonmez, F., Arehart, G., Zeki, B., Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey), Ore Geol, 2010. Rev. 37, 236–258, https://doi.org/10.1016/j.oregeorev.2010.04.001.
- Rollinson, H., Rising geochemical data: evaluation, presentation, interpretation. Longman John Wiley and Sons, New York, 1993. 352 p.
- Goudarzi, M.; Zamanian, H.; Klötzli, U.; Lentz, D.; Ullah, M. Genesis of the Mamuniyeh Copper Deposit in the Central Urumieh-Dokhtar Magmatic Arc, Iran: Constraints from Geology, Geochemistry, Fluid Inclusions, and H–O–S Isotopes. Ore Geol. Rev. 2024, 175, 106279. https://doi.org/10.1016/j.oregeorev.2024.106279.
- Allègre, C. J., Isotope Geology (C. Sutcliffe, Trans.). Cambridge University Press, 2008. ISBN 978-0-521-86228-8. DOI:10.1017/CBO9780511809323.
- Seal II, Robert, R., Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 2006. 61: 633-677, https://doi.org/10.2138/rmg.2006.61.12.
- Barnes. Geochemistry of Hydrothermal ore deposite, Chapter 11, Sulfur and Carbon Isotope, Ohmoto and Goldbar, 1997.
- Movahednia, M., Rastad, E., Rajabi, A., Maghfouri, S., Gonz´ alez, F.J., Alfonso, P., Choulet, F., Canet, C. The Ab-Bagh Late Jurassic-Early Cretaceous sediment- hosted Zn-Pb deposit, Sanandaj-Sirjan zone of Iran: ore geology, fluid inclusions and (S–Sr) isotopes. Ore Geol. 2020. Rev. 121, 103484, https://doi.org/10.1016/j.oregeorev.2020.103484.
- Sasaki, A., Ulriksen, C.E., Sato, K., Ishihara, S., Sulfur isotope reconnaissance of porphyry copper and manto-type deposits in Chile and the Philippines, 1984. Bull. Geol. Surv. Jpn. 35, 615–622.
- Puig, A., Spiro, B., The source of sulphur in polymetallic deposits in the Cretaceous magmatic arc, Chilean Andes. J. South Am, 1988. Earth Sci. 1, 261–266, https://doi.org/10.1016/0895-9811(88)90004-1.
- Munizaga, F., Reyes, J.C., Nystr¨ om, J.O., Razones isot´ opicas de los sulfuros del distrito minero de Cerro Negro: Un posible indicador de los dep´ositos estratoligados de Cu hospedados en rocas sedimentarias lacustres, 1994. Rev. Geol. Chile 21, 189–195.
- Munizaga, F., Zentilli, M., Sulphur Isotope Characterization of Stratabound Copper Deposits in Chile, 1994. 45. Comucicaciones, Universidad de Chile, Santiago, p. 127–134.
- Vivallo, W., Henríquez, F., G´ enesis común de los dep´ositos estratoligados y vetiformes de cobre del Jur´ asico Medio a Superior en la Cordillera de la Costa, Regi´ on de Antofagasta, Chile, 1998. Revista Geol´ogica de Chile 25 (2), 199–228, https://doi.org/10.4067/S0716-02081998000200006.
- Saric, N., Kreft, C., Huete, C., Geología del yacimiento Lo Aguirre, Chile, 2003. Rev. Geol. Chile 30, 317–331, https://doi.org/10.4067/S0716-02082003000200010.
- Wilson, N.S.F., Zentilli, M., Reynolds, P.H., Age of mineralization by basinal f luids at the El Soldado manto-type Cu deposit, 2003a. Chile: 40 feldspar. Chem. Geol. 197, 161–176, https://doi.org/10.1016/S0009-2541(02)00350-9.
- Wilson, N.S.F., Zentilli, M., Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile, 2006. Int. J. Coal Geol. 65, 158–169, https://doi.org/10.1016/j.coal.2005.04.012.
- Cai, Y.T., Ni, P., Wang, G.G., Pan, J.Y., Zhu, X.T., Chen, H., Ding, J.Y., Fluid inclusion and H-O–S–Pb isotopic evidence for the Dongxiang Manto-type copper deposit, South China, 2016. J. Geochem. Explor. 171, 71–82, https://doi.org/10.1016/j.gexplo.2016.01.019.
