Submitted:
12 August 2025
Posted:
12 August 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Statistical Analysis
Results
Discussion
Conclusion
References
- Lai, Y.-h.; Xu, H.; Su, Q.; Wan, X.-f.; Yuan, M.-c.; Zhou, Z.-k. Effect of tourniquet use on blood loss, pain, functional recovery, and complications in robot-assisted total knee arthroplasty: a prospective, double-blinded, randomized controlled trial. Journal of orthopaedic surgery and research 2022, 17, 118. [Google Scholar] [CrossRef]
- Karasavvidis, T.; Pagan Moldenhauer, C.A.; Haddad, F.S.; Hirschmann, M.T.; Pagnano, M.W.; Vigdorchik, J.M. Current Concepts in Alignment in Total Knee Arthroplasty. The Journal of arthroplasty 2023, 38, S29–s37. [Google Scholar] [CrossRef]
- Shatrov, J.; Parker, D. Computer and robotic – assisted total knee arthroplasty: a review of outcomes. Journal of experimental orthopaedics 2020, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Rajgopal, A.; Sundararajan, S.S.; Aggarwal, K.; Kumar, S.; Singh, G. Robotic Assisted TKA achieves adjusted mechanical alignment targets more consistently compared to manual TKA without improving outcomes. Journal of experimental orthopaedics 2024, 11, e70008. [Google Scholar] [CrossRef] [PubMed]
- Inabathula, A.; Semerdzhiev, D.I.; Srinivasan, A.; Amirouche, F.; Puri, L.; Piponov, H. Robots on the Stage: A Snapshot of the American Robotic Total Knee Arthroplasty Market. JB & JS open access 2024, 9. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.M.; Nian, P.; Baidya, J.; Mont, M.A. Trends of robotic total joint arthroplasty utilization in the United States from 2010 to 2022: a nationwide assessment. Journal of robotic surgery 2025, 19, 155. [Google Scholar] [CrossRef]
- Siebert, W.; Mai, S.; Kober, R.; Heeckt, P.F. Technique and first clinical results of robot-assisted total knee replacement. The Knee 2002, 9, 173–180. [Google Scholar] [CrossRef]
- St Mart, J.P.; Goh, E.L. The current state of robotics in total knee arthroplasty. EFORT open reviews 2021, 6, 270–279. [Google Scholar] [CrossRef]
- Vermue, H.; Luyckx, T.; Winnock de Grave, P.; Ryckaert, A.; Cools, A.S.; Himpe, N.; Victor, J. Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 2022, 30, 593–602. [Google Scholar] [CrossRef]
- Alcelik, I.; Pollock, R.D.; Sukeik, M.; Bettany-Saltikov, J.; Armstrong, P.M.; Fismer, P. A comparison of outcomes with and without a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. The Journal of arthroplasty 2012, 27, 331–340. [Google Scholar] [CrossRef]
- Huang, C.R.; Pan, S.; Li, Z.; Ruan, R.X.; Jin, W.Y.; Zhang, X.C.; Pang, Y.; Guo, K.J.; Zheng, X. Tourniquet use in primary total knee arthroplasty is associated with a hypercoagulable status: a prospective thromboelastography trial. International orthopaedics 2021, 45, 3091–3100. [Google Scholar] [CrossRef]
