Submitted:
19 September 2025
Posted:
22 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Grafting Affects the Tolerance of Watermelon to Biotic Stress
2.1. Virus Disease
2.2. Fungal Diseases
2.3. Root-Knot Nematode
3. Grafting Affected the Tolerance of Watermelon to Abiotic Stress
3.1. Drought Stress
3.2. Temperature Stress
3.3. Salt Stress
4. Effects of Grafting on Fruit Quality of Watermelon
4.1. Soluble Solids Content
4.2. Organic Acid
4.3. Lycopene
4.4. Physical and Sensory Quality
5. Mechanism of Grafting Affecting Disease Resistance and Stress Resistance of Plants
5.1. Biotic Stress Resistance
5.2. Abiotic Stress Resistance
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bahadur, A.; Singh, P.M.; Rai, N.; Singh, A.K.; Singh, A.K.; Karkute, S.G.; Behera, T.K. Grafting in vegetables to improve abiotic stress tolerance, yield and quality. The Journal of Horticultural Science and Biotechnology 2024, 99, 385–403. [Google Scholar] [CrossRef]
- Augstein, F.; Melnyk, C.W. Modern and historical uses of plant grafting to engineer development, stress tolerance, chimeras, and hybrids. The Plant Journal 2025, 121, e70057. [Google Scholar] [CrossRef] [PubMed]
- Singathiya, P.; Mahala, P.; Yadav, L.P.; Varotariya, K.; Brahmani, G.; Sohi, A.; Choudhary, R.; Jangu, R.; Uikey, P.; Kumar, S. Advanced Grafting Techniques for Mitigating Biotic and Abiotic Stresses in Vegetable Crops: Breeding and Biotechnological Approaches. Biotechnology for the Environment 2025, 2, 9. [Google Scholar] [CrossRef]
- Liu, C.; Lin, W.; Feng, C.; Wu, X.; Fu, X.; Xiong, M.; Bie, Z.; Huang, Y. A New Grafting Method for Watermelon to Inhibit Rootstock Regrowth and Enhance Scion Growth. Agriculture 2021, 11, 812. [Google Scholar] [CrossRef]
- Kantor, M.; Levi, A. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon. Notulae Scientia Biologicae 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, J.; Ren, R.; Liu, G.; Yao, X.; Lou, L.; Xu, J.; Yang, X. Proteomic Analysis of Fusarium oxysporum-Induced Mechanism in Grafted Watermelon Seedlings. Frontiers in Plant Science 2021. [Google Scholar] [CrossRef]
- Kousik, C.S.; Mandal, M.; Hassell, R. Powdery Mildew Resistant Rootstocks that Impart Tolerance to Grafted Susceptible Watermelon Scion Seedlings. Plant Disease 2018, 102, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Du, H.; Xiao, J.; Zhou, B.; Zheng, X.; Deng, Y.; Zheng, X.; Chen, M. Watermelon Wilt Disease: Causes, Harms, and Control Measures. Frontiers in Microbiology 2025, 16, 2025. [Google Scholar] [CrossRef]
- Byun, H.-S.; Choi, H.-S.; Kim, H.R.; Kwak, H.-R.; Kil, E.-J.; Kim, M. First Report of Melon Aphid-Borne Yellows Virus Infecting Watermelon in Korea. Plant Disease 2022, 106, 1766. [Google Scholar] [CrossRef]
- Shehata, S.; Ibrahim, M.F. Grafting, seed soaking/priming, soil amendment, and foliar application as tools to increase abiotic stress tolerance of crops. In Crop Sustainability and Intellectual Property Rights; Apple Academic Press: 2023; pp. 151–190.
- Morales, C.; Riveros-Burgos, C.; Espinoza Seguel, F.; Maldonado, C.; Mashilo, J.; Pinto, C.; Contreras-Soto, R.I. Rootstocks Comparison in Grafted Watermelon under Water Deficit: Effects on the Fruit Quality and Yield. Plants 2023, 12, 509. [Google Scholar] [CrossRef]
- Ma, G.; Kang, H. The Research Advance of Virus Diseases in the Cucurbitaceae. Heilongjiang Agricultural Sciences 2001, 44–47. [Google Scholar]
- Zhao, L.; Qiu, Y.; Zhang, X.; Liu, H.; Yang, J.; Zhang, J.; Zhang, H.; Xu, X.; Wen, C. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method. Scientia Agricultura Sinica 2021, 54, 4337–4347. [Google Scholar]
- Huitrón-Ramírez, M.V.; Ricárdez-Salinas, M.; Camacho-Ferre, F. Influence of Grafted Watermelon Plant Density on Yield and Quality in Soil Infested with Melon Necrotic Spot Virus. HortScience horts 2009, 44, 1838–1841. [Google Scholar] [CrossRef]
- Felipe, A.; García López, F.; González-Eguiarte, D.; Macías, R.; Zarazúa, P.; María, V.; Huitrón, R. Watermelon Production with Rootstocks in Soils Infested with the Melon Necrotic Spot Virus. 2018, 9, 577. 9.
- Ellouze, W.; Mishra, V.; Howard, R.J.; Ling, K.-S.; Zhang, W. Preliminary Study on the Control of Cucumber Green Mottle Mosaic Virus in Commercial Greenhouses Using Agricultural Disinfectants and Resistant Cucumber Varieties. Agronomy 2020, 10, 1879. [Google Scholar] [CrossRef]
- Yu, T.-A.; Chiang, C.-H.; Wu, H.-W.; Li, C.-M.; Yang, C.-F.; Chen, J.-H.; Chen, Y.-W.; Yeh, S.-D. Generation of Transgenic Watermelon Resistant to Zucchini Yellow Mosaic Virus and Papaya Ringspot Virus type W. Plant Cell Reports 2011, 30, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Ku, H.-M.; Chiang, Y.-H.; Ho, H.-Y.; Yu, T.-A.; Jan, F.-J. Development of Transgenic Watermelon Resistant to Cucumber Mosaic Virus and Watermelon Mosaic Virus by Using a Single Chimeric Transgene Construct. Transgenic Research 2012, 21, 983–993. [Google Scholar] [CrossRef]
- Thies, J.A. Grafting for Managing Vegetable Crop Pests. Pest Management Science 2021, 77, 4825–4835. [Google Scholar] [CrossRef]
- Liu, G. Identification and comprehensive control of main infectious diseases of greenhouse seedless watermelon in North China. Northern Horticulture 2013, 118–120. [Google Scholar]
- Yetışır, H.; Sari, N.; Yücel, S. Rootstock Resistance to Fusarium Wilt and Effect on Watermelon Fruit Yield and Quality. Phytoparasitica 2003, 31, 163–169. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, Z.; Sun, H.; Guo, H.; Song, Y.; Zhang, H.; Ruan, Y.; Xu, Q.; Huang, Q.; Shen, Q.; et al. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects. Microbiome 2024, 12, 101. [Google Scholar] [CrossRef]
- Kumar, V.; Mann, S.; Kumar, A. Screening of vegetables crop genotype against root-knot nematode (Meloidogyne incognita) under polyhouse conditions. INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES 2021, 17, 600–603. [Google Scholar] [CrossRef]
- Sumita, K.; Vivekananda, Y. A southern root-knot nematode (Meloidogyne incognita) first reported on cucumber in Manipur. Indian Journal Of Agricultural Research 2023. [Google Scholar] [CrossRef]
- Patel, T.; Quesada-Ocampo, L.M.; Wehner, T.C.; Bhatta, B.P.; Correa, E.; Malla, S. Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose. Horticulturae 2023, 9, 1132. [Google Scholar] [CrossRef]
- Saud, S.; Aryal, S.; Ojha, S.; Bhandari, P.; Ghimire, A.; Thapa, A. A Comprehensive Review: Root-knot Nematode; Biology and Management. Tropical Agroecosystems 2024, 5, 10–15. [Google Scholar] [CrossRef]
- García-Mendívil, H.A.; Munera, M.; Giné, A.; Escudero, N.; Picó, M.B.; Gisbert, C.; Sorribas, F.J. Response of two Citrullus amarus accessions to isolates of three species of Meloidogyne and their graft compatibility with watermelon. Crop Protection 2019, 119, 208–213. [Google Scholar] [CrossRef]
- Ariss, J.; Thies, J.; Kousik, S.; Hassell, R. Response of watermelon germplasm to southern root-knot nematode in field tests; 2008; pp. 622–623.
