Submitted:
20 August 2025
Posted:
21 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background
2.1. Review Stage Blockchain-Based Smart Contracts in Health Management
3. Methods
3.1. Study Design
3.2. Research Questions
3.3. Search Strategy
3.4. Article Selection
- 950 articles identified;
- 89 duplicates removed,
- 239 excluded due to language, etc.,
- 413 excluded due to keywords, title and abstract,
- 129 excluded due to unambiguous technical materail and inadequate research, leaving selecting 80.
3.5. Quality Assessment
- research aims and contextualization
- literature review and methodology
- findings and policy relevance,
4. FINDINGS
4.1. Comprehensive Literature Review and Analysis
4.2. Proceeding with Article Selection
4.3. Conducting the Quality Evaluation
5. Discussions
5.1. Mining
5.2. Consensus Mechanisms
5.3. Security and Encryption
5.4. Distributed Network
5.5. Ledger
5.6. Solidarity
5.7. Health Institutions
5.8. Participants
5.9. Doctors
5.10. Insurance Companies
5.11. Quantum Domain
5.12. Cross-Domain and Emerging Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABE | Attribute-Based Encryption |
| EHR | Electronic Health Records |
| EMR | Electronic Medical Records |
| BERT | Bidirectional Encoder Representations from Transformers |
| BFT | Byzantine Fault Tolerance |
| CA | Certificate Authorization |
| CPT-ABE | Ciphertext-Policy Attribute-Based Encryption |
| FHIR | Fast Healthcare Interoperability Resources |
| GQ | Research Guidance Question |
| HE | Homomorphic Encryption |
| HIPAA | Health Insurance Portability and Accountability Act |
| IoT | Internet of Things |
| NIH | National Institute of Health |
| NN | Neural Networks |
| PHR | Personal Health Records |
| PoW | Proof of Work |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| RAFT | Reliable, Replicated, Redundant, and Fault-Tolerant |
| RF | Random Forest |
| SAI | The Science and Information Organization |
| SVM | Support Vector Machines |
| WoS | Web of Science |
| ZKP | Zero-Knowledge Proofs |
References
- Sun, J.; Ren, L.; Wang, S.; Yao, X. A blockchain-based framework for electronic medical records sharing with fine-grained access control. Plos One 2020, 15, e0239946. [Google Scholar] [CrossRef]
- McGhin, T.; Choo, K.K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. Journal of Network and Computer Applications 2019, 135, 62–75. [Google Scholar] [CrossRef]
- Ante, L. Smart contracts on the blockchain–A bibliometric analysis and review. Telematics and Informatics 2021, 57, 101519. [Google Scholar] [CrossRef]
- Christidis, K.; Devetsikiotis, M. Blockchains and smart contracts for the internet of things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.; Wu, Q.; Mu, Y.; Rezaeibagha, F. Secure decentralized attribute-based sharing of personal health records with blockchain. IEEE Internet of Things Journal 2021, 9, 12482–12496. [Google Scholar] [CrossRef]
- Elhence, A.; Goyal, A.; Chamola, V.; Sikdar, B. A blockchain and ML-based framework for fast and cost-effective health insurance industry operations. IEEE Transactions on Computational Social Systems 2022, 10, 1642–1653. [Google Scholar] [CrossRef]
- Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 2019, 7, 22328–22370. [Google Scholar] [CrossRef]
- Alammary, A.S. Building a sustainable digital infrastructure for higher education: A blockchain-based solution for cross-institutional enrollment. Sustainability 2024, 17, 194. [Google Scholar] [CrossRef]
- Kumar, C.S.; Padhy, A.B.; Singh, A.P.; Reddy, K.H.K. A Dynamic Trading Approach Based on Walrasian Equilibrium in a Blockchain-Based NFT Framework for Sustainable Waste Management. Mathematics 2025, 13, 521. [Google Scholar] [CrossRef]
- Garg, S.; Kaushal, R.K.; Kumar, N. A novel design and performance assessment of a blockchain-powered remote patient monitoring system. SN Computer Science 2024, 5, 849. [Google Scholar] [CrossRef]
- Ali, K.; Unalp, A. Blockchain and AI Collaboration: Building Trust and Security in Decentralized Networks 2025.
- Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. Medrec: Using blockchain for medical data access and permission management. In Proceedings of the 2016 2nd international conference on open and big data (OBD). IEEE; 2016; pp. 25–30. [Google Scholar] [CrossRef]
- Kaushal, R.K.; Kumar, N.; Kukreja, V.; Boonchieng, E. Hyperledger fabric based remote patient monitoring solution and performance evaluation. Peer-to-Peer Networking and Applications 2025, 18, 105. [Google Scholar] [CrossRef]
- Ucbas, Y.; Eleyan, A.; Hammoudeh, M.; Alohaly, M. Performance and scalability analysis of ethereum and hyperledger fabric. IEEE Access 2023, 11, 67156–67167. [Google Scholar] [CrossRef]
- Mnasri, S.; Salah, D.; Idoudi, H. A hybrid blockchain and federated learning attention-based BERT transformer framework for medical records management. The Journal of Supercomputing 2025, 81, 317. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, G.; Feng, B.; Li, Y. A Cross-Chain Medical Data Sharing Scheme Integrating Ring Signature. In Proceedings of the 2024 4th International Conference on Computer Science and Blockchain (CCSB). IEEE; 2024; pp. 338–342. [Google Scholar] [CrossRef]
- Qiao, Y.; Xue, Y.; Zhai, Y.; Zhang, D.; Vasilakos, A.V.; Hossain, M.S.; Mumtaz, S. A Controllable and Efficient Sharing Scheme for Medical IoT Data Based on Consortium Blockchain. In Proceedings of the 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom). IEEE; 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Bezanjani, B.R.; Ghafouri, S.H.; Gholamrezaei, R. Privacy-preserving healthcare data in IoT: a synergistic approach with deep learning and blockchain. The Journal of Supercomputing 2025, 81, 533. [Google Scholar] [CrossRef]
- Liu, Y.; Sharma, A.; Rani, S.; Yang, J. Supply Chain Security, Resilience and Agility in IoT-driven Healthcare. IEEE Internet of Things Journal 2025. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj 2021, 372. [Google Scholar] [CrossRef]
- Roehrs, A.; Da Costa, C.A.; da Rosa Righi, R. OmniPHR: A distributed architecture model to integrate personal health records. Journal of biomedical informatics 2017, 71, 70–81. [Google Scholar] [CrossRef]
- Keele, S.; et al. Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, ver. 2.3 EBSE technical report. EBSE, 2007. https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf.
- Petticrew, M.; Roberts, H. Systematic reviews in the social sciences: A practical guide; John Wiley & Sons, 2008. https://fcsalud.ua.es/en/portal-de-investigacion/documentos/tools-for-the-bibliographic-research/guide-of-systematic-reviews-in-social-sciences.pdf.
- Jain, A.K.; Gupta, N.; Gupta, B.B. A survey on scalable consensus algorithms for blockchain technology. Cyber Security and Applications 2025, 3, 100065. [Google Scholar] [CrossRef]
- Yadav, J.; Shevkar, R. Performance-based analysis of blockchain scalability metric. Tehnički glasnik 2021, 15, 133–142. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, A.; Wu, S.; Chen, J. Blockchain-based multi-hop permission delegation scheme with controllable delegation depth for electronic health record sharing. High-Confidence Computing 2022, 2, 100084. [Google Scholar] [CrossRef]
- Pu, X.; Jiang, R.; Song, Z.; Liang, Z.; Yang, L. A medical big data access control model based on smart contracts and risk in the blockchain environment. Frontiers in Public Health 2024, 12, 1358184. [Google Scholar] [CrossRef]
- Marino, C.A.; Diaz Paz, C. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. JMIR Medical Informatics 2025, 13, e58575. [Google Scholar] [CrossRef] [PubMed]
- Hang, L.; Choi, E.; Kim, D.H. A novel EMR integrity management based on a medical blockchain platform in hospital. Electronics 2019, 8, 467. [Google Scholar] [CrossRef]
- Jamil, F.; Ahmad, S.; Iqbal, N.; Kim, D.H. Towards a remote monitoring of patient vital signs based on IoT-based blockchain integrity management platforms in smart hospitals. Sensors 2020, 20, 2195. [Google Scholar] [CrossRef]
- Dhillon, V. Blockchain based peer-review interfaces for digital medicine. Frontiers in Blockchain 2020, 3, 8. [Google Scholar] [CrossRef]
- Malamas, V.; Kotzanikolaou, P.; Dasaklis, T.K.; Burmester, M. A hierarchical multi blockchain for fine grained access to medical data. IEEE Access 2020, 8, 134393–134412. [Google Scholar] [CrossRef]
- Gong, J.; Zhao, L. Blockchain application in healthcare service mode based on Health Data Bank. Frontiers of engineering management 2020, 7, 605–614. [Google Scholar] [CrossRef]