- Lai, Y.H.; Xu, H.; Su, Q.; Wan, X.F.; Yuan, M.C.; Zhou, Z.K. Effect of tourniquet use on blood loss, pain, functional recovery, and complications in robot-assisted total knee arthroplasty: a prospective, double-blinded, randomized controlled trial. Journal of orthopaedic surgery and research 2022, 17, 118. [Google Scholar] [CrossRef]
- Khan, M.; Lygre, S.H.L.; Badawy, M.; Husby, O.S.; Hallan, G.; Høl, P.J.; Gjertsen, J.E.; Furnes, O. Association of tourniquet use on short-term implant survival after primary total knee arthroplasty: a study of 24,249 knees from the Norwegian Arthroplasty Register. Acta orthopaedica 2025, 96, 547–554. [Google Scholar] [CrossRef]
- Smith, A.F.; Usmani, R.H.; Wilson, K.D.; Smith, L.S.; Malkani, A.L. Effect of Tourniquet Use on Patient Outcomes After Cementless Total Knee Arthroplasty: A Randomized Controlled Trial. The Journal of arthroplasty 2021, 36, 2331–2334. [Google Scholar] [CrossRef]
- Stronach, B.M.; Jones, R.E.; Meneghini, R.M. Tourniquetless Total Knee Arthroplasty: History, Controversies, and Technique. The Journal of the American Academy of Orthopaedic Surgeons 2021, 29, 17–23. [Google Scholar] [CrossRef]
- Rafaqat, W.; Kumar, S.; Ahmad, T.; Qarnain, Z.; Khan, K.S.; Lakdawala, R.H. The mid-term and long-term effects of tourniquet use in total knee arthroplasty: systematic review. Journal of experimental orthopaedics 2022, 9, 42. [Google Scholar] [CrossRef]
- Lopez-Picado, A.; Albinarrate, A.; Barrachina, B.J.A. ; Analgesia. Determination of perioperative blood loss: accuracy or approximation? 2017, 125, 280-286.
- Pearson, T.C.; Guthrie, D.L.; Simpson, J.; Chinn, S.; Barosi, G.; Ferrant, A.; Lewis, S.M.; Najean, Y. Interpretation of measured red cell mass and plasma volume in adults: Expert Panel on Radionuclides of the International Council for Standardization in Haematology. British journal of haematology 1995, 89, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Hasanain, M.S.; Apostu, D.; Alrefaee, A.; Tarabichi, S. Comparing the Effect of Tourniquet vs Tourniquet-Less in Simultaneous Bilateral Total Knee Arthroplasties. The Journal of arthroplasty 2018, 33, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Chaitantipongse, S.; Hongku, N.; Thiengwittayaporn, S. Optimizing surgical field visualization in total knee arthroplasty: a randomized controlled trial comparing esmarch bandages and simple leg elevation. Journal of orthopaedic surgery and research 2025, 20, 455. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.A.; Beaupre, L.A.; Johnston, D.W.; Suarez-Almazor, M.E. Total joint arthroplasties: current concepts of patient outcomes after surgery. Clin Geriatr Med 2005, 21, 527–541, vi. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Song, Q.; Mou, Z.; Dong, Y. Tourniquet use benefits to reduce intraoperative blood loss in patients receiving total knee arthroplasty for osteoarthritis: An updated meta-analysis with trial sequential analysis. J Orthop Surg (Hong Kong) 2023, 31, 10225536231191607. [Google Scholar] [CrossRef]
