Submitted:
06 September 2025
Posted:
09 September 2025
You are already at the latest version
Abstract
Keywords:
Introduction
1. Adductomics and the Mapping of Covalent Modifications
1.1. Genotoxic Impurities (GITs) and Regulatory Thresholds
2. The Moderna Study
2.1. Discovery and Analytical Characterization of Lipid mRNA Adducts
2.2. Temperature Dependence of Lipid mRNA Adduct Formation
2.3. Isolation and Structural Characterization of Modified mRNA
2.4. Reaction Modeling and Identification of Reactive Lipid Components
2.5. Unrealized Implications
3. Mechanistic Deep Dive of Temperature and Charge
4. Hypothetical In Vivo Implications
4.1. Chemical Reactivity and Thermal Acceleration
4.2. Hypothetical Encounter Scenarios Inside the Body
4.3. Kinetic and Compartmental Constraints
4.4. Potential Cellular Outcomes
4.5. Caveats and the Need for Empirical Testing
5. Testing Needs
Discussion
Conclusion
Author Contribution
Funding
Conflict of Interest
References
- Jeong M, Lee Y, Park J, Jung H, Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv Drug Deliv Rev. 2023, 200, 114990. [Google Scholar] [CrossRef] [PubMed]
- Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021, 12, 6777. [Google Scholar] [CrossRef]
- Cao M, Zhang X. DNA adductomics: a narrative review of its development, applications, and future. Biomolecules. 2024, 14, 1173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lockridge, O. Overview of adductomics in toxicology. Curr Protoc. 2023, CPZ1, 672. [Google Scholar] [CrossRef]
- LoPachin RM, DeCaprio AP. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Sci. 2005, 86, 214–225. [Google Scholar] [CrossRef]
- B Hwa Y, Guo J, Bellamri M, Turesky RJ. DNA adducts: formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom Rev. 2020, 39, 55–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holcapek M, Kolárová L, Nobilis M. High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem. 2008, 391, 59–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones CR, Sabbioni G. Identification of DNA adducts using HPLC/MS/MS following in vitro and in vivo experiments with arylamines and nitroarenes. Chem Res Toxicol. 2003, 16, 1251–63. [Google Scholar] [CrossRef] [PubMed]
- Kumagai Y, Abiko Y. Environmental electrophiles: protein adducts, modulation of redox signaling, and interaction with persulfides/polysulfides. Chem Res Toxicol. 2017, 30, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Rudolph TK, Freeman BA. Transduction of redox signaling by electrophile-protein reactions. Sci Signal. 2009, 2, re7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weng MW, Lee HW, Park SH, Hu Y, Wang HT, Chen LC, Rom WN, Huang WC, Lepor H, Wu XR, Yang CS, Tang MS. Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A. 2018, 115, E6152–E6161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andrés CM, Pérez de la Lastra JM, Andrés CJ, Plou FJ, Pérez-Lebeña E. Chemical insights into oxidative and nitrative modifications of DNA. Int J Mol Sci. 2023, 24, 15240. [Google Scholar] [CrossRef]
- Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2’-deoxyguanosine: highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst). 2021, 97, 103027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basu AK, Essigmann JM. Establishing linkages among DNA damage, mutagenesis, and genetic diseases. Chem Res Toxicol. 2022, 35, 1655–1675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018, 46, 1213–1224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobets T, Smith BPC, Williams GM. Food-borne chemical carcinogens and the evidence for human cancer risk. Foods. 2022, 11, 2828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo J, Turesky RJ. Emerging technologies in mass spectrometry-based DNA adductomics. High Throughput. 