- Ali, A.; Rahim, H.A.; Ali, J.; Pasha, M.F.; Masud, M.; Rehman, A.U.; Chen, C.; Baz, M. A novel secure blockchain framework for accessing electronic health records using multiple certificate authority. Applied Sciences 2021, 11, 9999. [Google Scholar] [CrossRef]
- Jabarulla, M.Y.; Lee, H.N. Blockchain-based distributed patient-centric image management system. Applied Sciences 2020, 11, 196. [Google Scholar] [CrossRef]
- Iqbal, N.; Jamil, F.; Ahmad, S.; Kim, D. A novel blockchain-based integrity and reliable veterinary clinic information management system using predictive analytics for provisioning of quality health services. IEEE Access 2021, 9, 8069–8098. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Razzaq, A.; Ghayyur, S.A.K.; Alkahtani, H.K.; Al-Kahtani, N.; Mostafa, S.M. Decentralized patient-centric report and medical image management system based on blockchain technology and the inter-planetary file system. International Journal of Environmental Research and Public Health 2022, 19, 14641. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Almaiah, M.A.; Hajjej, F.; Pasha, M.F.; Fang, O.H.; Khan, R.; Teo, J.; Zakarya, M. An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network. Sensors 2022, 22, 572. [Google Scholar] [CrossRef]
- Chondrogiannis, E.; Andronikou, V.; Karanastasis, E.; Litke, A.; Varvarigou, T. Using blockchain and semantic web technologies for the implementation of smart contracts between individuals and health insurance organizations. Blockchain: Research and Applications 2022, 3, 100049. [Google Scholar] [CrossRef]
- Su, J.; Zhang, L.; Mu, Y. BA-RMKABSE: Blockchain-aided ranked multi-keyword attribute-based searchable encryption with hiding policy for smart health system. Future Generation Computer Systems 2022, 132, 299–309. [Google Scholar] [CrossRef]
- Sutanto, E.; Mulyana, R.; Arisgraha, F.C.S.; Escrivá-Escrivá, G. Integrating blockchain for health insurance in Indonesia with hash authentication. Journal of Theoretical and Applied Electronic Commerce Research 2022, 17, 1602–1615. [Google Scholar] [CrossRef]
- Careline, L.G.S.; Godhavari, T. Implementation of Electronic health record and health insurance management system using blockchain technology. International Journal of Advanced Computer Science and Applications 2022, 13. [Google Scholar] [CrossRef]
- Salonikias, S.; Khair, M.; Mastoras, T.; Mavridis, I. Blockchain-based access control in a globalized healthcare provisioning ecosystem. Electronics 2022, 11, 2652. [Google Scholar] [CrossRef]
- De Oliveira, M.T.; Reis, L.H.A.; Verginadis, Y.; Mattos, D.M.F.; Olabarriaga, S.D. SmartAccess: attribute-based access control system for medical records based on smart contracts. IEEE Access 2022, 10, 117836–117854. [Google Scholar] [CrossRef]
- Bhandawat, R.; Casucci, S.; Ramamurthy, B.; Walteros, J.L. Cooperative Blood Inventory Ledger (CoBIL): A decentralized decision-making framework for improving blood product management. Computers & Industrial Engineering 2022, 172, 108571. [Google Scholar] [CrossRef]
- Haritha, T.; Anitha, A. Multi-level security in healthcare by integrating lattice-based access control and blockchain-based smart contracts system. IEEE Access 2023, 11, 114322–114340. [Google Scholar] [CrossRef]
- Thantharate, P.; Thantharate, A. ZeroTrustBlock: Enhancing security, privacy, and interoperability of sensitive data through ZeroTrust permissioned blockchain. Big Data and Cognitive Computing 2023, 7, 165. [Google Scholar] [CrossRef]
- Abdelgalil, L.; Mejri, M. HealthBlock: A framework for a collaborative sharing of electronic health records based on blockchain. Future Internet 2023, 15, 87. [Google Scholar] [CrossRef]
- Chandini, A.; Basarkod, P.I. Patient centric pre-transaction signature verification assisted smart contract based blockchain for electronic healthcare records. Journal of Ambient Intelligence and Humanized Computing 2023, 14, 4221–4235. [Google Scholar] [CrossRef]
- Karmakar, A.; Ghosh, P.; Banerjee, P.S.; De, D. ChainSure: Agent free insurance system using blockchain for healthcare 4.0. Intelligent Systems with Applications 2023, 17, 200177. [Google Scholar] [CrossRef]
- Selvarajan, S.; Mouratidis, H. A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems. Scientific Reports 2023, 13, 7107. [Google Scholar] [CrossRef]
- Liu, A.; Chen, X.B.; Xu, G.; Wang, Z.; Feng, X.; Feng, H. Quantum-Enhanced Blockchain: A Secure and Practical Blockchain Scheme. Computers, Materials & Continua 2023, 76. [Google Scholar] [CrossRef]
- Prajapat, S.; Kumar, P.; Kumar, D.; Das, A.K.; Hossain, M.S.; Rodrigues, J.J. Quantum secure authentication scheme for internet of medical things using blockchain. IEEE Internet of Things Journal 2024. [Google Scholar] [CrossRef]