- Ayik, O.; Demirel, M.; Birisik, F.; Ersen, A.; Balci, H.I.; Sahinkaya, T.; Batibay, S.G.; Ozturk, I. The Effects of Tourniquet Application in Total Knee Arthroplasty on the Recovery of Thigh Muscle Strength and Clinical Outcomes. The journal of knee surgery 2021, 34, 1057–1063. [Google Scholar] [CrossRef]
- An, S.; Maa, S.; Mk, M.-I.; Mf, Y. Prevalence of Blood Transfusion and Factors Influencing Blood Loss Following Primary Total Knee Replacement Surgery. Malaysian Orthopaedic Journal 2025, 19, 49–56. [Google Scholar] [CrossRef]
- Singh, J.A.; Lemay, C.A.; Nobel, L.; Yang, W.; Weissman, N.; Saag, K.G.; Allison, J.; Franklin, P.D. Association of Early Postoperative Pain Trajectories With Longer-term Pain Outcome After Primary Total Knee Arthroplasty. JAMA Network Open 2019, 2, e1915105–e1915105. [Google Scholar] [CrossRef]
- Pavão, D.M.; Pires eAlbuquerque, R.S.; de Faria, J.L.R.; Sampaio, Y.D.; de Sousa, E.B.; Fogagnolo, F. Optimized Tourniquet Use in Primary Total Knee Arthroplasty: A Comparative, Prospective, and Randomized Study. The Journal of arthroplasty 2023, 38, 685–690. [Google Scholar] [CrossRef]
- Cao, Z.; Guo, J.; Li, Q.; Wu, J.; Li, Y. Comparison of efficacy and safety of different tourniquet applications in total knee arthroplasty: a network meta-analysis of randomized controlled trials. Annals of medicine 2021, 53, 1816–1826. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.; Rivkin, G.; Greenberg, A.; Kandel, L.; Liebergall, M.; Perets, I. Robotic Guided Knee Arthroplasty - Group Learning Curve and Early Outcomes. Arthroplasty today 2025, 34, 101746. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kang, M.W.; Lee, J.H.; Kim, J.I. Learning curve of robot-assisted total knee arthroplasty and its effects on implant position in asian patients: a prospective study. BMC musculoskeletal disorders 2023, 24, 332. [Google Scholar] [CrossRef]
- Barahona, M.; Bustos, F.; Hinzpeter, J.; Urroz, F.; Barrientos, C.; Infante, C.A.; Barahona, M.A. Evaluation of the Learning Curve in Robotic-Assisted Total Knee Arthroplasty: A Time-Series Analysis of Surgical Time. Cureus 2025, 17, e84120. [Google Scholar] [CrossRef]
- Koh, I.J.; Kim, T.K.; Chang, C.B.; Cho, H.J.; In, Y. Trends in use of total knee arthroplasty in Korea from 2001 to 2010. Clinical orthopaedics and related research 2013, 471, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
| Early Tourniquet (n=29) | No-Tourniquet (n=30) | Late Tourniquet (n=41) | p value | |
| Agea | 71.5 ± 5.8 | 71.7 ± 6.5 | 72.5 ± 5.7 | 0.736 |
| Heighta | 1.58 ± 0.07 | 1.57 ± 0.09 | 1.58 ± 0.06 | 0.911 |
