Submitted:
15 September 2025
Posted:
19 September 2025
You are already at the latest version
Abstract
Keywords:
MSC: MSC2020; 45H10; 47H10; 45N20
1. Introduction
2. Preliminaries
- (a)
- There exists a superposition operator generated by a function such that where, .
- (b)
- The superposition operator satisfies the Lipschitz condition
- (c)
- The superposition operator satisfies the Darbo condition ; for all where denotes the Hausdorff measure of no compactness in .
- (i)
- (ii)
- (iii)
Main Result
- H1
- H2
- satisfies the Lipschitz condition in its second variable with Lipschitz constant ie;
- H3
- is continuous on the triangle
- H4
- The nonlinearities generates the superposition operators respectively; i.e and
- H5
- The superposition operator satisfies the following nearness condition with nearness constant , with respect to the identity operator I i.e; there exists s.t
- H6
- The function is a Young’s function with respect to the second variable s and its one-sided partial derivative with respect to s is denoted by
3. Application to Fractional Dynamics
4. Illustrative Examples
Conclusion
- (a)
- A is near B
- (b)
- Or is near B
- (c)
- Or A is orthogonal to B.
References
- Abood, B.N.; Redhwan, S.S.; Bazighifan, O.; Nonlaopon, K. Investigating a Generalized Fractional Quadratic Integral Equation. Fractal Fract. 2022, 6, 251. [CrossRef]
- Alahmadi, J.; Abdou, M.A.; Abdel-Aty, M.A. Analytical and Numerical Approaches via Quadratic Integral Equations. Axioms 2024, 13, 621. [CrossRef]
- I.K. Argyros, Quadratic equations and application to chambers. Bull. Austral. Math. Soc. I.K. Argyros, Quadratic equations and application to chambers. Bull. Austral. Math. Soc. equations 275–289.
- Emil Artin. The Gamma Function, by Michael Butler. Holt, Rinehart and Winston, New York, 1964. (Translated from the German original, 1964; Emil Artin. The Gamma Function. Translated by Michael Butler. Holt, Rinehart and Winston, New York, 1964. (Translated from the German original: “Einführung in die Theorie der Gammafunktion” (1931)).
- Bellomo, N.; Delitala, M.; Coscia, V. ON THE MATHEMATICAL THEORY OF VEHICULAR TRAFFIC FLOW I: FLUID DYNAMIC AND KINETIC MODELLING. Math. Model. Methods Appl. Sci. 2002, 12, 1801–1843. [CrossRef]
- Banaś, J.; Lecko, M.; El-Sayed, W.G. Existence Theorems for Some Quadratic Integral Equations. J. Math. Anal. Appl. 1998, 222, 276–285. [CrossRef]
- Banaś, J.; Rzepka, B. Nondecreasing solutions of a quadratic singular Volterra integral equation. Math. Comput. Model. 2009, 49, 488–496. [CrossRef]
- J. Banas, A. J. Banas, A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. Lond. Math. Soc. 41 (2009) 1073–1084. J. Banas, A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. Lond. Math. Soc. 41 (2009) 1073–1084.
- J. Banas, Z. J. Banas, Z. Zajac, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011) 375–387. J. Banas, Z. Zajac, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011) 375–387.
- Banaś, J.; Rzepka, B. The technique of Volterra–Stieltjes integral equations in the application to infinite systems of nonlinear integral equations of fractional orders. Comput. Math. Appl. 2012, 64, 3108–3116. [CrossRef]
- Banaś, J.; Martin, J.R.; Sadarangani, K. On solutions of a quadratic integral equation of Hammerstein type. Math. Comput. Model. 2006, 43, 97–104. [CrossRef]
- Banaś, J.; Dubiel, A. Solvability of a Volterra–Stieltjes integral equation in the class of functions having limits at infinity. Electron. J. Qual. Theory Differ. Equations 2017, 1–17. [CrossRef]
- Banas, J.; Dubiel, A. Solutions of a quadratic Volterra–Stieltjes integral equation in the class of functions converging at infinity. Electron. J. Qual. Theory Differ. Equations 2018, 1–17. [CrossRef]
- Amar Benkerouche, Mohammed Souid, Gani Stamov and Ivanko Stamov On the solution of quadratic integral equation of Urysohn type of Fractional order. Entropy, 2022, 24, 886.
- Barbagallo, Annamaria, Ernst, Emil and Thera, Michel, Orthogonality in locally convex spaces: Two nonlinear generalizations of Neumann’s Lemma, J. Math Anal Appl. Barbagallo, Annamaria, Ernst, Emil and Thera, Michel, Orthogonality in locally convex spaces: Two nonlinear generalizations of Neumann’s Lemma, J. Math Anal Appl.
- L. W. W. Busbridge. The Mathematics of Radioactive Transfer. Cambridge Uni. Press 1960.
- J. Caballero, A.B. Mingarelli and K. Sadarangani. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. B. Mingarelli and K. Sadarangani. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electron. J. Differential Equ. 2006, no. 57, 1–11. [Google Scholar].