- Phani, V.; Gowda, M.T.; Dutta, T.K. Grafting Vegetable Crops to Manage Plant-parasitic Nematodes: a Review. Journal of Pest Science 2024, 97, 539–560. [Google Scholar] [CrossRef]
- Liu, B.; Ren, J.; Zhang, Y.; An, J.; Chen, M.; Chen, H.; Xu, C.; Ren, H. A New Grafted Rootstock Against Root-knot Nematode for Cucumber, Melon, and Watermelon. Agronomy for Sustainable Development 2015, 35, 251–259. [Google Scholar] [CrossRef]
- Thies, J.A.; Ariss, J.J.; Hassell, R.L.; Olson, S.; Kousik, C.S.; Levi, A. Grafting for Management of Southern Root-Knot Nematode, Meloidogyne incognita, in Watermelon. Plant Disease 2010, 94, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Pofu, M.; Mashela, P.; Mphosi, M. Management of Meloidogyne incognita in nematodesusceptible watermelon cultivars using nematoderesistant Cucumis africanus and Cucumis myriocarpus rootstocks. African Journal of Biotechnology 2011, 10, 8790–8793. [Google Scholar] [CrossRef]
- Thies, J.A.; Ariss, J.J.; Kousik, C.S.; Hassell, R.L.; Levi, A. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides). J Nematol 2016, 48, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.; Levi, A.; Ariss, J.; Hassell, R. RKVL-318, a Root-knot Nematode-resistant Watermelon Line as Rootstock for Grafted Watermelon. HortScience: a publication of the American Society for Horticultural Science 2015, 50, 141–142. [Google Scholar] [CrossRef]
- Hao, X.; Liu, F.; Liu, L.; Wu, H.; Liang, Z.; Zhao, W.; Wang, Y.; Gu, Q.; Kang, B. Zucchini yellow mosaic virus-induced hypersensitive response is associated with pathogenesis-related 1 protein expression and confers resistance in watermelon. Plant Cell Reports 2024, 43, 277. [Google Scholar] [CrossRef] [PubMed]
- Attavar, A.; Tymon, L.; Perkins-Veazie, P.; Miles, C.A. Cucurbitaceae Germplasm Resistance to Verticillium Wilt and Grafting Compatibility with Watermelon. HortScience 2020, 55, 141–148. [Google Scholar] [CrossRef]
- Mahapatra, S.; Rao, E.S.; Hebbar, S.S.; Rao, V.K.; Pitchaimuthu, M.; Sriram, S. Evaluation of rootstocks resistant to gummy stem blight and their effect on the fruit yield and quality traits of grafted watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). The Journal of Horticultural Science and Biotechnology 2023, 98, 635–648. [Google Scholar] [CrossRef]
- Mohamed, F.; El-Hamed, K.; Elwan, M.; Hussien, M.-A. Impact of Grafting on Watermelon Growth, Fruit Yield and Quality. Vegetable Crops Research Bulletin 2012, 76, 99. [Google Scholar] [CrossRef]
- Jang, Y.; Moon, J.-H.; Kim, S.-G.; Kim, T.; Lee, O.-J.; Lee, H.-J.; Wi, S.-H. Effect of Low-Temperature Tolerant Rootstocks on the Growth and Fruit Quality of Watermelon in Semi-Forcing and Retarding Culture. Agronomy 2023, 13, 67. [Google Scholar] [CrossRef]
- Sehularo, M.N.; Kgwaakgwaa, P.; Madumane, K.; Sewelo, L.T.; Batlang, U.; Kobue-Lekalake, R.; Malambane, G. Grafting Susceptible Watermelon on Wild Watermelon Root Stocks Improves Response to Moisture Stress and Improves Growth and Yield. Journal of Agricultural Science 2025. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G.; Rea, E. Yield, Mineral Composition, Water Relations, and Water Use Efficiency of Grafted Mini-watermelon Plants Under Deficit Irrigation. HortScience 2008, 43, 730–736. [Google Scholar] [CrossRef]
- Yavuz, N.; Seymen, M.; Yavuz, D.; Kal, Ü.; Kurtar, E.S.; Kal, S.; Gür, A. Functional roles of plant growth-promoting rhizobacteria in ungrafted and grafted watermelons under various deficit irrigation strategies. Agricultural Water Management 2025, 318, 109687. [Google Scholar] [CrossRef]
- Bikdeloo, M.; Colla, G.; Rouphael, Y.; Hassandokht, M.R.; Soltani, F.; Salehi, R.; Kumar, P.; Cardarelli, M. Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress. Horticulturae 2021, 7, 359. [Google Scholar] [CrossRef]
- Yavuz, D.; Gökmen Yılmaz, F.; Seymen, M.; Korkmaz, A.; Baştaş, K.K. Effects of Newly Isolated Rhizobacteria on the Physiological Characteristics and Nutrient Uptake of Watermelon Plants Grafted onto Different Rootstocks Under Water Stress. Journal of Crop Health 2024, 76, 865–881. [Google Scholar] [CrossRef]
- Kurtar, E.S.; Seymen, M.; Yavuz, D.; Acar, B.; Metin, D.; Atakul, Z.; Kal, Ü. Morphophysiological and biochemical investigation of the potential of citron watermelon (Citrullus lanatus var. citroides) rootstock under different irrigation regimes. Horticulture, Environment, and Biotechnology 2024, 65, 1009–1023. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Zheng, D.; Li, X.; Hu, X.; Khan, A.; Wang, X.; Li, M.; Du, Q.; Li, J.; et al. Transcription factor ClTCP4 maintains watermelon resilience to drought by stabilizing antioxidant and photosynthetic systems. Plant Cell Reports 2025, 44, 168. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhong, K.; Li, Y.; Bai, C.; Xue, Z.; Wu, Y. Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon (Citrullus lanatus). Frontiers in Plant Science, 2024. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Kong, Q.; Cheng, F.; Niu, M.; Xie, J.; Muhammad Azher, N.; Bie, Z. Comprehensive Mineral Nutrition Analysis of Watermelon Grafted onto Two Different Rootstocks. Horticultural Plant Journal 2016, 2, 105–113. [Google Scholar] [CrossRef]
- Lu, K.; Sun, J.; Li, Q.; Li, X.; Jin, S. Effect of Cold Stress on Growth, Physiological Characteristics, and Calvin-Cycle-Related Gene Expression of Grafted Watermelon Seedlings of Different Gourd Rootstocks. Horticulturae 2021, 7, 391. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, F.; Huang, Y.; Bie, Z. Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating Arginine Decarboxylase to Increase Putrescine Biosynthesis. Frontiers in Plant Science, 2021. [Google Scholar] [CrossRef]