- Balasubramaniam, A.; Surendiran, B. QUMA: quantum unified medical architecture using blockchain. 2024, 11, 33. [Google Scholar] [CrossRef]
- Venkatesh, R.; Darandale, S. Enhancing Healthcare Security with Quantum Blockchain: Electronic Medical Records Protection. In Proceedings of the 2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON). IEEE; 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Kaur, J.; Rani, R.; Kalra, N. Attribute-based access control scheme for secure storage and sharing of EHRs using blockchain and IPFS. Cluster Computing 2024, 27, 1047–1061. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Q.; Chen, J.; Chen, F.; Xie, D.; Shen, H. Health data security sharing method based on hybrid blockchain. Future Generation Computer Systems 2024, 153, 251–261. [Google Scholar] [CrossRef]
- Li, P.; Zhou, D.; Ma, H.; Lai, J. Flexible and secure access control for EHR sharing based on blockchain. Journal of Systems Architecture 2024, 146, 103033. [Google Scholar] [CrossRef]
- Bobrova, P.; Perego, P.; Boiano, R. Design and Development of a Smart Fidget Toy Using Blockchain Technology to Improve Health Data Control. Sensors 2024, 24, 6582. [Google Scholar] [CrossRef] [PubMed]
- Igboanusi, I.S.; Nnadiekwe, C.A.; Ogbede, J.U.; Kim, D.S.; Lensky, A. BOMS: blockchain-enabled organ matching system. Scientific Reports 2024, 14, 16069. [Google Scholar] [CrossRef]
- Kaafarani, R.; Ismail, L.; Zahwe, O. Automatic Recommender System of Development Platforms for Smart Contract–Based Health Care Insurance Fraud Detection Solutions: Taxonomy and Performance Evaluation. Journal of Medical Internet Research 2024, 26, e50730. [Google Scholar] [CrossRef]
- Liang, X.; Alam, N.; Sultana, T.; Bandara, E.; Shetty, S. Designing A Blockchain-Empowered Telehealth Artifact for Decentralized Identity Management and Trustworthy Communication: Interdisciplinary Approach. Journal of medical Internet research 2024, 26, e46556. [Google Scholar] [CrossRef]
- Mahdi, S.S.; Ullah, Z.; Battineni, G.; Babar, M.G.; Daood, U. The Telehealth chain: a framework for secure and transparent telemedicine transactions on the blockchain. Irish Journal of Medical Science (1971-) 2024, 193, 2129–2137. [Google Scholar] [CrossRef]
- Takahashi, T.; Zhihao, Y.; Omote, K. Emergency Medical Access Control System Based on Public Blockchain. Journal of Medical Systems 2024, 48, 90. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, C.; Jiang, Z.; Li, G.; Wu, C.; Li, S. Efficient Use of Biological Data in the Web 3.0 Era by Applying Nonfungible Token Technology. Journal of Medical Internet Research 2024, 26, e46160. [Google Scholar] [CrossRef]
- Yang, X.; Li, L. BPPKS: A blockchain-based privacy preserving and keyword-searchable scheme for medical data sharing. Peer-to-Peer Networking and Applications 2024, 17, 4033–4048. [Google Scholar] [CrossRef]
- Duc, T.; PHT, T.; DP, T.N.; et al. Developing a Patient-Centric Healthcare IoT Platform with Blockchain and Smart Contract Data Management. International Journal of Advanced Computer Science & Applications 2024, 15. [Google Scholar] [CrossRef]
- Guerra, K.; Koh, C.; Prybutok, V.; Johnson, V. A privacy perspective in adopting smart contract applications for healthcare. Journal of Computer Information Systems 2024, 1–15. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Liang, W. A smart contract-driven access control scheme with integrity checking for electronic health records. Cluster Computing 2024, 27, 11515–11535. [Google Scholar] [CrossRef]
- Rekik, S.; Alsulaiman, N.; Albadrani, N. A Health Record Management System Using Blockchain and Smart Contract. In Proceedings of the 2024 Seventh International Women in Data Science Conference at Prince Sultan University (WiDS PSU). IEEE; 2024; pp. 204–208. [Google Scholar] [CrossRef]
- Saha, S.; Das, A.K.; Wazid, M.; Park, Y.; Garg, S.; Alrashoud, M. Smart contract-based access control scheme for blockchain assisted 6G-enabled IoT-based big data driven healthcare cyber physical systems. IEEE Transactions on Consumer Electronics 2024, 70, 6975–6986. [Google Scholar] [CrossRef]
- Vidhya, S.; Siva Raja, P.; Sumithra, R. Blockchain-Enabled Decentralized Healthcare Data Exchange: Leveraging Novel Encryption Scheme, Smart Contracts, and Ring Signatures for Enhanced Data Security and Patient Privacy. International Journal of Network Management 2024, 34, e2289. [Google Scholar] [CrossRef]