- Campanato, Sergio (1994) On the Condition of Nearness Between Operators. Annali di Matematica pura ed applicata (IV), Vol. CLXVII, pp. Campanato, Sergio (1994) On the Condition of Nearness Between Operators. Annali di Matematica pura ed applicata (IV), Vol. CLXVII, pp. 243-256.
- S. Chandrasekhar. Radiative Transfer, 1960; S. Chandrasekhar. Radiative Transfer. Dover Publication, New York, 1960.
- Cichoń, M.; Metwali, M. Monotonic solutions for quadratic integral equations. Discuss. Math. Differ. Inclusions, Control. Optim. 2011, 31, 157. [CrossRef]
- M. A. Darwish. On monotonic solutions of an integral equation of Abel type. M. A. Darwish. On monotonic solutions of an integral equation of Abel type.
- Darwish, M.A.; Ntouyas, S.K. Monotonic solutions of a perturbed quadratic fractional integral equation. Nonlinear Anal. Theory, Methods Appl. 2009, 71, 5513–5521. [CrossRef]
- M.A. Darwish, On monotonic solutions of a quadratic integral equation with supremum, Dynam. Systems Appl. 17 (2008) 539–550. M.A. Darwish, On monotonic solutions of a quadratic integral equation with supremum, Dynam. Systems Appl. 17 (2008) 539–550.
- M.A. Danville, J. M.A. Danville, J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fract. Calc. Appl. Anal. 12 (2009) 71–86. M.A. Danville, J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fract. Calc. Appl. Anal. 12 (2009) 71–86.
- El-Sayed and H. Hasham, Integrable and continuous solutions of a nonlinear quadratic integral equation. Electronic Journal of Quadratic Theory of Differential Equations, No. 25 (2008), 1 - 10. A. El-Sayed and H. Hasham, Integrable and continuous solutions of a nonlinear quadratic integral equation. Electronic Journal of Quadratic Theory of Differential Equations, No. 25 (2008), 1 - 10.
- Granas, A. and J. Dugundj (2003), Fixed point theory. Springer, New York. Granas, A. and J. Dugundj (2003), Fixed point theory. Springer, New York.
- C.T. Kelley. Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Eq. C.T. Kelley. Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Eq. 4 (1982) 221–237.
- S. Ho, M. F. S. Ho, M. F. Khavani and W. Zhuang. Integral equations arising in the kinetic theory of gases. Appl. Anal. S. Ho, M. F. Khavani and W. Zhuang. Integral equations arising in the kinetic theory of gases. Appl. Anal. 34 (1989) 261–266.
- A.A. Kilbas, H.M. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.
- Krasnoselskii, M. (1958). Some problems of nonlinear analysis. American Mathematical Society Translation, 2(0):345–409. Krasnoselskii, M. (1958). Some problems of nonlinear analysis. American Mathematical Society Translation, 2(0):345–409.
- Smart, D. R. (1974), Fixed Point Theorems, Cambridge University Press, London. Smart, D. R. (1974), Fixed Point Theorems, Cambridge University Press, London.
- Hussein salem, On the quadratic integral equations and their applications wish applications. 62(2011), 2931 - 2943. Hussein salem, On the quadratic integral equations and their applications wish applications. 62(2011), 2931 - 2943.
- Fattorusso, F and Tarsia, A., Applications of near operators Campanato’s Theory. Boll. Accademia Gioenica di Scienze Naturali - Catania, BOLLOG Vol 46, No 376 (2012), pp. 77 - 90. Fattorusso, F and Tarsia, A., Applications of near operators Campanato’s Theory. Boll. Accademia Gioenica di Scienze Naturali - Catania, BOLLOG Vol 46, No 376 (2012), pp. 77 - 90.
- Xavier Udo-utun, Zakawat Siddiqi, M. Balla, A. U. Afuwape and M. Xavier Udo-utun, Zakawat Siddiqi, M. Balla, A. U. Afuwape and M. Mshelia, On integral representation of causal operators, Far East Journal of Mathematical Sciences (FJMS) 59(1) 57 - 63.
- Udo-Utun, X.; Edet, U.; Johnson, U. Nearness of fractional operators for solvability of natural perturbations of fractional dynamic operators. World J. Appl. Sci. Technol. 2024, 15, 275–278. [CrossRef]
- P. P. Zabrejko, A. I. P. P. Zabrejko, A. I. Koslev, M. A. Krasnoseł’skiĭ, G. G. Mikhlin, L. S. Rakovskchik and V. J. Stecenko. Integral Equations, 1975; P. P. Zabrejko, A. I. Koslev, M. A. Krasnoseł’skiĭ, G. G. Mikhlin, L. S. Rakovskchik and V. J. Stecenko. Integral Equations. Noordhoff, Leyden, 1975. [Google Scholar].
- Zhou,M. , Wan, H., Xu, Z. and Zhang, I., The study of fractional quadratic integral equations involves generalized fractional integrals. Fractional Fract., 2025, 9, 249.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).