- Korkmaz, A.; Dufault, R. Short-term Cyclic Cold Temperature Stress on Watermelon Yield. HortScience: a publication of the American Society for Horticultural Science 2002, 37. [Google Scholar] [CrossRef]
- Cheng, F.; Gao, M.; Lu, J.; Huang, Y.; Bie, Z. Spatial–Temporal Response of Reactive Oxygen Species and Salicylic Acid Suggest Their Interaction in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon Plants. Antioxidants 2021, 10, 2024. [Google Scholar] [CrossRef]
- Yaseen, I.; Choi, S.; Mukhtar, T.; Park, J.-I.; Kim, H.-T. Quantification of Growth and Physiological Characteristics in Tolerant and Sensitive Watermelon Lines Under Cold Treatment. Horticulture, Environment, and Biotechnology 2025, 66, 189–204. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Lan, Z.; Xu, K.; Chang, J.; Jalal, A.G.; Ma, J.; Wei, C.; Zhang, X. Methyl Jasmonate Mediates Melatonin-induced Cold Tolerance of Grafted Watermelon Plants. Horticulture Research 2021, 8, 57–57. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, M.; Liu, G.; Yang, X.; Hou, X. Comparative Transcriptome Profiling of Chilling Stress Responsiveness in Grafted Watermelon Seedlings. Plant Physiology and Biochemistry 2016, 109, 561–570. [Google Scholar] [CrossRef]
- Hou, L.; Yin, J.; Wu, l.; Yan, J.; Guo, Q.; XIan, W. Transcriptome Analysis Revealed that Grafting Improves the Resistance of Pepper to Phytophthora Capsici by Fine-tuning Growth-defense Tradeoff. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2022, 50, 12705–12705. [Google Scholar]
- Lang, X.; Zhao, X.; Zhao, J.; Ren, T.; Nie, L.; Zhao, W. MicroRNA Profiling Revealed the Mechanism of Enhanced Cold Resistance by Grafting in Melon (Cucumis melo L.). Plants 2024, 13, 1016. [Google Scholar] [CrossRef]
- Smiti, K.; Mina, U.; Verma, M.; Arya, L. Impact of Climate Extremes and Other Key Abiotic Stresses on Cucurbits: a Systematic Review. Vegetos 2025. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Abd-Alkarim, E.; El-Ramady, H.; El-Aidy, F.; Hamed, E.-S.; Taha, N.; Prohens, J.; Rakha, M. Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Horticulturae 2021, 7, 61. [Google Scholar] [CrossRef]
- El-Kafafi, S.; Abu El-Azm, N.; Hikal, M. Grafting Enables Cantaloupe to Tolerate More Saline Stress. Journal of Plant Production 2017, 8, 671–678. [Google Scholar] [CrossRef]
- Song, Q.; Joshi, M.; Joshi, V. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. International Journal of Molecular Sciences 2020, 21, 6036. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, S.; Yang, L.; Li, J.; Zhou, B.; Chen, N. Effects of Salt Stress on Plant Growth and Stoichiometric Characteristics of C, N, P and K of Grafted Watermelon Seedlings. Agricultural Research in the Arid Areas 2020, 38, 170–176. [Google Scholar]
- Zhu, Y.; Yuan, G.; Gao, B.; An, G.; Li, W.; Si, W.; Sun, D.; Liu, J. Comparative Transcriptome Profiling Provides Insights into Plant Salt Tolerance in Watermelon (Citrullus lanatus). Life 2022, 12, 1033. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, W.; Elango, D.; Liu, H.; Jin, D.; Wang, X.; Wu, Y. Metabolome and Transcriptome Analysis Reveals Molecular Mechanisms of Watermelon under Salt Stress. Environmental and Experimental Botany 2023, 206, 105200. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wen, W.; Sun, J.; Shu, S.; Guo, S. Transcriptome and Proteome Analysis Identifies Salt Stress Response Genes in Bottle Gourd Rootstock-Grafted Watermelon Seedlings. Agronomy 2023, 13, 618. [Google Scholar] [CrossRef]
- Llanderal, A.; Vasquez Muñoz, G.; Pincay-Solorzano, M.S.; Ceasar, S.A.; García-Caparros, P. Growth, Spectral Vegetation Indices, and Nutritional Performance of Watermelon Seedlings Subjected to Increasing Salinity Levels. Agronomy 2025, 15, 1620. [Google Scholar] [CrossRef]
- Yetisir, H.; Uygur, V. Responses of Grafted Watermelon onto Different Gourd Species to Salinity Stress. Journal of Plant Nutrition 2010, 33, 315–327. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, S.; Wei, M.; Gong, B.; Shi, Q. Effect of Different Rootstocks on the Salt Stress Tolerance in Watermelon Seedlings. Horticultural Plant Journal 2018, 4, 239–249. [Google Scholar] [CrossRef]
- Niu, M.; Luo, W.; Luo, L.; Chen, S.; Zhao, H.; Zhang, H.; Qian, Y. Non-Invasive Micro-Test Technology and Reciprocal Grafting Provide Direct Evidence of Contrasting Na+ Transport Strategies between Cucurbita moschata and Cucurbita maxima. Agronomy 2023, 13, 1843. [Google Scholar] [CrossRef]
- Başak, H.; Aydin, A.; Yetişir, H.; Turan, M. Salt Stress Effects On Hybrid Bottle Gourd (Lagenaria siceraria) Rootstock Candidates Plant Growth, Hormones and Nutrient Content. Journal of Crop Health 2025, 77, 28. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, S.; Lu, X.; He, N.; Gao, L.; Dou, J.; Bie, Z.; Liu, W. Genome Duplication Improves the Resistance of Watermelon Root to Salt Stress. Plant Physiology and Biochemistry 2018, 133, 11–21. [Google Scholar] [CrossRef]
- Bőhm, V.; Fekete, D.; Balázs, G.; Gáspár, L.; Kappel, N. Salinity Tolerance of Grafted Watermelon Seedlings. Acta Biologica Hungarica Acta Biologica Hungarica 2017, 68, 412–427. [Google Scholar] [CrossRef]
- Liu, X.; Guo, S.; Tian, J.; Duan, J.; Du, C. Effects of Grafting on the Isozymes and Activities of Antioxidant Enzymes of Watermelon Leaves under NaCl Stress. Journal of Changjiang Vegetables 2009, 22–26. [Google Scholar]
- Yang, Y.; Lu, X.; Yan, B.; Li, B.; Sun, J.; Guo, S.; Tezuka, T. Bottle Gourd Rootstock-grafting Affects Nitrogen Metabolism in NaCl-stressed Watermelon Leaves and Enhances Short-term Salt Tolerance. Journal of Plant Physiology 2013, 170, 653–661. [Google Scholar] [CrossRef]