- Arabnouri, A.; Shafieinejad, A. BACASE-SH: Blockchain-based authenticated certificate-less asymmetric searchable encryption for smart healthcare. Peer-to-Peer Networking and Applications 2024, 17, 2298–2314. [Google Scholar] [CrossRef]
- Bunia, S.; Campbell, O.; Carvalho, A.; Alluri, V. SCeFSTA: Smart Contract enabled Fair, Secure, and Transparent Auction for Healthcare Transportation. In Proceedings of the 2024 IEEE International Systems Conference (SysCon). IEEE; 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Bieniek, J.; Rahouti, M.; Xiong, K.; Ferreira Araujo, G. SecureCare: A blockchain-assisted wearable body area network for secure and scalable IoT healthcare services. Security and Privacy 2024, 7, e431. [Google Scholar] [CrossRef]
- Alharbi, S.H.; Alzahrani, A.M.; Syed, T.A.; Alqahtany, S.S. Integrity and privacy assurance framework for remote healthcare monitoring based on IoT. Computers 2024, 13, 164. [Google Scholar] [CrossRef]
- Kumar, N.; Ali, R. A smart contract-based 6G-enabled authentication scheme for securing Internet of Nano Medical Things network. Ad Hoc Networks 2024, 163, 103606. [Google Scholar] [CrossRef]
- Rohini, K.; Subramanian, R.; Soman, G. Improving Data Security and Scalability in Healthcare System using Blockchain Technology. Scalable Computing: Practice and Experience 2024, 25, 3440–3452. [Google Scholar] [CrossRef]
- Li, M.; Xue, J.; Liu, Z.; Suo, Y.; Lei, T.; Wang, Y. DAMFSD: A decentralized authorization model with flexible and secure delegation. Internet of Things 2024, 27, 101317. [Google Scholar] [CrossRef]
- Zhu, X.; Lai, T.; Li, H. Privacy-Preserving Byzantine-Resilient Swarm Learning for E-Healthcare. Applied Sciences 2024, 14, 5247. [Google Scholar] [CrossRef]
- Kar, J.; Liu, X.; Li, F. LA-IMDCN: A Lightweight Authentication Scheme With Smart Contract in Implantable Medical Device Communication Networks. IEEE Access 2024. [Google Scholar] [CrossRef]
- Zhang, D.M.; Nie, C.; Zhang, J.Z.; Huang, H.W.; Huang, X. Consortium blockchain-based tunnel data bank for traceable sharing and treatment of structural health monitoring data. Automation in Construction 2024, 167, 105720. [Google Scholar] [CrossRef]
- Abid, A.; Cheikhrouhou, S.; Kallel, S.; Tari, Z.; Jmaiel, M. A smart contract-based access control framework for smart healthcare systems. The Computer Journal 2024, 67, 407–422. [Google Scholar] [CrossRef]
- Ahmed, H.; Gamal, A.; Abdelmouty, A. Optimizing Blockchain Platform Selection: A Decision-Making Approach Using LLMs, Type-2 Neutrosophic Numbers, CRITIC, and MAIRCA. Neutrosophic Sets and Systems 2025, 83, 25. [Google Scholar] [CrossRef]
- Ahmed, I.; Fumimoto, K.; Nakano, T.; Tran, T.H. Blockchain-empowered decentralized philanthropic charity for social good. Sustainability 2024, 16, 210. [Google Scholar] [CrossRef]
- Akhyani, J.; Patel, J.; Desai, V.; Gupta, R.; Tanwar, S.; Bhatia, J. GRACE: Blockchain and Game-Based Resource Allocation Scheme for SDN Controllers in ioT. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE; 2024; pp. 1431–1436. [Google Scholar] [CrossRef]
- Ansar, S.; Natarajan, P.; Guran, L.R.V.R. A New Encryption Scheme Using Blockchain for Secured Accessing of Sensitive Health Care Records. Journal of Advances in Information Technology 2025, 5, 510–526. [Google Scholar] [CrossRef]
- Badidi, E.; Lamaazi, H.; El Harrouss, O. Toward a Secure Healthcare Ecosystem: A Convergence of Edge Analytics, Blockchain, and Federated Learning. In Proceedings of the 2024 20th International Conference on the Design of Reliable Communication Networks (DRCN). IEEE; 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Basudan, S. IPFS-blockchain-based delegation model for internet of medical robotics things telesurgery system. Connection Science 2024, 36, 2367549. [Google Scholar] [CrossRef]
- Chegenizadeh, M.; Tessone, C.J. PAVA: Privacy-Preserving Attribute-Based Verifiable Authentication in Healthcare using Smart Contracts. In Proceedings of the 2024 IEEE International Conference on Blockchain (Blockchain). IEEE; 2024; pp. 346–353. [Google Scholar] [CrossRef]
- Devgun, T.; Kumar, G.; Conti, M. FASALKA: Offloaded Privacy Classification for Blockchain Smart Contracts. In Proceedings of the 2024 6th International Conference on Blockchain Computing and Applications (BCCA). IEEE; 2024; pp. 204–210. [Google Scholar] [CrossRef]
- Kumari, D.; Parmar, A.S.; Goyal, H.S.; Mishra, K.; Panda, S. Healthrec-chain: patient-centric blockchain enabled ipfs for privacy preserving scalable health data. Computer Networks 2024, 241, 110223. [Google Scholar] [CrossRef]
- Sun, L.; Liu, D.; Li, Y.; Zhou, D. A blockchain-based E-healthcare system with provenance awareness. IEEE Access 2024. [Google Scholar] [CrossRef]
