Submitted:
19 July 2025
Posted:
31 July 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
- RQ1: What are the most commonly used methods in quantum finance?
- RQ2: How are the contributions of quantum approaches to finance evaluated?
- RQ3: What are the gaps, challenges, open questions, and future prospects of quantum computing?
2. related work
3. Quantum Quantitative Finance
3.1. Problems in Financial Services
3.2. Black-Scholes PDE for Option Pricing
3.2.1. Geometric Brownian Motion Process
3.2.2. Quantum Black-Scholes Equation
3.3. Black-Scholes Pricing Formulae
| Calls | Puts | |
| Delta, | ||
| Gamma, | ||
| Vega, | ||
| Theta, | ||
| Rho, |
3.4. Quantum Finance: Quantum Black-Scholes Model and Pricing
3.5. Quantum Hardware
3.6. Financial Applications of Quantum Computing
| Quantum Finance | References |
| Transaction Settlement | [71] |
| Quantum Accounting | [72] |
| Predicting Financial Crashes | [73] |
| Quantum (Norm-Sampling) | [74,75,76,77,78,79,80] |
| Quantum Money | [81,82,83,84,85,86,87,88,89,90] |
| Blockchain | [91,92,93] |
| Risk Management | [94,95,96,97,98] |
| Fraud Detection | [99,100,101] |
| Asset Pricing | [27,35,56,102,103,104] |
| Portfolio Optimization | [75,105,106,107,108,109,110,111,112,113,114] |
3.7. Optimal Trading
3.8. Optimal Arbitrage
3.9. Risk Analysis
4. Quantum Machine Learning
4.1. Generative Neural Networks and Generative Adversarial Network
5. Quantum Economics and Finance in Stock Markets
5.1. Financial Quantum Approach in Option Pricing
5.2. Reinforcement Learning
5.3. Challenges for quantum computing
6. Conclusions
References
- Ichikawa, T.; Hakoshima, H.; Inui, K.; Ito, K.; Matsuda, R.; Mitarai, K.; Miyamoto, K.; Mizukami, W.; Mizuta, K.; Mori, T.; et al. Current numbers of qubits and their uses. Nature Reviews Physics 2024, 6, 345–347. [CrossRef]
- Singh, P.; Dasgupta, R.; Singh, A.; Pandey, H.; Hassija, V.; Chamola, V.; Sikdar, B. A survey on available tools and technologies enabling quantum computing. IEEE Access 2024. [CrossRef]
- Orús, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Reviews in Physics 2019, 4, 100028. [CrossRef]
- Scriba, R.; Li, Y.; Wang, J.B. Monte-Carlo Option Pricing in Quantum Parallel. arXiv preprint arXiv:2505.09459 2025.
- Herman, D.; Googin, C.; Liu, X.; Sun, Y.; Galda, A.; Safro, I.; Pistoia, M.; Alexeev, Y. Quantum computing for finance. Nature Reviews Physics 2023, 5, 450–465. [CrossRef]
- Rebentrost, P.; Luongo, A.; Cheng, B.; Bosch, S.; Lloyd, S. Quantum computational finance for martingale asset pricing in incomplete markets. Scientific Reports 2024, 14, 18941. [CrossRef]
- Yang, Z.; Zolanvari, M.; Jain, R. A survey of important issues in quantum computing and communications. IEEE Communications Surveys & Tutorials 2023, 25, 1059–1094. [CrossRef]
- Hull, I.; Sattath, O.; Diamanti, E.; Wendin, G. Quantum technology for economists; Springer Nature, 2024.