| Weighta | 63.5 ± 6.4 | 64.7 ± 13.6 | 63.6 ± 7.3 | 0.862 |
| Male sex† | 5 (17.2%) | 8 (26.7%) | 4 (9.8%) | 0.173 |
| Femal sex† | 24 (82.8%) | 22 (73.3%) | 37 ( 90.2%) | |
| Op side Rt.† | 15 (51.7%) | 13 (43.3%) | 15 (36.6%) | 0.452 |
| Op side Lt.† | 14 (48.3%) | 17 (56.7%) | 26 (63.4%) |
| Early Tourniquet (n=29) | No-Tourniquet (n=30) | Late Tourniquet (n=41) | P-value | |
| EBL POD 1a | 407.9 ± 133.8 | 500.1 ± 151.8 | 392.3 ± 116.0 | 0.003 |
| EBL POD 2a | 595.6 ± 181.7 | 723.2 ± 194.4 | 542.3 ± 164.6 | <.001 |
| EBL POD 3a | 622.3 ± 180.8 | 781.9 ± 212.9 | 647.5 ± 177.6 | 0.005 |
| Transfusion rate † | 1 (3.4%) | 0 (0.0%) | 0 (0.0%) | 0.290 |
| Preop Hba | 13.0 ± 1.1 | 13.7 ± 1.4 | 13.3 ± 1.1 | 0.106 |
| Preop Hcta | 32.1 ± 3.2 | 41.7 ± 4.6 | 41.3 ± 3.3 | 0.149 |
| POD1 Hba | 10.5 ± 1.1 | 10.4 ± 1.3 | 10.8 ± 1.1 | 0.182 |
| POD1 Hcta | 32.1 ± 3.2 | 32.1 ± 3.8 | 33.4 ± 3.3 | 0.163 |
| POD2 Hba | 9.4 ± 1.1 | 9.1 ± 1.2 | 10.0 ± 1.1 | 0.010 |
| 9.4 ± 1.1 | 9.1 ± 1.2 | 1.000* | ||
| 9.4 ± 1.1 | 10.0 ± 1.1 | 0.147* | ||
| 9.1 ± 1.2 | 10.0 ± 1.1 | 0.011* | ||
| POD2 Hcta | 29.0 ± 3.6 | 28.4 ± 3.5 | 30.8 ± 3.6 | 0.011 |
| 29.0 ± 3.6 | 28.4 ± 3.5 | 1.000* | ||
| 29.0 ± 3.6 | 30.8 ± 3.6 | 0.114* | ||
| 28.4 ± 3.5 | 30.8 ± 3.6 | 0.014* | ||
| POD3 Hba | 92 ± 0.9 | 8.8 ± 1.2 | 9.4 ± 1.1 | 0.061 |
| POD3 Hcta | 28.5 ± 3.1 | 27.4 ± 3.5 | 29.1 ± 3.3 | 0.126 |
| Early Tourniquet (n=29) | No-Tourniquet (n=30) | Late Tourniquet (n=41) | P-value | |
| Knee Paina | 5.0 ± 2.8 | 5.3 ± 1.3 | 5.9 ± 1.8 | 0.323 |
| Thigh paina | 3.5 ± 0.7 | 3.4 ± 2.1 | 4.1 ± 2.6 | 0.553 |
| Radiating paina | 0.0 ± 0.0 | 0.2 ± 0.9 | 0.1 ± 0.4 | 0.754 |
| Early Tourniquet (n=29) | No-Tourniquet (n=30) | Late Tourniquet (n=41) | P-value | |
| Readmission rate | 3 (10.3%) | 1 (3.3%) | 1 (2.4%) | 0.289 |
| Superficial Infection† | 2 (6.9%) | 0 (0.0%) | 0 (0.0%) | 0.082 |
| DVT Symptom† | 2 (6.9%) | 2 (6.7%) | 0 (0.0%) | 0.235 |
| CT confirmed DVT† | 0 (0.0%) | 1 (3.3%) | 0 (0.0%) | 0.308 |
| Overall Complication† | 5 (17.2%) | 3 (10.0%) | 11 (26.8%) | 0.195 |
| Early Tourniquet (n=29) | No-Tourniquet (n=30) | Late Tourniquet (n=41) | P-value | |
| Femur Sizea | 3.4 ± 1.0 | 3.7 ± 1.5 | 3.4 ± 1.0 | 0.403 |
| Tibia Sizea | 3.4 ± 1.0 | 3.8 ± 1.4 | 3.4 ± 1.0 | 0.264 |
| Inserta | 11.1 ± 1.5 | 11.1 ± 1.7 | 10.9 ± 1.5 | 0.800 |
| Implant type | ||||
| CR† | 15 (51.7%) | 23 (76.7 %) | 35 (85.4%) | 0.007 |
| PS† | 14 (48.3%) | 7 (23.3%) | 6 (14.6%) | |
| 15 (51.7%) | 23 (76.7 %) | 0.136* | ||
| 15 (51.7%) | 35 (85.4%) | 0.006* | ||
| 23 (76.7 %) | 35 (85.4%) | 1.000* | ||
| Op timea | 100.8 ± 15.5 | 96.4 ± 11.1 | 83.7 ± 8.3 | <0.001 |
| 100.8 ± 15.5 | 96.4 ± 11.1 | 0.431* | ||
| 100.8 ± 15.5 | 83.7 ± 8.3 | <0.001* | ||
| 96.4 ± 11.1 | 83.7 ± 8.3 | <0.001* | ||
| Tourniquet timea | 56.4 ± 17.2 | 48.9 ± 4.8 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