- Yuan, G.; He, Y.; Sun, D.; Shi, M.; Li, W.; Zhang, J.; Zhu, Y. ClaDREB14 Enhances the Salt Tolerance of Watermelon by Positively Regulating the Expression of ClaPOD6. Horticultural Plant Journal 2025. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Tian, J.; Li, J.; Sun, J.; He, L.; Guo, S.; Tezuka, T. Proteomic Study Participating the Enhancement of Growth and Salt Tolerance of Bottle Gourd Rootstock-grafted Watermelon Seedlings. Plant Physiology and Biochemistry 2012, 58, 54–65. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, S.; Li, J.; Du, C.; Chen, L.; Wang, L. Effects of Grafting on the Soluble Protein Expression in Watermelon Seedling under Salt Stress. Journal of Nanjing Agricultural University 2011, 34, 54–60. [Google Scholar]
- Márkus, R.; Czigle, S.; Zana, B.; Somogyi, B.A.; Urbán, P.; Kutyáncsánin, D.; Helfrich, P.; Stranczinger, S. Drought and Salt Stressors Alter NAC and WRKY Gene Expression Profiles in Grafted Citrullus lanatus. Plant Molecular Biology Reporter 2025. [Google Scholar] [CrossRef]
- Seymen, M.; Yavuz, D.; Ercan, M.; Akbulut, M.; Çoklar, H.; Kurtar, E.S.; Yavuz, N.; Süheri, S.; Türkmen, Ö. Effect of wild watermelon rootstocks and water stress on chemical properties of watermelon fruit. Horticulture, Environment, and Biotechnology 2021, 62, 411–422. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Leskovar, D.I.; Colla, G.; Rouphael, Y. Watermelon and Melon Fruit Quality: The Genotypic and Agro-environmental Factors Implicated. Scientia Horticulturae 2018, 234, 393–408. [Google Scholar] [CrossRef]
- Dia, M.; Wehner, T.C.; Perkins-Veazie, P.; Hassell, R.; Price, D.S.; Boyhan, G.E.; Olson, S.M.; King, S.R.; Davis, A.R.; Tolla, G.E. Stability of Fruit Quality Traits in Diverse Watermelon Cultivars Tested in Multiple Environments. Horticulture research 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; He, Y.; Wang, Y.; Cao, T.; Gu, B.; Wang, Y. Effects of Grafting with Different Rootstocks on Watermelon Fruit Quality. Acta Agriculturae Zhejiangensis 2017, 29, 590–596. [Google Scholar]
- Sun, N.; Ma, Y.; Wang, X.; Ying, Q.; Huang, Y.; Zhang, L.; Zhu, Z.; Wang, Y.; He, Y. Grafting onto Pumpkin Alters the Evolution of Fruit Sugar Profile and Increases Fruit Weight through Invertase and Sugar Transporters in Watermelon. Scientia Horticulturae 2023, 314, 111936. [Google Scholar] [CrossRef]
- Soteriou, G.A.; Kyriacou, M.C.; Siomos, A.S.; Gerasopoulos, D. Evolution of Watermelon Fruit Physicochemical and Phytochemical Composition during Ripening as Affected by Grafting. Food Chemistry 2014, 165, 282–289. [Google Scholar] [CrossRef]
- Fredes Sivoplás, A.D.; Roselló, S.; Beltran Arandes, J.; Cebolla-Cornejo, J.; Pérez de Castro, A.; Gisbert, P.; Picó, M.B. Fruit Quality Assessment of Watermelons Grafted onto Citron Melon Rootstock. 2016.
- Liu, Q.; Zhao, X.; Brecht, J.K.; Sims, C.A.; Sanchez, T.; Dufault, N.S. Fruit Quality of Seedless Watermelon Grafted onto Squash Rootstocks under Different Production Systems. Journal of the Science of Food and Agriculture 2017, 97, 4704–4711. [Google Scholar] [CrossRef]
- Chen, W.; Zhong, C.; Liao, J.; Bao, W.; Yang, Y.; Yu, W. Effects of Double-rootstock Grafting on Growth and Fruit Quality of Watermelon. China Cucurbits and Vegetables 2017, 30, 13–16. [Google Scholar]
- Garcia-Lozano, M.; Dutta, S.K.; Natarajan, P.; Tomason, Y.R.; Lopez, C.; Katam, R.; Levi, A.; Nimmakayala, P.; Reddy, U.K. Transcriptome Changes in Reciprocal Grafts Involving Watermelon and Bottle Gourd Reveal Molecular Mechanisms Involved in Increase of the Fruit SIze, RInd Toughness and Soluble Solids. Plant Molecular Biology 2020, 102, 213–223. [Google Scholar] [CrossRef]
- Ning, K.; Cai, X.; Yan, L.; Zhou, W.; Xie, A.; Wang, Y.; Xu, P. Transcriptomic and Metabolomic Analysis Reveals Improved Fruit Quality in Grafted Watermelon. Horticulturae 2024, 10. [Google Scholar] [CrossRef]
- Ning, K.; Zhou, W.; Cai, X.; Yan, L.; Ma, Y.; Xie, A.; Wang, Y.; Xu, P. Rootstock–Scion Exchanging mRNAs Participate in Watermelon Fruit Quality Improvement. International Journal of Molecular Sciences 2025, 26, 5121. [Google Scholar] [CrossRef] [PubMed]
- Gölükcü, M.; Tokgöz, H. Variation in Sugar, Organic Acid and Volatile Flavor Compounds of Watermelon (Citrullus lanatus) Grafted on Different Rootstocks at Different Harvest Time. Akademik Gıda 2018, 16, 381–386. [Google Scholar] [CrossRef]
- Liu, J.; Li, J. Grafting Experiment with Different Stocks on Watermelon and Muskmelon. Northern Horticulture 2008, 33–35. [Google Scholar]
- Aslam, A.; Zhao, S.; Azam, M.; Lu, X.; He, N.; Li, B.; Dou, J.; Zhu, H.; Liu, W. Comparative Analysis of Primary Metabolites and Transcriptome Changes Between Ungrafted and Pumpkin-grafted Watermelon During Fruit Development. PeerJ 2020, 8, e8259. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, S.; Lu, X.; He, N.; Zhu, H.; Dou, J.; Liu, W. Comparative Transcriptome Analysis Reveals Key Genes Potentially Related to Soluble Sugar and Organic Acid Accumulation in Watermelon. PLOS ONE 2018, 13, e0190096. [Google Scholar] [CrossRef]
- Umer, M.J.; Bin Safdar, L.; Gebremeskel, H.; Zhao, S.; Yuan, P.; Zhu, H.; Kaseb, M.O.; Anees, M.; Lu, X.; He, N.; et al. Identification of Key Gene Networks Controlling Organic Acid and Sugar Metabolism during Watermelon Fruit Development by Integrating Metabolic Phenotypes and Gene Expression Profiles. Horticulture Research 2020, 7. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Hu, L. Recent Technological Strategies for Enhancing the Stability of Lycopene in Processing and Production. Food Chemistry 2023, 405, 134799. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.J.; Wiley, E.R.; Brown, E.D.; Clevidence, B.A.; Vinyard, B.T.; Collins, J.K.; Perkins-Veazie, P.; Baker, R.A. Consumption of Watermelon Juice Increases Plasma Concentrations of Lycopene and β-Carotene in Humans. The Journal of Nutrition 2003, 133, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; He, N.; Zhao, S.; Lu, X. Advances in Watermelon Breeding in China. China Cucurbits and Vegetables 2016, 29, 1–7. [Google Scholar] [CrossRef]