- Zhou, J. Quantum finance: Exploring the implications of quantum computing on financial models. Computational Economics 2025, pp. 1–30. [CrossRef]
- Dalzell, A.M.; McArdle, S.; Berta, M.; Bienias, P.; Chen, C.F.; Gilyén, A.; Hann, C.T.; Kastoryano, M.J.; Khabiboulline, E.T.; Kubica, A.; et al. Quantum algorithms: A survey of applications and end-to-end complexities. arXiv preprint arXiv:2310.03011 2023. [CrossRef]
- Gyongyosi, L.; Imre, S. A survey on quantum computing technology. Computer Science Review 2019, 31, 51–71. [CrossRef]
- Parida, N.K.; Jatoth, C.; Reddy, V.D.; Hussain, M.M.; Faizi, J. Post-quantum distributed ledger technology: a systematic survey. Scientific Reports 2023, 13, 20729. [CrossRef]
- Mandal, A.K.; Nadim, M.; Roy, C.K.; Roy, B.; Schneider, K.A. Quantum software engineering and potential of quantum computing in software engineering research: a review. Automated Software Engineering 2025, 32, 27. [CrossRef]
- Albareti, F.D.; Ankenbrand, T.; Bieri, D.; Hänggi, E.; Lötscher, D.; Stettler, S.; Schöngens, M. A structured survey of quantum computing for the financial industry. arXiv preprint arXiv:2204.10026 2022.
- Lu, Y.; Yang, J. Quantum financing system: A survey on quantum algorithms, potential scenarios and open research issues. Journal of Industrial Information Integration 2024, p. 100663. [CrossRef]
- Bunescu, L.; Vârtei, A.M. Modern finance through quantum computing—A systematic literature review. PloS one 2024, 19, e0304317. [CrossRef]
- Zhang, C.; Huang, L. A quantum model for the stock market. Physica A: Statistical Mechanics and Its Applications 2010, 389, 5769–5775. [CrossRef]
- Hughston, L.P.; Sánchez-Betancourt, L. Valuation of a financial claim contingent on the outcome of a quantum measurement. Journal of Physics A: Mathematical and Theoretical 2024, 57, 285302. [CrossRef]
- Zheng, H.; Dong, B. Quantum Temporal Winds: Turbulence in Financial Markets. Mathematics 2024, 12, 1416. [CrossRef]
- Eisert, J.; Wilkens, M.; Lewenstein, M. Quantum games and quantum strategies. Physical Review Letters 1999, 83, 3077. [CrossRef]
- Agrawal, P.M.; Sharda, R. Quantum mechanics and human decision making. Available at SSRN 1653911 2010.
- Gonçalves, C.P. Quantum financial economics—risk and returns. Journal of Systems Science and Complexity 2013, 26, 187–200.
- Li, L. Quantum Probability Theoretic Asset Return Modeling: A Novel Schrödinger-Like Trading Equation and Multimodal Distribution. Quantum Economics and Finance 2025, 2, 13–29.
- Focardi, S.; Fabozzi, F.J.; Mazza, D. Quantum option pricing and quantum finance. Journal of Derivatives 2020, 28, 79–98. [CrossRef]
- Klug, F. Quantum Optimization Algorithms in Operations Research: Methods, Applications, and Implications. arXiv preprint arXiv:2312.13636 2023.
- Huot, C.; Kea, K.; Kim, T.K.; Han, Y. Enhancing Knapsack-Based Financial Portfolio Optimization Using Quantum Approximate Optimization Algorithm. IEEE Access 2024. [CrossRef]
- Stamatopoulos, N.; Egger, D.J.; Sun, Y.; Zoufal, C.; Iten, R.; Shen, N.; Woerner, S. Option pricing using quantum computers. Quantum 2020, 4, 291. [CrossRef]
- Srivastava, N.; Belekar, G.; Shahakar, N.; et al. The potential of quantum techniques for stock price prediction. In Proceedings of the 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE). IEEE, 2023, pp. 1–7.
- Mugel, S.; Lizaso, E.; Orús, R. Use cases of quantum optimization for finance. In Proceedings of the International Conference of the Thailand Econometrics Society. Springer, 2022, pp. 211–220.