- Rani, P.; Sachan, R.K.; Kukreja, S. Educert-chain: a secure and notarized educational certificate authentication and verification system using permissioned blockchain. Cluster Computing 2024, 27, 10169–10196. [Google Scholar] [CrossRef]
- Riahi, A.; Erbad, A.; Bouras, A.; Mohamed, A. RL-Based Incentive Cooperative Data Learning Framework Over Blockchain in Healthcare Applications (RL-ICDL-BC). In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC). IEEE; 2024; pp. 90–96. [Google Scholar] [CrossRef]
- Cihan, S.; Ozsoy, A.; Beyan, O.D. Managing Clinical Research on Blockchain Using FAIR Principles. Concurrency and Computation: Practice and Experience 2025, 37, e70005. [Google Scholar] [CrossRef]
- Aakanksha, A.; Sundaram, D. Optimizing Smart Ecosystems Using DAO: Collaborative Hospital Location Decision-Making. In Proceedings of the Proceedings of the 58th Hawaii International Conference on System Sciences; 2025; https://scholarspace.manoa.hawaii.edu/10.24251/HICSS.2025.147. [Google Scholar]
- Ding, X.; Liu, Y.; Ning, J.; Chen, D. Blockchain-Enhanced Anonymous Data Sharing Scheme for 6G-Enabled Smart Healthcare With Distributed Key Generation and Policy Hiding. IEEE Journal of Biomedical and Health Informatics 2025. [Google Scholar] [CrossRef]
- Abdunabi, R.; Al Amin, M.; Basnet, R. An authorization framework for body area network: A policy verification and smart contract-based integrity assurance approach. Journal of Computer Security 2025, 0926227X241296435. [Google Scholar] [CrossRef]
- Ahanger, T.A.; Ullah, I.; Algamdi, S.A.; Tariq, U. Machine learning-inspired intrusion detection system for IoT: Security issues and future challenges. Computers and Electrical Engineering 2025, 123, 110265. [Google Scholar] [CrossRef]
- Ahmed, W.; Iqbal, W.; Hassan, A.; Ahmad, A.; Ullah, F.; Srivastava, G. Elevating e-health excellence with IOTA distributed ledger technology: Sustaining data integrity in next-gen fog-driven systems. Future Generation Computer Systems 2025, 168, 107755. [Google Scholar] [CrossRef]
- Ali, W.; Zhou, X.; Shao, J. Privacy-preserved and responsible recommenders: From conventional defense to federated learning and blockchain. ACM Computing Surveys 2025, 57, 1–35. [Google Scholar] [CrossRef]
- Mishra, D.K.; Mehra, P.S. DiabeticChain: a novel blockchain approach for patient-centric diabetic data management. The Journal of Supercomputing 2025, 81, 166. [Google Scholar] [CrossRef]
- Chaudhry, U.H.; Arshad, R.; Khalid, A.; Ray, I.G.; Hussain, M. zk-DASTARK: A quantum-resistant, data authentication and zero-knowledge proof scheme for protecting data feed to smart contracts. Computers and Electrical Engineering 2025, 123, 110089. [Google Scholar] [CrossRef]
- Guo, R.; Liao, S.; Zhu, J. CrowdBA: A Low-Cost Quality-Driven Crowdsourcing Architecture for Bounding Box Annotation Based on Blockchain. Electronics 2025, 14, 345. [Google Scholar] [CrossRef]
- Gupta, A.; Lakhwani, K. Enhancing blockchain quality-of-service: a comparative analysis and novel smart contract mechanism. Discover Applied Sciences 2025, 7, 1–26. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Cheng, Q.; Chen, X.; Luo, X. LB3AS: Lightweight Blockchain-Assisted Anonymous Authentication Scheme for Fog-Cloud-Based Internet of Medical Things. IEEE Internet of Things Journal 2025. [Google Scholar] [CrossRef]
- Huang, P.; Lin, C.; Ning, J.; Wu, W. Optimized Blockchain-Based EMR Sharing via Secure Channel-Free Universal Designated Verifier Signature Proofs. IEEE Internet of Things Journal 2025. [Google Scholar] [CrossRef]
- Jayachandran, P. The difference between public and private blockchain. Blockchain Unleashed: IBM Blockchain Blog 2017, 2017. https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/. [Google Scholar]
- Kamel Boulos, M.N.; Wilson, J.T.; Clauson, K.A. Geospatial blockchain: promises, challenges, and scenarios in health and healthcare. International journal of health geographics 2018, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, A. A blockchain-based smart contract system for healthcare management. Electronics 2020, 9, 94. [Google Scholar] [CrossRef]
- Jurvetson, S. How a quantum computer could break 2048-bit RSA encryption in 8 hours. MIT Technology Review, May 2019, 30, 9, https://www.technologyreview.com/2019/05/30/65724/how-a-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/. [Google Scholar]
- Denker, K.; Javaid, A.Y. Quantum computing as a threat to modern cryptography techniques. In Proceedings of the Proceedings of the International Conference on Foundations of Computer Science (FCS).