- Shafe, M.O.; Gumede, N.M.; Nyakudya, T.T.; Chivandi, E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. Journal of Nutrition and Metabolism 2024, 2024, 6252426. [Google Scholar] [CrossRef]
- Noreen, S.; Shehzadi, S.; Egbuna, C.; Aja, P.M. Lycopene Alleviates Lipid Dysregulation, Oxidative Stress, and Hypercholesterolemia in Obese Rats Subjected to a High-Fat Diet. Food Science & Nutrition 2025, 13, e70549. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Das, R.; Ray, A.K.; Mishra, S.K.; Anand, S. Recent Insights on Pharmacological Potential of Lycopene and its Nanoformulations: an Emerging Paradigm towards Improvement of Human Health. Phytochemistry Reviews 2025, 24, 1091–1118. [Google Scholar] [CrossRef]
- Perkins Veazie, P.; Olson, S.; Hassell, R.; Schultheis, J.; Miller, G.; Kelly, W. Rootstock of Interspecific Squash Hybrids (Cucarbita maxima x Cucurbita moschata) Increases Lycopene Content of Watermelon. In Proceedings of the HortScience; 2008; pp. 1199–1200. [Google Scholar]
- Fekete, D.; Stéger-Máté, M.; Bőhm, V.; Balázs, G.; Kappel, N. Lycopene and Flesh Colour Differences in Grafted and Non-grafted Watermelon. Acta Universitatis Sapientiae, Alimentaria 2015, 8, 111–117. [Google Scholar] [CrossRef]
- Kong, Q.; Yuan, J.; Gao, L.; Liu, P.; Cao, L.; Huang, Y.; Zhao, L.; Lv, H.; Bie, Z. Transcriptional Regulation of Lycopene Metabolism Mediated by Rootstock During the Ripening of Grafted Watermelons. Food Chemistry 2017, 214, 406–411. [Google Scholar] [CrossRef]
- Xu, X.; Bie, Z.; Sun, D.; Deng, Y.; Li, W.; An, G.; Liu, J. Effects of Grafting Combinations on the Plant Growth and Fruit Quality in Watermelon (Citrullus lanatus). China Cucurbits and Vegetables 2011, 24, 10–14. [Google Scholar] [CrossRef]
- Roberts, W.; Bruton, B.; Fish, W.; Taylor, M. Year Two: Effects of Grafting on Watermelon Yield and Quality. HortScience 2006, 41, 519B–519. [Google Scholar] [CrossRef]
- Taylor, M.; Bruton, B.; Fish, W.; Roberts, W. Economics of Grafted vs Conventional Watermelon Plants. HortScience 2006, 41, 519D–520. [Google Scholar] [CrossRef]
- Alan, O.; Ozdemir, N.; Gunen, Y. Effect of Grafting on Watermelon Plant Growth, Yield and Quality. Journal of Agronomy 2007, 6, 362–365. [Google Scholar] [CrossRef]
- Fallik, E.; Alkalai-Tuvia, S.; Chalupowicz, D.; Popovsky-Sarid, S.; Zaaroor-Presman, M. Relationships between Rootstock-Scion Combinations and Growing Regions on Watermelon Fruit Quality. Agronomy 2019, 9, 536. [Google Scholar] [CrossRef]
- Devi, P.; Perkins-Veazie, P.; Miles, C. Impact of Grafting on Watermelon Fruit Maturity and Quality. Horticulturae 2020, 6, 97. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Rouphael, Y.; Siomos, A.S.; Gerasopoulos, D. Configuration of Watermelon Fruit Quality in Response to Rootstock-Mediated Harvest Maturity and Postharvest Storage. Journal of the Science of Food and Agriculture 2016, 96, 2400–2409. [Google Scholar] [CrossRef]
- Guo, S.; Sun, H.; Tian, J.; Zhang, G.; Gong, G.; Ren, Y.; Zhang, J.; Li, M.; Zhang, H.; Li, H.; et al. Grafting Delays Watermel on Fruit Ripening by Altering Gene Expression of ABA Centric Phytohormone Signaling. Frontiers in Plant Science, 2021. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P. Rootstock Effects on Plant Vigor and Watermelon Fruit Quality. Report-Cucurbit Genetics Cooperative 2005, 28, 39. [Google Scholar]
- Soteriou, G.A.; Siomos, A.S.; Gerasopoulos, D.; Rouphael, Y.; Georgiadou, S.; Kyriacou, M.C. Biochemical and Histological Contributions to Textural Changes in Watermelon Fruit Modulated by Grafting. Food Chemistry 2017, 237, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Soteriou, G. Quality and Postharvest Performance of Watermelon Fruit in Response to Grafting on Interspecific Cucurbit Rootstocks. Journal of Food Quality 2015, 38, 21–29. [Google Scholar] [CrossRef]
- Kurum, R.; Çelik, İ.; Eren, A. Effects of Rootstocks on Fruit Yield and Some Quality Traits of Watermelon (Citrullus lanatus). Derim 2017, 34, 91–98. [Google Scholar] [CrossRef]
- Fredes, A.; Roselló, S.; Beltrán, J.; Cebolla-Cornejo, J.; Pérez-de-Castro, A.; Gisbert, C.; Picó, M.B. Fruit Quality Assessment of Watermelons Grafted onto Citron Melon Rootstock. Journal of the Science of Food and Agriculture 2017, 97, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Zaaroor-Presman, M.; Alkalai-Tuvia, S.; Chalupowicz, D.; Beniches, M.; Gamliel, A.; Fallik, E. Watermelon Rootstock/Scion Relationships and the Effects of Fruit-Thinning and Stem-Pruning on Yield and Postharvest Fruit Quality. Agriculture 2020, 10, 366. [Google Scholar] [CrossRef]
- Aras, V.; Sari, N.; Solmaz, I. Effects of Cucurbita, Lagenaria and Citrullus rootstocks on pollen and fruit characters, seed yield and quality of F 1 hybrid watermelon. International Journal of Agriculture Environment and Food Sciences 2022, 6, 683–693. [Google Scholar] [CrossRef]
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting Fruiting Vegetables to Manage Soilborne Pathogens, Foliar Pathogens, Arthropods and Weeds. Scientia Horticulturae 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Mozafarian Meimandi, M.; Kappel, N. Grafting Plants to Improve Abiotic Stress Tolerance. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Mechanisms of Adaptation and Stress Amelioration, Hasanuzzaman, M., Ed.; Springer Singapore: Singapore, 2020; pp. 477–490. [Google Scholar]