- Adegbola, M.; Adegbola, A.; Amajuoyi, P.; Benjamin, L.; Adeusi, K. Quantum computing and financial risk management: A theoretical review and implications. Computer science & IT research journal 2024, 5, 1210–1220. [CrossRef]
- Miyamoto, K. Quantum algorithm for calculating risk contributions in a credit portfolio. EPJ Quantum Technology 2022, 9, 1–16. [CrossRef]
- Wilkens, S.; Moorhouse, J. Quantum computing for financial risk measurement. Quantum Information Processing 2023, 22, 51. [CrossRef]
- Shafique, M.A.; Munir, A.; Latif, I. Quantum computing: circuits, algorithms, and applications. IEEE Access 2024, 12, 22296–22314. [CrossRef]
- Dri, E.; Aita, A.; Fioravanti, T.; Franco, G.; Giusto, E.; Ranieri, G.; Corbelletto, D.; Montrucchio, B. Towards an end-to-end approach for quantum principal component analysis. In Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2023, Vol. 2, pp. 1–6.
- Rebentrost, P.; Gupt, B.; Bromley, T.R. Quantum computational finance: Monte Carlo pricing of financial derivatives. Physical Review A 2018, 98, 022321. [CrossRef]
- Dutta, S.; Innan, N.; Marchisio, A.; Yahia, S.B.; Shafique, M. Qadqn: Quantum attention deep q-network for financial market prediction. In Proceedings of the 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2024, Vol. 2, pp. 341–346.
- Dalyac, C.; Henriet, L.; Jeandel, E.; Lechner, W.; Perdrix, S.; Porcheron, M.; Veshchezerova, M. Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles. EPJ Quantum Technology 2021, 8, 12. [CrossRef]
- Bouland, A.; van Dam, W.; Joorati, H.; Kerenidis, I.; Prakash, A. Prospects and challenges of quantum finance. arXiv preprint arXiv:2011.06492 2020.
- Chang, Y.J.; Wang, W.T.; Chen, H.Y.; Liao, S.W.; Chang, C.R. A novel approach for quantum financial simulation and quantum state preparation. Quantum Machine Intelligence 2024, 6, 24. [CrossRef]
- Li, H.; Xing, T.; Wei, S.; Liu, Z.; Zhang, J.; Long, G.L. BQ-Bank: A Quantum Software for Finance and Banking. Quantum Engineering 2023, 2023, 7810974. [CrossRef]
- Fernández-Lorenzo, S.; Porras, D.; García-Ripoll, J.J. Hybrid quantum–classical optimization with cardinality constraints and applications to finance. Quantum Science and Technology 2021, 6, 034010.
- Naik, A.S.; Yeniaras, E.; Hellstern, G.; Prasad, G.; Vishwakarma, S.K.L.P. From portfolio optimization to quantum blockchain and security: A systematic review of quantum computing in finance. Financial Innovation 2025, 11, 1–67. [CrossRef]
- Tang, Y.; Yan, J.; Hu, G.; Zhang, B.; Zhou, J. Recent progress and perspectives on quantum computing for finance. Service Oriented Computing and Applications 2022, 16, 227–229. [CrossRef]
- Ingber, L. Options on quantum money: Quantum path-integral with serial shocks. L. Ingber," Options on quantum money: Quantum path-integral with serial shocks," International Journal of Innovative Research in Information Security 2017, 4, 1–13.
- Herman, D.; Googin, C.; Liu, X.; Galda, A.; Safro, I.; Sun, Y.; Pistoia, M.; Alexeev, Y. A survey of quantum computing for finance. arXiv preprint arXiv:2201.02773 2022.
- Kumar, S.; Wilmott, C.M. Simulating the non-Hermitian dynamics of financial option pricing with quantum computers. Scientific Reports 2025, 15, 13268. [CrossRef]
- Baaquie, B.E. Quantum finance: Path integrals and Hamiltonians for options and interest rates; Cambridge University Press, 2007.
- Zhuang, X.N.; Chen, Z.Y.; Wu, Y.C.; Guo, G.P. Quantum computational quantitative trading: high-frequency statistical arbitrage algorithm. New Journal of Physics 2022, 24, 073036. [CrossRef]
- Arraut, I.; Lobo Marques, J.A.; Gomes, S. The probability flow in the Stock market and Spontaneous symmetry breaking in Quantum Finance. Mathematics 2021, 9, 2777. [CrossRef]
- Faccia, A. Quantum Finance. Opportunities and threats.”. Information Technology innovations in Economics, Finance, Accounting, and Law 2020, 1.
