Submitted:
09 September 2025
Posted:
10 September 2025
You are already at the latest version
Abstract
Keywords:
I. Introduction
II. Method
III. Performance Evaluation
A. Dataset
B. Experimental Results
IV. Conclusion
References
- A. Asai, Z. Wu, Y. Wang, et al., “Self-rag: Learning to retrieve, generate, and critique through self-reflection”, 2024.
- W. Zhu, Q. Wu, T. Tang, R. Meng, S. Chai and X. Quan, “Graph Neural Network-Based Collaborative Perception for Adaptive Scheduling in Distributed Systems”, arXiv preprint arXiv:2505.16248, 2025. [CrossRef]
- G. Yao, H. Liu and L. Dai, “Multi-Agent Reinforcement Learning for Adaptive Resource Orchestration in Cloud-Native Clusters”, arXiv preprint arXiv:2508.10253, 2025. [CrossRef]
- Y. Yao, Z. Xu, Y. Liu, K. Ma, Y. Lin and M. Jiang, “Integrating Feature Attention and Temporal Modeling for Collaborative Financial Risk Assessment”, arXiv preprint arXiv:2508.09399, 2025. [CrossRef]
- Z. Shao, Y. Gong, Y. Shen, et al., “Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy”, arXiv preprint arXiv:2305.15294, 2023. [CrossRef]
- Z. Jiang, F. F. Xu, L. Gao, et al., “Active retrieval augmented generation”, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969-7992, 2023.
- Y. Li, S. Han, S. Wang, M. Wang and R. Meng, “Collaborative Evolution of Intelligent Agents in Large-Scale Microservice Systems”, arXiv preprint arXiv:2508.20508, 2025. [CrossRef]
- Y. Lou, “RT-DETR-Based Multimodal Detection with Modality Attention and Feature Alignment”, Journal of Computer Technology and Software, vol. 3, no. 5, 2024. [CrossRef]
- X. Wang, “Medical Entity-Driven Analysis of Insurance Claims Using a Multimodal Transformer Model”, Journal of Computer Technology and Software, vol. 4, no. 3, 2025. [CrossRef]
- W. Xie, X. Liang, Y. Liu, et al., “Weknow-rag: An adaptive approach for retrieval-augmented generation integrating web search and knowledge graphs”, arXiv preprint arXiv:2408.07611, 2024. [CrossRef]
- Z. Wang, C. Gao, C. Xiao, et al., “Document Segmentation Matters for Retrieval-Augmented Generation”, Findings of the Association for Computational Linguistics: ACL 2025, pp. 8063-8075, 2025. [CrossRef]
- W. Huang, J. Zhan, Y. Sun, X. Han, T. An and N. Jiang, “Context-Aware Adaptive Sampling for Intelligent Data Acquisition Systems Using DQN”, arXiv preprint arXiv:2504.09344, 2025. [CrossRef]
- X. Wang, Z. Wang, X. Gao, et al., “Searching for best practices in retrieval-augmented generation”, arXiv preprint arXiv:2407.01219, 2024. [CrossRef]
- S. Zeng, J. Zhang, P. He, et al., “The good and the bad: Exploring privacy issues in retrieval-augmented generation (rag)”, arXiv preprint arXiv:2402.16893, 2024. [CrossRef]
- M. Cheng, Y. Luo, J. Ouyang, et al., “A survey on knowledge-oriented retrieval-augmented generation”, arXiv preprint arXiv:2503.10677, 2025. [CrossRef]
- H. Zheng, L. Zhu, W. Cui, R. Pan, X. Yan and Y. Xing, “Selective Knowledge Injection via Adapter Modules in Large-Scale Language Models”, 2025. [CrossRef]
- X. Wang, “Time-Aware and Multi-Source Feature Fusion for Transformer-Based Medical Text Analysis”, Transactions on Computational and Scientific Methods, vol. 4, no. 7, 2024.
- R. Zhang, L. Lian, Z. Qi and G. Liu, “Semantic and Structural Analysis of Implicit Biases in Large Language Models: An Interpretable Approach”, arXiv preprint arXiv:2508.06155, 2025. [CrossRef]
- W. Zhu, “Fast adaptation pipeline for LLMs through structured gradient approximation”, Journal of Computer Technology and Software, vol. 3, no. 6, 2024. [CrossRef]
- Y. Sun, R. Zhang, R. Meng, L. Lian, H. Wang and X. Quan, “Fusion-Based Retrieval-Augmented Generation for Complex Question Answering with LLMs”, 2025.
- H. Yang, M. Wang, L. Dai, Y. Wu and J. Du, “Federated Graph Neural Networks for Heterogeneous Graphs with Data Privacy and Structural Consistency”, 2025.
- D. Sanmartin, “Kg-rag: Bridging the gap between knowledge and creativity”, arXiv preprint arXiv:2405.12035, 2024. [CrossRef]
- C. Mavromatis and G. Karypis, “Gnn-rag: Graph neural retrieval for large language model reasoning”, arXiv preprint arXiv:2405.20139, 2024. [CrossRef]
- F. Wang, X. Wan, R. Sun, et al., “Astute rag: Overcoming imperfect retrieval augmentation and knowledge conflicts for large language models”, arXiv preprint arXiv:2410.07176, 2024. [CrossRef]
- G. Agrawal, T. Kumarage, Z. Alghamdi, et al., “Mindful-rag: A study of points of failure in retrieval augmented generation”, Proceedings of the 2024 2nd International Conference on Foundation and Large Language Models (FLLM), IEEE, pp. 607-611, 2024.
- M. Kang, N. M. Gürel, N. Yu, et al., “C-rag: Certified generation risks for retrieval-augmented language models”, arXiv preprint arXiv:2402.03181, 2024. [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).