- Lu, X.; Liu, W.; Wang, T.; Zhang, J.; Li, X.; Zhang, W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. Front Plant Sci 2020, 11, 460. [Google Scholar] [CrossRef]
- Tsutsui, H.; Notaguchi, M. The Use of Grafting to Study Systemic Signaling in Plants. Plant and Cell Physiology 2017, 58, 1291–1301. [Google Scholar] [CrossRef]
- Jin, Q.; Chachar, M.; Ahmed, N.; Zhang, P.; Chachar, Z.; Geng, Y.; Guo, D.; Chachar, S. Harnessing Epigenetics through Grafting: Revolutionizing Horticultural Crop Production. Horticulturae 2023, 9, 672. [Google Scholar] [CrossRef]
- Habibi, F.; Liu, T.; Folta, K.; Sarkhosh, A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Lal, N.; Ramteke, V.; Diwan, G.; Singh, P.; Sahu, N.; Hota, D. ; S.R, M.; Meena, N.K.; Sharma, K.M.; Shiurkar, G.B.; et al. Physiological, Biochemical, and Molecular Responses During Grafting in Horticultural Crops. Plant Molecular Biology Reporter. [CrossRef]
- Dong, D.; Shi, Y.-N.; Mou, Z.-M.; Chen, S.-Y.; Zhao, D.-K. Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites. Horticulture Research 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, T.A.; Dinh, S.T.; Baldwin, I.T. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. Journal of Integrative Plant Biology 2017, 59, 552–571. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Dong, X. Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology 2013, 64, 839–863. [Google Scholar] [CrossRef]
- Mou, Z.; Fan, W.; Dong, X. Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell 2003, 113, 935–944. [Google Scholar] [CrossRef]
- Tonelli, M.L.; Figueredo, M.S.; Rodríguez, J.; Fabra, A.; Ibañez, F. Induced systemic resistance -like responses elicited by rhizobia. Plant and Soil 2020, 448, 1–14. [Google Scholar] [CrossRef]
- Zhao, T. Advances in plant immunity and disease resistance breeding; SPIE: 2023; Volume 12611.
- Kushalappa, A.C.; Yogendra, K.N.; Karre, S. Plant Innate Immune Response: Qualitative and Quantitative Resistance. Critical Reviews in Plant Sciences 2016, 35, 38–55. [Google Scholar] [CrossRef]
- Rabari, A.; Ruparelia, J.; Jha, C.K.; Sayyed, R.Z.; Mitra, D.; Priyadarshini, A.; Senapati, A.; Panneerselvam, P.; Das Mohapatra, P.K. Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: A review. Pedosphere 2023, 33, 556–566. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Najeeb, S.; Chen, J.; Wang, R.; Zhang, J.; Hou, J.; Liu, T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. Physiologia Plantarum 2023, 175, e14133. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Xu, Y.; Zhang, G.; Shen, Q.; Zhang, R. Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways. Molecular Plant-Microbe Interactions® 2018, 31, 560–567. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Tani, E.; Avramidou, E.V.; Abraham, E.M.; Gerakari, M.; Megariti, S.; Doupis, G.; Doulis, A.G. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. Frontiers in Plant Science, 2020. [Google Scholar] [CrossRef]
- Cerruti, E.; Gisbert, C.; Drost, H.-G.; Valentino, D.; Portis, E.; Barchi, L.; Prohens, J.; Lanteri, S.; Comino, C.; Catoni, M. Grafting vigour is associated with DNA de-methylation in eggplant. Horticulture Research 2021, 8, 241. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Su, X.; Xia, Z. Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco. Environmental and Experimental Botany 2014, 107, 173–179. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Goto, R.; Minatel, I.O.; de Sousa da Silva, E.; da Silva, E.G.; Vianello, F.; Lima, G.P.P. Resistance. In Plant Health Under Biotic Stress: Volume 1: Organic Strategies, Ansari, R.A., Mahmood, I., Eds.; Springer Singapore: Singapore, 2019; pp. 37–57. [Google Scholar]
- Liu, Y.; Liu, H.; Zhang, T.; Liu, J.; Sun, X.; Sun, X.; Wang, W.; Zheng, C. Interactions Between Rootstock and Scion during Grafting and Their Molecular Rgulation Mechanism. Scientia Horticulturae 2023, 308, 111554. [Google Scholar] [CrossRef]
- Williams, B.; Ahsan, M.U.; Frank, M.H. Getting to the root of grafting-induced traits. Current Opinion in Plant Biology 2021, 59, 101988. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Imtiaz, M.; Kong, Q.; Cheng, F.; Ahmed, W.; Huang, Y.; Bie, Z. Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. Frontiers in Plant Science, 2016. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Pérez-Alfocea, F.; Galmés, J. The influence of grafting on crops’ photosynthetic performance. Plant Science 2020, 295, 110250. [Google Scholar] [CrossRef]
- Coşkun, Ö.F. The Effect of Grafting on Morphological, Physiological and Molecular Changes Induced by Drought Stress in Cucumber. Sustainability 2023, 15, 875. [Google Scholar] [CrossRef]
- Jiao, S.; Zeng, F.; Huang, Y.; Zhang, L.; Mao, J.; Chen, B. Physiological, biochemical and molecular responses associated with drought tolerance in grafted grapevine. BMC Plant Biology 2023, 23, 110. [Google Scholar] [CrossRef]
- Nadoda, N.A.; Barot, D.C.; Baria, V.K.; Chaudhari, V.M. Exploitation of Grafting for Abiotic and Biotic Stress Management in Vegetable Crops: A Review. Advances in Research on Teaching 2024, 25, 125–131. [Google Scholar] [CrossRef]
- Wang, X.; Cao, M.; Li, H.; Liu, Y.; Fan, S.; Zhang, N.; Guo, Y. Strategies and prospects for melatonin to alleviate abiotic stress in horticultural plants. Horticultural Plant Journal 2024, 10, 601–614. [Google Scholar] [CrossRef]
- Siddique, A.B.; Parveen, S.; Rahman, M.Z.; Rahman, J. Revisiting plant stress memory: mechanisms and contribution to stress adaptation. Physiology and Molecular Biology of Plants 2024, 30, 349–367. [Google Scholar] [CrossRef]