- Mosteanu, N.R.; Faccia, A. Fintech frontiers in quantum computing, fractals, and blockchain distributed ledger: Paradigm shifts and open innovation. Journal of Open Innovation: Technology, Market, and Complexity 2021, 7, 19. [CrossRef]
- Pistoia, M.; Ahmad, S.F.; Ajagekar, A.; Buts, A.; Chakrabarti, S.; Herman, D.; Hu, S.; Jena, A.; Minssen, P.; Niroula, P.; et al. Quantum machine learning for finance ICCAD special session paper. In Proceedings of the 2021 IEEE/ACM international conference on computer aided design (ICCAD). IEEE, 2021, pp. 1–9.
- Griffin, P.; Sampat, R. Quantum computing for supply chain finance. In Proceedings of the 2021 IEEE International Conference on Services Computing (SCC). IEEE, 2021, pp. 456–459.
- Koch, D.; Patel, S.; Wessing, L.; Alsing, P.M. Fundamentals in quantum algorithms: A tutorial series using Qiskit continued. arXiv preprint arXiv:2008.10647 2020.
- Coyle, B.; Henderson, M.; Le, J.C.J.; Kumar, N.; Paini, M.; Kashefi, E. Quantum versus classical generative modelling in finance. Quantum Science and Technology 2021, 6, 024013. [CrossRef]
- Miyamoto, K.; Kubo, K. Pricing multi-asset derivatives by finite-difference method on a quantum computer. IEEE Transactions on Quantum Engineering 2021, 3, 1–25. [CrossRef]
- Egger, D.J.; Gambella, C.; Marecek, J.; McFaddin, S.; Mevissen, M.; Raymond, R.; Simonetto, A.; Woerner, S.; Yndurain, E. Quantum computing for finance: State-of-the-art and future prospects. IEEE Transactions on Quantum Engineering 2020, 1, 1–24. [CrossRef]
- Fiore, U.; Gioia, F.; Zanetti, P. A perspective on quantum Fintech. Decisions in Economics and Finance 2024, pp. 1–27.
- Kou, G.; Lu, Y. FinTech: a literature review of emerging financial technologies and applications. Financial Innovation 2025, 11, 1. [CrossRef]
- Schulte, P.; Lee, D.K.C. AI & Quantum Computing for Finance & Insurance: Fortunes and Challenges for China and America; Vol. 1, World Scientific, 2019.
- Accardi, L.; Boukas, A. The quantum black-scholes equation. arXiv preprint arXiv:0706.1300 2007.
- Bhatnagar, A.; Vvedensky, D.D. Quantum effects in an expanded Black–Scholes model. The European Physical Journal B 2022, 95, 138. [CrossRef]
- Fontanela, F.; Jacquier, A.; Oumgari, M. A quantum algorithm for linear PDEs arising in finance. SIAM Journal on Financial Mathematics 2021, 12, SC98–SC114. [CrossRef]
- Zhuang, X.N.; Chen, Z.Y.; Xue, C.; Wu, Y.C.; Guo, G.P. Quantum encoding and analysis on continuous time stochastic process with financial applications. Quantum 2023, 7, 1127. [CrossRef]
- Haven, E.E. A discussion on embedding the Black–Scholes option pricing model in a quantum physics setting. Physica A: Statistical Mechanics and its Applications 2002, 304, 507–524. [CrossRef]
- Yeşiltaş, Ö. The Black-Scholes equation in finance: Quantum mechanical approaches. Physica A: Statistical Mechanics and its Applications 2023, 623, 128909. [CrossRef]
- De Leon, N.P.; Itoh, K.M.; Kim, D.; Mehta, K.K.; Northup, T.E.; Paik, H.; Palmer, B.; Samarth, N.; Sangtawesin, S.; Steuerman, D.W. Materials challenges and opportunities for quantum computing hardware. Science 2021, 372, eabb2823. [CrossRef]
- Chong, F.T.; Franklin, D.; Martonosi, M. Programming languages and compiler design for realistic quantum hardware. Nature 2017, 549, 180–187. [CrossRef]
- Baaquie, B.E.; Coriano, C.; Srikant, M. Quantum mechanics, path integrals and option pricing: Reducing the complexity of finance. In Nonlinear Physics: Theory and Experiment II; World Scientific, 2003; pp. 333–339.