- Aggarwal, D.; Brennen, G.K.; Lee, T.; Santha, M.; Tomamichel, M. Quantum attacks on Bitcoin, and how to protect against them. arXiv 2017, arXiv:1710.10377 2017. [Google Scholar] [CrossRef]
- Banerjee, S.; Mukherjee, A.; Panigrahi, P.K. Quantum blockchain using weighted hypergraph states. Physical Review Research 2020, 2, 013322. [Google Scholar] [CrossRef]
- Kiktenko, E.O.; Pozhar, N.O.; Anufriev, M.N.; Trushechkin, A.S.; Yunusov, R.R.; Kurochkin, Y.V.; Lvovsky, A.; Fedorov, A.K. Quantum-secured blockchain. Quantum Science and Technology 2018, 3, 035004. [Google Scholar] [CrossRef]
- Alabdulatif, A. Blockchain-Based Privacy-Preserving Authentication and Access Control Model for E-Health Users. Information 2025, 16, 219. [Google Scholar] [CrossRef]
- Khan, A.; Litchfield, A.; Alabdulatif, A.; Khan, F. BlockPres IPFS: performance evaluation of blockchain based secure patients prescription record storage using IPFS for smart prescription management system. Cluster Computing 2025, 28, 255. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.; Khan, M.A.; Khan, M.A.; Wang, L.; Wu, K. A blockchain-enabled AI-driven secure searchable encryption framework for medical IoT systems. IEEE Journal of Biomedical and Health Informatics 2025. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J.; Puthal, D. Advancing eHealth in society 5.0: a fuzzy logic and blockchain-enhanced framework for integrating IoMT, edge, and cloud with AI. IEEE Access 2024. [Google Scholar] [CrossRef]
- Kapadiya, K.; Patel, U.; Gupta, R.; Alshehri, M.D.; Tanwar, S.; Sharma, G.; Bokoro, P.N. Blockchain and AI-empowered healthcare insurance fraud detection: an analysis, architecture, and future prospects. IEEE Access 2022, 10, 79606–79627. [Google Scholar] [CrossRef]



| AI Model | Description | Accuracy | Computational Cost |
Scalability | Best Use Case |
|---|---|---|---|---|---|
| Random Forest (RF) |
Ensemble learning method using decision trees |
85-90% | Medium | High | Insurance fraud detection |
| Neural Networks (NN) |
Multi-layered deep learning model |
92-96% | High | Medium | Transaction anomaly detection |
| BERT Transformer |
NLP-based model for fraud detection via transaction logs |
93-98% | Very High | High | Smart contract security monitoring |
| Support Vector Machines (SVM) |
Classification-based algorithm with kernel functions |
80-88% | Medium | Medium | Behavioral fraud analysis |
| ID | Ref. | Author(s) | Year | Publisher | Type |
| A20 | [29] | Hang et al. | 2019 | MDPI | Journal |
| A04 | [30] | Jamil et al. | 2020 | MDPI | Journal |
| A19 | [31] | Dhillon | 2020 | Frontiers Media | Journal |
| A21 | [32] | Malamas et al. | 2020 | IEEE | Conference |
| A26 | [33] | Gong and Zhao | 2020 | Springer Nature | Journal |
| A11 | [34] | Ali et al. | 2021 | MDPI | Journal |
| A15 | [35] | Jabarulla and Lee | 2021 | MDPI | Journal |
| A17 | [36] | Iqbal et al. | 2021 | IEEE | Conference |
| A02 | [37] | Mohsan et al. | 2021 | MDPI | Journal |
| A03 | [38] | Ali et al. | 2022 | MDPI | Journal |
| A06 | [39] | Chondrogiannis et al. | 2022 | Elsevier | Journal |
| A07 | [40] | Su et al. | 2022 | Elsevier | Journal |
| A10 | [41] | Sutanto et al. | 2022 | MDPI | Journal |
| A12 | [5] | Zhang et al. | 2022 | IEEE | Journal |
| A13 | [42] | Careline and Godhavari | 2020 | SAI | Journal |
| A16 | [43] | Salonikias et al. | 2022 | MDPI | Journal |
| A25 | [44] | De Olivera et al. | 2022 | IEEE | Conference |
| A27 | [45] | Bhandawat et al. | 2022 | Elsevier | Journal |
| A08 | [46] | Haritha and Anitha | 2023 | IEEE | Conference |
| A18 | [47] | Thantharate and Thantharate | 2023 | MDPI | Journal |