- Davoudi, M.; Song, M.; Zhang, M.; Chen, J.; Lou, Q. Long-distance control of the scion by the rootstock under drought stress as revealed by transcriptome sequencing and mobile mRNA identification. Horticulture Research 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Lin, J. Molecular Mechanisms of Plant Response to Abiotic Stresses and Breeding for Stress Tolerance. Theoretical and Natural Science 2024, 63, 123–127. [Google Scholar] [CrossRef]
- Tsaballa, A.; Xanthopoulou, A.; Madesis, P.; Tsaftaris, A.; Nianiou-Obeidat, I. Vegetable Grafting From a Molecular Point of View: The Involvement of Epigenetics in Rootstock-Scion Interactions. Frontiers in Plant Science, 2020. [Google Scholar] [CrossRef]
- Apostolova, E.L. Molecular Mechanisms Associated with Plant Tolerance upon Abiotic Stress. Plants 2024, 13, 3532. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Wang, W.; Cao, Z.; Li, S.; Li, H.; Zhu, W.; Huang, Y.; Bao, M.; He, Y.; et al. Comparative transcriptome analysis of different heat stress responses between self-root grafting line and heterogeneous grafting line in rose. Horticultural Plant Journal 2021, 7, 243–255. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Y.; Xu, J.; Liu, X.; Chi, Y.; Li, R.; Mo, L.; Shi, L.; Liang, S.; Yu, W.; et al. Recent progress of molecular mechanisms of DNA methylation in plant response to abiotic stress. Environmental and Experimental Botany 2024, 218, 105599. [Google Scholar] [CrossRef]
- Fuentes-Merlos, M.I.; Bamba, M.; Sato, S.; Higashitani, A. Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants. DNA Research 2023, 30. [Google Scholar] [CrossRef]
- Khalid, F.; Rasheed, Y.; Asif, K.; Ashraf, H.; Maqsood, M.F.; Shahbaz, M.; Zulfiqar, U.; Sardar, R.; Haider, F.U. Plant Biostimulants: Mechanisms and Applications for Enhancing Plant Resilience to Abiotic Stresses. Journal of Soil Science and Plant Nutrition 2024, 24, 6641–6690. [Google Scholar] [CrossRef]
- Morcillo, R.; Manzanera, M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites 2021, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.C.; Torres, L.F.; Kuramae, E.E.; Andrade, S.A.L.d.; Mazzafera, P. Plant grafting: Maximizing beneficial microbe-plant interactions. Rhizosphere 2024, 29, 100825. [Google Scholar] [CrossRef]
- Zheng, X.; Wei, L.; Lv, W.; Zhang, H.; Zhang, Y.; Zhang, H.; Zhang, H.; Zhu, Z.; Ge, T.; Zhang, W. Long-term bioorganic and organic fertilization improved soil quality and multifunctionality under continuous cropping in watermelon. Agriculture, Ecosystems & Environment 2024, 359, 108721. [Google Scholar] [CrossRef]
- Norkaew, S.; Miles, R.J.; Brandt, D.K.; Anderson, S.H. Effects of 130 Years of Selected Cropping Management Systems on Soil Health Properties for Sanborn Field. Soil Science Society of America Journal 2019, 83, 1479–1490. [Google Scholar] [CrossRef]
| Type of coercion | Rootstock | Scion | Resistance | References | |
| Virus | Cucurbita maxima × C. moschata | RS841, Shintosa Camelforce |
Tri-X 313 | Increased yield; fruit hardness increased, but did not affect the soluble solids content. | [14] |
| Cucurbita maxima × C. moschata | RS-841, Ercole | Mielheart | Significantly increased the resistance of scions to MNSV. | [15] | |
| Citrullus lanatus var citroides | Robust | ||||
| Citrullus mucosospermus | 938-16-B | 938-16-B, H1, Hongzi | Resistant to virus disease. | [35] | |
| Citrullus lanatus | H1, Hongzi | Susceptible to viral diseases. | |||
| Fungus | Cucurbita moschata | Landrace | Crimson Tide | The incidence rate was reduced by 88 % -100 %, and even completely controlled. | [21] |
| Cucurbita maxima | Landrace | ||||
| Lagenaria siceraria | Landrace | ||||
| Luffa cylindrica | Landrace | ||||
| Benincasa hispida | Landrace | ||||
| Lagenaria hybrid | 216, Emphasis, Skopje, FR Gold |
||||
| Cucurbita hybrid | P360, Strong Tosa | ||||
| Lagenaria siceraria | USVL482-PMR, USVL351-PMR | Mickey Lee | Significantly enhance the resistance of the scion to powdery mildew. | [7] | |
| Lagenaria siceraria | Chaofengkangshengwang | Sumi 1 | High resistance to Fusarium wilt, and the incidence was only 3.4 %. | [6] | |
| Cucurbita maxima × C. moschata | Tetsukabuto | Secretariat | Resistance to verticillium wilt. | [36] | |
| Citrullus lanatus var. citroides | IIHR-82, IIHR-617, BIL-53 |
NS-295 | Resistance to gummy stem blight. | [37] | |
| Lagenaria siceraria | BG-95, BG-77-6-1 | ||||
| Citrullus lanatus var. citroides | IIHR-617×Arka Manik, IIHR-82 × Arka Manik, IIHR-82 × IIHR-617 | ||||
| Cucurbita maxima × C. moschata | Nun 6001, Strongtosa, Tetsukabuto, Ferro, Shintoza |
Aswan F1 | Enhance disease resistance. | [38] | |
| Lagenaria siceraria | IT207112 | Sambokkul | Resistance to Fusarium wilt, single spore root rot, and vine recession. | [39] | |
| Lagenaria siceraria | FRD22 | Moderate resistance to single spore root rot and vine decline disease. | |||
| Nematodes | Lagenaria siceraria | Emphasis, WMXP 3938, WMXP 3944, WMXP3445 |
Fiesta, Tri-X 313 | Significantly reduce the root knot rate and infection level; increase production. | [31] |
| Cucurbita moschata × C. maxima | Strong Tosa | Significant nematode resistance in field trials. | |||
| Citrullus lanatus var. citroides | RKVL 301, RKVL 302, RKVL 303, RKVL 315, RKVL 318, Ojakkyo | Significant resistance; root knot index and nematode reproduction were low. | |||
|
Cucumis africanus, Cucumis myriocarpus |
Congo, Charleston Gray | Resistance to root-knot nematodes. | [32] | ||
| Type of coercion | Rootstock | Scion | Resistance | References | ||
| Drought stress | Lagenaria siceraria | Illapel, Osorno, GC |
Santa Amelia | Drought tolerance, significantly increased yield; improve root structure. | [11] | |
| BG-48, Philippines | Not drought-tolerant. | |||||
| Cucurbita maxima × C. moschata | Shintoza | Crimson Sweet | Better growth performance and water status. | [43] | ||