- Buonaiuto, G.; Gargiulo, F.; De Pietro, G.; Esposito, M.; Pota, M. Best practices for portfolio optimization by quantum computing, experimented on real quantum devices. Scientific Reports 2023, 13, 19434. [CrossRef]
- Braine, L.; Egger, D.J.; Glick, J.; Woerner, S. Quantum algorithms for mixed binary optimization applied to transaction settlement. IEEE Transactions on Quantum Engineering 2021, 2, 1–8. [CrossRef]
- Fellingham, J.; Lin, H.; Schroeder, D.; et al. Entropy, Double Entry Accounting and Quantum Entanglement. Foundations and Trends® in Accounting 2022, 16, 308–396. [CrossRef]
- Orús, R.; Mugel, S.; Lizaso, E. Forecasting financial crashes with quantum computing. Physical Review A 2019, 99, 060301. [CrossRef]
- Tang, E. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of the Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, 2019, pp. 217–228.
- Arrazola, J.M.; Delgado, A.; Bardhan, B.R.; Lloyd, S. Quantum-inspired algorithms in practice. arXiv preprint arXiv:1905.10415 2019.
- Shao, C.; Montanaro, A. Faster quantum-inspired algorithms for solving linear systems. ACM Transactions on Quantum Computing 2022, 3, 1–23. [CrossRef]
- Sangeetha, P.; Kumari, P. Quantum algorithms for machine learning and optimization. In Proceedings of the 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). IEEE, 2020, pp. 1–2.
- Ding, C.; Bao, T.Y.; Huang, H.L. Quantum-inspired support vector machine. IEEE Transactions on Neural Networks and Learning Systems 2021, 33, 7210–7222. [CrossRef]
- Chia, N.H.; Gilyén, A.P.; Li, T.; Lin, H.H.; Tang, E.; Wang, C. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. Journal of the ACM 2022, 69, 1–72. [CrossRef]
- Gilyén, A.; Song, Z.; Tang, E. An improved quantum-inspired algorithm for linear regression. Quantum 2022, 6, 754. [CrossRef]
- Zhandry, M. Quantum lightning never strikes the same state twice. or: quantum money from cryptographic assumptions. Journal of Cryptology 2021, 34, 1–56. [CrossRef]
- Guan, J.Y.; Arrazola, J.M.; Amiri, R.; Zhang, W.; Li, H.; You, L.; Wang, Z.; Zhang, Q.; Pan, J.W. Experimental preparation and verification of quantum money. Physical Review A 2018, 97, 032338.
- Bozzio, M.; Orieux, A.; Trigo Vidarte, L.; Zaquine, I.; Kerenidis, I.; Diamanti, E. Experimental investigation of practical unforgeable quantum money. npj Quantum Information 2018, 4, 5.
- Kumar, N. Practically feasible robust quantum money with classical verification. Cryptography 2019, 3, 26. [CrossRef]
- Aaronson, S.; Rothblum, G.N. Gentle measurement of quantum states and differential privacy. In Proceedings of the Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 322–333.
- Coladangelo, A.; Sattath, O. A quantum money solution to the blockchain scalability problem. Quantum 2020, 4, 297. [CrossRef]
- Amos, R.; Georgiou, M.; Kiayias, A.; Zhandry, M. One-shot signatures and applications to hybrid quantum/classical authentication. In Proceedings of the Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020, pp. 255–268.