- Shen, P., Pan, H., Li, Z., Sun, J., Shen, Y., Li, C., Feng, H., Cao, C., A Manto-type Cu deposit in the Central Asian Orogenic Belt: the Hongguleleng example (Xinjiang, China), 2020. Ore Geol. Rev. 124, 103656, https://doi.org/10.1016/j.oregeorev.2020.103656.
- Zheng, Y. F., Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet, 1993b. Sci. Lett. 120, pp. 247-263, https://doi.org/10.1016/0012-821X(93)90243-3.
- Winchester, J. A. and Floyd, P. A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology., 1977. 20: 325-343, https://doi.org/10.1016/0009-2541(77)90057-2.
- Hasite, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram, Journal of Petrology, 2007. v. 48, p. 2341-2357, https://doi.org/10.1093/petrology/egm062.
- Pearce, J.A., Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C.J. and Norry, M.J., Eds., Continental Basalts and Mantle Xenoliths, Shiva Cheshire, 1983. UK, 230-249.
- Harker, A. The Natural History of Igneous Rocks. Macmillam, 1909, https://doi.org/10.2307/1777000.
- Wilson, M. Igneous Petrogenesis. Unwin Hyman, London, 2007.461 p.
- Feely, T. C; Cosca, M. A. and Lindsay, C. R., Petrogenesis and implications of calc-alkaline cryptic hybrid magmas from Washburn volcano, Absaroka volcanic province, U.S.A. Journal of Petrology, 2002. 43(4), https://doi.org/10.1093/petrology/43.4.663.
- Davidson, J., Turner, S., Handley, H., Macpherson, C. and Dosseto, A., Amphibole “sponge” in arc crust Geology., 2007. 35: 787–790, https://doi.org/10.1130/G23637A.1.
- Schiano, P., Monzier, M., Eissen, J. P., Martin, H. and Koga, K. T., Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology., 2010. 160, 297–312, https://doi.org/10.1007/s00410-009-0478-2.
- Sun, S. S., and McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications, 1989. 42(1), 313-345, https://doi.org/10.1144/GSL.SP.1989.042.01.19.
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. In: Trace element geochemistry of volcanic rocks: Applications for massive sulfide exploration (Ed.Wyman, D.A.) Short Course Notes, 1996. 12, p79-113. Geological Association of Canada .
- Stepanov, A., Mavrogenes, J.A., Meffre, S., Davidson, P. The key role of mica during igneous concentration of tantalum. Contrib. Miner. Petrol, 2014. 167, 1009, https://doi.org/10.1007/s00410-014-1009-3.
- Klimm, K., Holtz, F., King, P.L. Fractionation vs. magma mixing in the Wangrah suite A-type granites, Lachlan Fold Belt, Australia, 2008. experimental constraints. Lithos 102, 415–434, https://doi.org/10.1016/j.lithos.2007.07.018.
- Boynton, W.V. Cosmochemistry of the rare earth elements, Meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry. Developments in Geochemistry. Elsevier, Amsterdam, 1984. pp. 115–1522, https://doi.org/10.1016/B978-0-444-42148-7.50008-3.
- Shafaii Moghadam, H., Hua Li, X., Ling, X.X., Santos, J.F., Stern, R.J., Li, Q.L., Ghorbani, G. Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U-Pb zircon geochronology and isotope geochemistry, 2015. Lithos 216–217, 118–135, https://doi.org/10.1016/j.lithos.2014.12.012.
- Ghasemi, H., Rezaei-Kahkhaei, M. Petrochemistry and tectonic setting of the Davarzan-Abbasabad Eocene Volcanic (DAEV) rocks, NE Iran. Miner, 2015. Petrol. 109, 235–252, https://doi.org/10.1007/s00710-014-0353-3.
- Berberian, M., King, G.C.P. Towards a paleogeography and tectonic evolution of Iran. Canadian. J. Asian. Earth Sci, 1981. 18, 210–265, https://doi.org/10.1139/e81-019.
- Ghasemi, A., Talbot, C.J. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). J. Asian Earth Sci, 2006. 26, 683–693, https://doi.org/10.1016/j.jseaes.2005.01.003.
- Asiabanha, A., Bardintzeff, J.M., Kananian, A., Rahimi, G. Post-Eocene volcanics of the Abazar district, Qazvin, Iran: mineralogical and geochemical evidence for a complex magmatic evolution. J. Asian Earth Sci, 2012. 45, 79–94, https://doi.org/10.1016/j.jseaes.2011.09.020.
- Asiabanha, A., Foden, J. Post Collisional transition from an extensional volcano sedimentary basin to a continental arc in the Alborz Ranges, N Iran, 2012. Lithos 148, 98–111, https://doi.org/10.1016/j.lithos.2012.05.014.

