| Citrullus colocynthis (L.) Schrad | Esfahan | Better drought resistance, growth and biomass decreased less, and showed higher antioxidant activity and lower oxidative stress. | ||||
| Cucurbita moschata | Naihan 1 | Up-regulation of ClTCP4 gene expression in scions helped to maintain higher photosynthetic efficiency and cell membrane stability. | [46] | |||
| Lagenaria siceraria | Jingxinzhen 1 | Zaojia 8424 | Better growth performance. | [48] | ||
| Cucurbita maxima × C. moschata | Qingyanzhen 1 | |||||
| Citrullus lanatus subsp. mucosospermus | Crimson Sweet | Improve the ability to resist water stress, improve growth and yield. | [40] | |||
| Cucurbita maxima × C. moschata | Strong Tosa | Crimson Tide F1 | Enhance drought tolerance. | [45] | ||
| Citrullus lanatus var. citroides | Crimson Tide | Enhance drought tolerance and affect physiological characteristics and nutrient uptake. | [44] | |||
| Cucurbita maxima × C. moschata | TZ-148 | |||||
| Citrullus lanatus var. citroides | A1, A2 | Crimson Tide | Enhance drought tolerance. | [79] | ||
| Cucurbita maxima × C. moschata | TZ-148 | Enhance drought resistance and improve fruit quality. | ||||
| Temperature stress | Lagenaria siceraria | FR79 | Sambokkul | Tolerance to low temperature, little effect on fruit quality. | [39] | |
| Lagenaria siceraria | 0526, 2505 | Zaojia 8424 | Enhance cold resistance. | [49] | ||
| Cucurbita maxima × C. moschata | Qingyan No.1 | 97103 | Enhance cold resistance. | [50,52] | ||
| Cucurbita moschata | Weizhen No.1 | Nongkeda No.5 | Enhance cold resistance. | [54] | ||
| Cucurbita ficifolia Bouché | Cf | |||||
| Salt stress | Lagenaria siceraria | Chaofeng Kangshengwang | Xiuli | Enhance salt tolerance. | [65,73,74,76] | |
| Cucurbita maxima | Cma | Crimson Tide | Enhance salt tolerance. | [67] | ||
| Lagenaria siceraria | Skp, Birecik | |||||
| Citrullus lanatus | Jingxin No.2 | Jingxin No.2 | General salt tolerance. | [68] | ||
| Cucurbita moschata | Quanneng Tiejia | General salt tolerance. | ||||
| Kaijia No.1 | High salt tolerance. | |||||
| Lagenaria siceraria | Hanzhen No.3 | High salt tolerance. | ||||
| Citrullus lanatus | Zhongyu No.9 tetraploid | Zhongyu No.9 | Enhance salt tolerance. | [71] | ||
| Lagenaria siceraria | C. lanatus | Enhance salt tolerance. | [72,77,78] | |||
| Cucurbita maxima × C. moschata | Shintosa F-90 | C. lanatus | Enhance salt tolerance. | [72] | ||
| Rootstock | Scion | Changes in quality after grafting | References | |
| Lagenaria siceraria | Yongzhen No.1, Yongzhen No.3, Yongzhen No.8 |
Zaojia 8424 | Increase SSC content. | [82] |
| Cucurbita maxima × C. moschata | Yongzhen No.7 | Zaojia 8424 | Increase fruit weight (SSC content did not change). | [83] |
| Cucurbita maxima × C. moschata | TZ148 | Pegasus | The flesh firmness, color and other physical qualities were improved, and the contents of bioactive compounds such as lycopene and citrulline were increased, but the acidity was slightly increased. | [84] |
| Cucurbita maxima × C. moschata | Super Shintosa | Melody | Increase the lycopene content. | [86] |
| Cucurbita moschata | Marvel | Increase fruit hardness. | ||
| Cucurbita maxima × C. moschata | Root Power | |||
| Lagenaria siceraria | Macis | Crimson Sweet | Increased the size and rind thickness of fruits. | [88] |
| Cucurbita moschata | SiZhuang | 8424 | Improve quality, increase beneficial metabolites, and reduce bitter compounds. | [89] |
| Cucurbita moschata | Xi Jia Qiang Sheng | Zhongyu No.1 | Increase the total sugar, total amino acid and total acid content. | [93] |
| Lagenaria siceraria | FR STRONG | RX 467 | Reduce the lycopene content. | [103] |
| Cucurbita maxima × C. moschata | RS 841 | Increase the lycopene content. | ||
| Lagenaria siceraria | Jingxinzhen No.1 | Zaojia | Increase the lycopene content. | [104] |
| Citrullus lanatus var. citroides | Yongshi | |||
| Cucurbita maxima × C. moschata | Qingyanzhen No.1 | No effect on lycopene content. | ||
| Cucurbita maxima × C. moschata |
Ferro, Nun 6001, Shintoza |
Aswan | Increase the lycopene content. | [38] |
| Cucurbita maxima × C. moschata | TZ148 | Pegasus | Increase fruit hardness and citrulline content. | [111] |
| Cucurbita maxima × C. moschata | Jingxinzhen No. 2 | 97103 | Maturity extended. | [112] |
| Cucurbita argyrosperma | 451 |
Summer Flavor 800, Summer Sweet 5244 |
Reduce fruit weight, lycopene content (diploid). | [113] |
| Cucurbita maxima × C. moschata | N101 | Pegasus | Increase fruit hardness. | [114] |
| Cucurbita maxima × C. moschata |
TZ148, Bombo, N101 |
Celebration, Gallery, Pegasus, Torpilla | Increase fruit hardness, lycopene content; SSC content decreased slightly. | [115] |
| Cucurbita maxima × C. moschata | Ferro RZ, Nun 9075 | Crimson Tide | Increase SSC content, peel thickness, fruit hardness. | [116] |
| RS 841, Strong Tosa | Increase lycopene content, peel thickness, fruit hardness. | |||
| Citrullus lanatus var. citroides | BGV0005167 | Oneida | Increase fruit thickness, flesh hardness, SSC content. | [117] |
| Cucurbita maxima VAV 1860× C. moschata PI 550689 | GMM1 | Increase fruit thickness and flesh hardness; change the fruit aroma. | ||
| Cobalt | ||||
| Cucurbita maxima × C. moschata | TZ-148 | 1262 | Improve fruit taste. | [118] |
| Nurit | Improve fruit taste, increase lycopene and SSC content. | |||
| Lagenaria siceraria | A3 | Crimson Tide | Increase the sugar content of fruit. | [79] |
| Lagenaria spp. | Argentario, 3335 | 187×125, 11×162 | Increase the SSC content, fruit diameter, peel thickness and fruit weight. | [119] |
| Cucurbita maxima × C. moschata | TZ148, Nun9075 | Increase fruit weight. | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