- Shmueli, O. Public-key quantum money with a classical bank. In Proceedings of the Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, 2022, pp. 790–803.
- Liu, J.; Montgomery, H.; Zhandry, M. Another round of breaking and making quantum money: How to not build it from lattices, and more. In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2023, pp. 611–638.
- Ben-David, S.; Sattath, O. Quantum tokens for digital signatures. Quantum 2023, 7, 901. [CrossRef]
- Kiktenko, E.O.; Pozhar, N.O.; Anufriev, M.N.; Trushechkin, A.S.; Yunusov, R.R.; Kurochkin, Y.V.; Lvovsky, A.; Fedorov, A.K. Quantum-secured blockchain. Quantum Science and Technology 2018, 3, 035004.
- Allende, M.; León, D.L.; Cerón, S.; Pareja, A.; Pacheco, E.; Leal, A.; Da Silva, M.; Pardo, A.; Jones, D.; Worrall, D.J.; et al. Quantum-resistance in blockchain networks. Scientific Reports 2023, 13, 5664. [CrossRef]
- Shalaginov, M.Y.; Dubrovsky, M. Quantum proof of work with parametrized quantum circuits. arXiv preprint arXiv:2204.10643 2022.
- Woerner, S.; Egger, D.J. Quantum risk analysis. npj Quantum Information 2019, 5, 15. [CrossRef]
- Barkoutsos, P.K.; Nannicini, G.; Robert, A.; Tavernelli, I.; Woerner, S. Improving variational quantum optimization using CVaR. Quantum 2020, 4, 256. [CrossRef]
- Stamatopoulos, N.; Mazzola, G.; Woerner, S.; Zeng, W.J. Towards quantum advantage in financial market risk using quantum gradient algorithms. Quantum 2022, 6, 770. [CrossRef]
- Egger, D.J.; Gutiérrez, R.G.; Mestre, J.C.; Woerner, S. Credit risk analysis using quantum computers. IEEE transactions on computers 2020, 70, 2136–2145. [CrossRef]
- Kaneko, K.; Miyamoto, K.; Takeda, N.; Yoshino, K. Quantum speedup of Monte Carlo integration with respect to the number of dimensions and its application to finance. Quantum Information Processing 2021, 20, 185. [CrossRef]
- Kyriienko, O.; Magnusson, E.B. Unsupervised quantum machine learning for fraud detection. arXiv preprint arXiv:2208.01203 2022.
- Grossi, M.; Ibrahim, N.; Radescu, V.; Loredo, R.; Voigt, K.; Von Altrock, C.; Rudnik, A. Mixed quantum–classical method for fraud detection with quantum feature selection. IEEE Transactions on Quantum Engineering 2022, 3, 1–12.
- Mitsuda, N.; Ichimura, T.; Nakaji, K.; Suzuki, Y.; Tanaka, T.; Raymond, R.; Tezuka, H.; Onodera, T.; Yamamoto, N. Approximate complex amplitude encoding algorithm and its application to data classification problems. Physical Review A 2024, 109, 052423. [CrossRef]
- Martin, A.; Candelas, B.; Rodríguez-Rozas, Á.; Martín-Guerrero, J.D.; Chen, X.; Lamata, L.; Orús, R.; Solano, E.; Sanz, M. Toward pricing financial derivatives with an ibm quantum computer. Physical Review Research 2021, 3, 013167. [CrossRef]
- Orrell, D. A quantum walk model of financial options. Wilmott 2021, 2021, 62–69. [CrossRef]
- Kakushadze, Z. Path integral and asset pricing. Quantitative Finance 2015, 15, 1759–1771. [CrossRef]
- Venturelli, D.; Kondratyev, A. Reverse quantum annealing approach to portfolio optimization problems. Quantum Machine Intelligence 2019, 1, 17–30. [CrossRef]
- Kerenidis, I.; Prakash, A.; Szilágyi, D. Quantum algorithms for portfolio optimization. In Proceedings of the Proceedings of the 1st ACM Conference on Advances in Financial Technologies, 2019, pp. 147–155.