| Chalcopyrite<=>H2S[65] | ||||||||||
| Sample Point | Mineral | δ34Smin(%) | T(֯C)*-Min | T(֯C)*-Ave | T(֯C)*-Max | 1000 Ln α-T(min) | 1000 Ln α-T(Ave) | 1000 Ln α-T(max) | δ34SH2Sfluid(%) | |
| Se-Sa-S8 | Chalcocite | -2/9 ± 0/2 | -2/9 ± 0/2 | |||||||
| Se-Sa-S14 | Chalcocite- Malachite-Azurite | -7/1 ± 0/0 | -7/1 ± 0/0 | |||||||
| Se-Sa-S15-2 | Chalcocite-Bornite-Chalcopyrite- Covellite-Silica(Quartz) | -23/9 ± 0/3 | 100 | 193/69 | 280 | 0/4 | 0/2 | 0/2 | -24/1 ± 0/3 | |
| Galena<=>H2S[65] | ||||||||||
| Sample Point | Mineral | δ34Smin(%) | T(֯C)*-Min | T(֯C)*-Ave | T(֯C)*-Max | 1000 Ln α-T(min) | 1000 Ln α-T(Ave) | 1000 Ln α-T(max) | δ34SH2Sfluid(%) | |
| Se-Sa-S8 | Chalcocite | -2/9 ± 0/2 | -2/9 ± 0/2 | |||||||
| Se-Sa-S14 | Chalcocite- Malachite-Azurite | -7/1 ± 0/0 | -7/1 ± 0/0 | |||||||
| Se-Sa-S15-2 | Chalcocite-Bornite-Chalcopyrite- Covellite-Silica(Quartz) | -23/9 ± 0/3 | 100 | 193/69 | 280 | -4/6 | -2/9 | -2/1 | -21/0 ± 0/3 | |
| Galena<=>Chalcopyrite[65] | ||||||||||
| Sample Point | Mineral | δ34Smin(%) | T(֯C)*-Min | T(֯C)*-Ave | T(֯C)*-Max | 1000 Ln α-T(min) | 1000 Ln α-T(Ave) | 1000 Ln α-T(max) | δ34SH2Sfluid(%) | |
| Se-Sa-S8 | Chalcocite | -2/9 ± 0/2 | -2/9 ± 0/2 | |||||||
| Se-Sa-S14 | Chalcocite- Malachite-Azurite | -7/1 ± 0/0 | -7/1 ± 0/0 | |||||||
| Se-Sa-S15-2 | Chalcocite-Bornite-Chalcopyrite- Covellite-Silica(Quartz) | -23/9 ± 0/3 | 100 | 193/69 | 280 | -3/3 | -1/5 | -0/6 | -22/4 ± 0/3 | |
| Muscovite<=>H2O[95] | |||||||||
| Sample Point | Mineral | δ18Omin(%) | T(֯C)*-Min | T(֯C)*-Ave | T(֯C)*-Max | 1000 Ln α-T(min) | 1000 Ln α-T(Ave) | 1000 Ln α-T(max) | δ18OH2Ofluid(%) |
| Se.Sa-S6 | Silica(Quartz) | +7/5 ± 0/0 | 90 | 177/5 | 386 | 12/4 | 5/6 | 0/1 | +1/9 ± 0/0 |
| Se.Sa-S15-1 | Chalcocite-Bornite-Chalcopyrite- Covellite-Silica(Quartz) | +7/6 ± 0/3 | 100 | 193/69 | 280 | 11/3 | 4/8 | 1/9 | +2/8 ± 0/3 |
| Quartz<=>H2O[64] | |||||||||
| Sample Point | Mineral | δ18Omin(%) | T(֯C)*-Min | T(֯C)*-Ave | T(֯C)*-Max | 1000 Ln α-T(min) | 1000 Ln α-T(Ave) | 1000 Ln α-T(max) | δ18OH2Ofluid(%) |
| Se.Sa-S6 | Silica(Quartz) | +7/5 ± 0/0 | 90 | 177/5 | 386 | 24/4 | 13/5 | 2/8 | -6/0 ± 0/0 |
| Se.Sa-S15-1 | Chalcocite-Bornite-Chalcopyrite- Covellite-Silica(Quartz) | +7/6 ± 0/3 | 100 | 193/69 | 280 | 22/9 | 12/1 | 6/5 | -4/5 ± 0/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