| A22 | [48] | Abdelgalil and Mejri | 2023 | MDPI | Journal |
| A23 | [49] | Chandini and Basarkod | 2023 | Springer Nature | Journal |
| A24 | [50] | Karmakar et al. | 2023 | Elsevier | Journal |
| A43 | [51] | Selvarajan et al. | 2023 | Springer Nature | Journal |
| A44 | [52] | Liu et al. | 2023 | Elsevier | Journal |
| A45 | [53] | Prajapat et al. | 2024 | IEEE | Journal |
| A46 | [54] | Balasubramaniam et al. | 2024 | MDPI | Journal |
| A47 | [55] | Venkatesh et al. | 2024 | IEEE | Conference |
| A01 | [27] | Pu et al. | 2024 | Frontiers Media | Journal |
| A05 | [56] | Kaur et al. | 2024 | Springer Nature | Journal |
| A09 | [57] | Wang et al. | 2024 | Elsevier | Journal |
| A14 | [58] | Li et al. | 2024 | Elsevier | Journal |
| A28 | [59] | Bobrova et al. | 2024 | MDPI | Journal |
| A29 | [60] | Igboanusi et al. | 2024 | Springer Nature | Journal |
| A30 | [61] | Kaafarani et al. | 2024 | JMIR | Journal |
| A31 | [62] | Liang et al. | 2024 | JMIR | Journal |
| A32 | [63] | Mahdi et al. | 2024 | Springer Nature | Journal |
| A33 | [64] | Takahashi et al. | 2024 | Springer Nature | Journal |
| A34 | [65] | Wang et al. | 2024 | JMIR | Journal |
| A36 | [66] | Yang and Li | 2024 | Springer Nature | Journal |
| A37 | [67] | Duc et al. | 2024 | SAI | Journal |
| A38 | [68] | Guerra et al. | 2024 | Taylor & Francis | Journal |
| A39 | [69] | Li et al. | 2024 | Springer Nature | Journal |
| A40 | [70] | Rekik et al. | 2024 | IEEE | Conference |
| A41 | [71] | Saha et al. | 2024 | IEEE | Journal |
| A42 | [72] | Vidhya et al. | 2024 | Wiley | Journal |
| A48 | [73] | Arabnouri & Shafieinejad | 2024 | Springer Nature | Journal |
| A49 | [74] | Bunia et al. | 2024 | IEEE | Conference |
| A50 | [75] | Bieniek et al. | 2024 | Wiley | Journal |
| A51 | [76] | Alharbi et al. | 2024 | MDPI | Journal |
| A52 | [77] | Kumar & Ali | 2024 | Elsevier | Journal |
| A53 | [78] | Rohini et al. | 2024 | PKP | Journal |
| A54 | [79] | Li et al. | 2024 | Elsevier | Journal |
| A56 | [80] | Zhu et al. | 2024 | MDPI | Journal |
| A58 | [81] | Kar et al. | 2024 | IEEE | Journal |
| A59 | [82] | Zhang et al. | 2024 | Elsevier | Journal |
| A62 | [83] | Abid et al. | 2024 | OUP | Journal |
| A64 | [84] | Ahmed et al. | 2024 | Univ. of New Mexico | Journal |
| A65 | [85] | Ahmed et al. | 2024 | MDPI | Journal |
| A67 | [86] | Akhyani et al. | 2024 | IEEE | Conference |
| A69 | [87] | Ansar et al. | 2024 | ETP | Journal |
| A70 | [88] | Badidi et al. | 2024 | IEEE | Conference |
| A71 | [89] | Basudan | 2024 | Taylor & Francis | Journal |
| A73 | [90] | Chegenizadeh & Tessone | 2024 | IEEE | Conference |
| A74 | [91] | Devgun et al. | 2024 | IEEE | Conference |
| A77 | [92] | Kumari et al. | 2024 | Elsevier | Journal |
| A78 | [93] | Sun et al. | 2024 | IEEE | Journal |
| A79 | [94] | Rani et al. | 2024 | Springer Nature | Journal |
| A80 | [95] | Riahi et al. | 2024 | IEEE | Journal |
| A55 | [96] | Cihan et al. | 2025 | Wiley | Journal |
| A57 | [97] | Aakanksha & Sundaram, | 2025 | HICSS | Conference |
| A60 | [98] | Ding et al. | 2025 | IEEE | Journal |
| A61 | [99] | Abdunabi et al. | 2025 | SAGE | Journal |
| A63 | [100] | Ahanger et al. | 2025 | Elsevier | Journal |
| A66 | [101] | Ahmed et al. | 2025 | Elsevier | Journal |
| A68 | [102] | Ali et al. | 2025 | ACM | Journal |
| A35 | [103] | Mishra and Mehra | 2025 | Springer Nature | Journal |
| A72 | [104] | Chaudhry et al. | 2025 | Elsevier | Journal |
| A75 | [105] | Guo et al. | 2025 | MDPI | Journal |
| A76 | [106] | Gupta & Lakhwani | 2025 | Springer Nature | Journal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