- Slate, N.; Matwiejew, E.; Marsh, S.; Wang, J.B. Quantum walk-based portfolio optimisation. Quantum 2021, 5, 513. [CrossRef]
- Yalovetzky, R.; Minssen, P.; Herman, D.; Pistoia, M. NISQ-HHL: Portfolio optimization for near-term quantum hardware. arXiv preprint arXiv:2110.15958 2021.
- Lim, D.; Rebentrost, P. A quantum online portfolio optimization algorithm. Quantum Information Processing 2024, 23, 63. [CrossRef]
- Niroula, P.; Shaydulin, R.; Yalovetzky, R.; Minssen, P.; Herman, D.; Hu, S.; Pistoia, M. Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer. Scientific Reports 2022, 12, 17171. [CrossRef]
- Aguilera, E.; de Jong, J.; Phillipson, F.; Taamallah, S.; Vos, M. Multi-objective portfolio optimization using a quantum annealer. Mathematics 2024, 12, 1291. [CrossRef]
- Abbas, A.; Ambainis, A.; Augustino, B.; Bärtschi, A.; Buhrman, H.; Coffrin, C.; Cortiana, G.; Dunjko, V.; Egger, D.J.; Elmegreen, B.G.; et al. Challenges and opportunities in quantum optimization. Nature Reviews Physics 2024, pp. 1–18. [CrossRef]
- Chou, Y.H.; Jiang, Y.C.; Kuo, S.Y. Portfolio optimization in both long and short selling trading using trend ratios and quantum-inspired evolutionary algorithms. IEEE Access 2021, 9, 152115–152130. [CrossRef]
- Lang, J.; Zielinski, S.; Feld, S. Strategic portfolio optimization using simulated, digital, and quantum annealing. Applied Sciences 2022, 12, 12288. [CrossRef]
- Schetakis, N.; Aghamalyan, D.; Boguslavsky, M.; Rees, A.; Rakotomalala, M.; Griffin, P.R. Quantum machine learning for credit scoring. Mathematics 2024, 12, 1391. [CrossRef]
- Mugel, S.; Kuchkovsky, C.; Sánchez, E.; Fernández-Lorenzo, S.; Luis-Hita, J.; Lizaso, E.; Orús, R. Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks. Physical Review Research 2022, 4, 013006. [CrossRef]
- Rosenberg, G.; Haghnegahdar, P.; Goddard, P.; Carr, P.; Wu, K.; De Prado, M.L. Solving the optimal trading trajectory problem using a quantum annealer. In Proceedings of the Proceedings of the 8th workshop on high performance computational finance, 2015, pp. 1–7.
- Marzec, M. Portfolio optimization: Applications in quantum computing. Handbook of High-Frequency Trading and Modeling in Finance 2016, pp. 73–106.
- Palmer, S.; Sahin, S.; Hernandez, R.; Mugel, S.; Orus, R. Quantum portfolio optimization with investment bands and target volatility. arXiv preprint arXiv:2106.06735 2021.
- Bravyi, S.; Smith, G.; Smolin, J.A. Trading classical and quantum computational resources. Physical Review X 2016, 6, 021043. [CrossRef]
- Carrascal, G.; Hernamperez, P.; Botella, G.; del Barrio, A. Backtesting quantum computing algorithms for portfolio optimization. IEEE Transactions on Quantum Engineering 2023, 5, 1–20. [CrossRef]
- Palaniappan, V.; Ishak, I.; Ibrahim, H.; Sidi, F.; Zukarnain, Z.A. A review on high-frequency trading forecasting methods: Opportunity and challenges for quantum based method. IEEE Access 2024, 12, 167471–167488. [CrossRef]
- Kuo, S.Y.; Kuo, C.; Chou, Y.H. Dynamic stock trading system based on quantum-inspired tabu search algorithm. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation. IEEE, 2013, pp. 1029–1036.