2019, 8, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive reactive oxygen species and exotic DNA lesions as an exploitable liability. Biochemistry. 2016, 55, 5341–52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguilera-Aguirre L, Bacsi A, Radak Z, Hazra TK, Mitra S, Sur S, Brasier AR, Ba X, Boldogh I. Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-κB pathway. J Immunol. 2014, 193, 4643–53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar K, Fornace AJ Jr, Suman S. 8-OxodG: a potential biomarker for chronic oxidative stress induced by high-LET radiation. DNA. 2024, 4, 221–238. [Google Scholar] [CrossRef]
- Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med. 2022, 54, 1626–1642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal. 2012, 17, 1590–609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malvezzi S, Farnung L, Aloisi CMN, Angelov T, Cramer P, Sturla SJ. Mechanism of RNA polymerase II stalling by DNA alkylation. Proc Natl Acad Sci U S A. 2017, 114, 12172–12177. [Google Scholar] [CrossRef]
- Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications. MedComm (2020). 2023, 4, e261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He K, Talaat RE, Pool WF, Reily MD, Reed JE, Bridges AJ, Woolf TF. Metabolic activation of troglitazone: identification of a reactive metabolite and mechanisms involved. Drug Metab Dispos. 2004, 32, 639–46. [Google Scholar] [CrossRef] [PubMed]
- Esteves F, Rueff J, Kranendonk M. The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family. J Xenobiot. 2021, 11, 94–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Attia, SM. Deleterious effects of reactive metabolites. Oxid Med Cell Longev. 2010, 3, 238–53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moldogazieva NT, Zavadskiy SP, Astakhov DV, Terentiev AA. Lipid peroxidation: reactive carbonyl species, protein/DNA adducts, and signaling switches in oxidative stress and cancer. Biochem Biophys Res Commun. 2023, 687, 149167. [Google Scholar] [CrossRef] [PubMed]
- Chao M-R, Chang Y-J, Cooke MS, Hu C-W. Multi-adductomics: advancing mass spectrometry techniques for comprehensive exposome characterization. TrAC Trends Anal Chem. 2024, 180, 117900. [Google Scholar] [CrossRef]
- Muñoz B, Albores A. The role of molecular biology in the biomonitoring of human exposure to chemicals. Int J Mol Sci. 2010, 11, 4511–25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooke MS, Chang YJ, Chen YR, Hu CW, Chao MR. Nucleic acid adductomics - the next generation of adductomics towards assessing environmental health risks. Sci Total Environ. 2023, 856, 159192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol. 2020, 94, 1787–1877, Erratum in: Arch Toxicol. 2020, 94, 3347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amberg A, Beilke L, Bercu J, Bower D, Brigo A, Cross KP, Custer L, Dobo K, Dowdy E, Ford KA, Glowienke S, Van Gompel J, Harvey J, Hasselgren C, Honma M, Jolly R, Kemper R, Kenyon M, Kruhlak N, Leavitt P, Miller S, Muster W, Nicolette J, Plaper A, Powley M, Quigley DP, Reddy MV, Spirkl H-P, Stavitskaya L, Teasdale A, Weiner S, Welch DS, White A, Wichard J, Myatt GJ. Principles and procedures for implementation of ICH M7 recommended (Q)SAR analyses. Regul Toxicol Pharmacol. 2016, 77, 13–24. [Google Scholar] [CrossRef]
- Snodin, D. The cancer threshold of toxicological concern (TTC) in relation to foodstuffs and pharmaceuticals: a potentially useful concept compromised by a dubious derivation. Hum Exp Toxicol. 2017, 37, 789–802. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. M7(R2) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. Silver Spring, MD: FDA; 2023 Jul. Available from: https://www.fda.gov/media/72245/download.
- Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev. 2013, 33, 1119–73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Speicher DJ, Rose J, Gutschi LM, Wiseman DM, McKernan K. DNA fragments detected in monovalent and bivalent Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada: exploratory dose-response relationship with serious adverse events. OSF Preprints. 2023. [CrossRef]
- Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raman NVVSS, Prasad AVSS, Ratnakar Reddy K. Strategies for the identification, control and determination of genotoxic impurities in drug substances: a pharmaceutical industry perspective. J Pharm Biomed Anal. 2011, 55, 662–667. [Google Scholar] [CrossRef]
- Shi R, Liu X, Wang Y, Pan M, Wang S, Shi L, Ni B. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size. Hum Vaccin Immunother. Erratum in: Hum Vaccin Immunother. 2024, 20, 2374232. 2024, 20, 2342592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi R, Liu X, Wang Y, Pan M, Wang S, Shi L, Ni B. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size. Hum Vaccin Immunother. Erratum in: Hum Vaccin Immunother. 2024, 20, 2374232. 2024, 20, 2342592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uddin MN, Roni MA. Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines (Basel). 2021, 9, 1033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kohout, J. Modified Arrhenius equation in materials science, chemistry and biology. Molecules. 2021, 26, 7162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blouin T, Saini N. Aldehyde-induced DNA-protein crosslinks: DNA damage, repair and mutagenesis. Front Oncol. 2024, 14, 1478373. [Google Scholar] [CrossRef]
- Wu G, Baumeister R, Heimbucher T. Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold. Cells. 2023, 12, 1353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Besaratinia A, Pfeifer GP. DNA adduction and mutagenic properties of acrylamide. Mutat Res Genet Toxicol Environ Mutagen. 2005, 580, 31–40. [Google Scholar] [CrossRef]
- Haraguchi T, Koujin T, Shindo T, et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol. 2022, 5, 78. [Google Scholar] [CrossRef]
- Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion. 2012, 12, 190–201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LoPachin RM, Gavin T. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation. Free Radic Res. 2016, 50, 195–205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LoPachin RM, DeCaprio AP. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Sci. 2005, 86, 214–25. [Google Scholar] [CrossRef]
- Wilson B, Geetha KM. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol. 2022, 74, 103553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu Q, Sun Z, Jiang Y, Chen F, Wang M. Acrolein scavengers: reactivity, mechanism and impact on health. Mol Nutr Food Res. 2011, 55, 1375–90. [Google Scholar] [CrossRef] [PubMed]
- Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med. 2019, 140, 14–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang J, Xiang T, Zhu S, Lao Y, Wang Y, Liu T, Li K, Ma Y, Zhong C, Zhang S, Tan W, Lin D, Wu C. Comprehensive analyses reveal effects on tumor immune infiltration and immunotherapy response of APOBEC mutagenesis and its molecular mechanisms in esophageal squamous cell carcinoma. Int J Biol Sci. 2023, 19, 2551–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li Pomi F, Gammeri L, Borgia F, Di Gioacchino M, Gangemi S. Oxidative stress and skin diseases: the role of lipid peroxidation. Antioxidants. 2025, 14, 555. [Google Scholar] [CrossRef]
- Cui Y, Wang Y. Mass spectrometry-based DNA adductomics. TrAC Trends Analyt Chem. 2022, 157, 116773. [Google Scholar] [CrossRef]
- Hosseini-Kharat M, Bremmell KE, Prestidge CA. Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism. Mol Ther Methods Clin Dev. 2025, 33, 101436. [Google Scholar] [CrossRef]
- Sirajee AS, Kabiraj D, De S. Cell-free nucleic acid fragmentomics: a non-invasive window into cellular epigenomes. Transl Oncol. 2024, 49, 102085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bond JA, Melnick RL. Electrophilic agents. In: Baan RA, Stewart BW, Straif K, editors. Tumour site concordance and mechanisms of carcinogenesis. Lyon (FR): International Agency for Research on Cancer; 2019. IARC Sci Publ. 2019;(165):Chapter 1. Available from: https://www.ncbi.nlm.nih.gov/books/NBK570330/.
- Yan LL, Zaher HS. How do cells cope with RNA damage and its consequences? J Biol Chem. 2019, 294, 15158–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reverendo M, Soares AR, Pereira PM, Carreto L, Ferreira V, Gatti E, Pierre P, Moura GR, Santos MA. tRNA mutations that affect decoding fidelity deregulate development and the proteostasis network in zebrafish. RNA Biol. 2014, 11, 1199–213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017, 58, 235–63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parvez S, Long MJC, Poganik JR, Aye Y. Redox signaling by reactive electrophiles and oxidants. Chem Rev. Erratum in: Chem Rev. 2019, 119, 4464-9. 2018, 118, 8798–8888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis. 2010, 31, 59–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanscom T, McVey M. Regulation of error-prone DNA double-strand break repair and its impact on genome evolution. Cells. 2020, 9, 1657. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem. 2008, 283, 21837–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A, Chan TA. The role of neoantigens in response to immune checkpoint blockade. Int Immunol. 2016, 28, 411–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