- Khang, A.; Rath, K.C.; Madapana, K.; Rao, J.; Panda, L.P.; Das, S. Quantum Computing and Portfolio Optimization in Finance Services. In Shaping Cutting-Edge Technologies and Applications for Digital Banking and Financial Services; Productivity Press, 2025; pp. 27–45.
- Carrascal, G.; Roman, B.; del Barrio, A.; Botella, G. Differential evolution VQE for crypto-currency arbitrage. Quantum optimization with many local minima. Digital Signal Processing 2024, 148, 104464. [CrossRef]
- Chang, Y.J.; Sie, M.F.; Liao, S.W.; Chang, C.R. The prospects of quantum computing for quantitative finance and beyond. IEEE Nanotechnology Magazine 2023, 17, 31–37. [CrossRef]
- Sotelo, R. Applications of quantum computing to optimization. In Proceedings of the 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). IEEE, 2021, pp. 1–5.
- Morapakula, S.N.; Deshpande, S.; Yata, R.; Ubale, R.; Wad, U.; Ikeda, K. End-to-End Portfolio Optimization with Quantum Annealing. arXiv preprint arXiv:2504.08843 2025.
- Dri, E.; Aita, A.; Giusto, E.; Ricossa, D.; Corbelletto, D.; Montrucchio, B.; Ugoccioni, R. A more general quantum credit risk analysis framework. Entropy 2023, 25, 593. [CrossRef]
- Gómez, A.; Leitao, Á.; Manzano, A.; Musso, D.; Nogueiras, M.R.; Ordóñez, G.; Vázquez, C. A survey on quantum computational finance for derivatives pricing and VaR. Archives of computational methods in engineering 2022, 29, 4137–4163. [CrossRef]
- Rutkowski, M.; Tarca, S. Regulatory capital modeling for credit risk. International Journal of Theoretical and Applied Finance 2015, 18, 1550034. [CrossRef]
- Peral-García, D.; Cruz-Benito, J.; García-Peñalvo, F.J. Systematic literature review: Quantum machine learning and its applications. Computer Science Review 2024, 51, 100619. [CrossRef]
- Hellstem, G. Hybrid quantum network for classification of finance and MNIST data. In Proceedings of the 2021 IEEE 18th international conference on software architecture companion (ICSA-C). IEEE, 2021, pp. 1–4.
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics 2018, 81, 074001. [CrossRef]
- Sakuma, T. Application of deep quantum neural networks to finance. arXiv preprint arXiv:2011.07319 2020.
- Zaman, K.; Marchisio, A.; Hanif, M.A.; Shafique, M. A survey on quantum machine learning: Current trends, challenges, opportunities, and the road ahead. arXiv preprint arXiv:2310.10315 2023.
- Liu, Y.; Arunachalam, S.; Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics 2021, 17, 1013–1017. [CrossRef]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Physical review letters 2019, 122, 040504. [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemporary Physics 2015, 56, 172–185. [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [CrossRef]
- Zhang, Y.; Ni, Q. Recent advances in quantum machine learning. Quantum Engineering 2020, 2, e34. [CrossRef]
- Martín-Guerrero, J.D.; Lamata, L. Quantum machine learning: A tutorial. Neurocomputing 2022, 470, 457–461. [CrossRef]
- Lamata, L. Quantum machine learning and quantum biomimetics: A perspective. Machine Learning: Science and Technology 2020, 1, 033002. [CrossRef]
- Gujju, Y.; Matsuo, A.; Raymond, R. Quantum machine learning on near-term quantum devices: Current state of supervised and unsupervised techniques for real-world applications. Physical Review Applied 2024, 21, 067001. [CrossRef]
- Wittek, P. Quantum machine learning: what quantum computing means to data mining; Academic Press, 2014.
- Ciliberto, C.; Herbster, M.; Ialongo, A.D.; Pontil, M.; Rocchetto, A.; Severini, S.; Wossnig, L. Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018, 474, 20170551.
- Khan, T.M.; Robles-Kelly, A. Machine learning: Quantum vs classical. IEEE Access 2020, 8, 219275–219294. [CrossRef]
- Emmanoulopoulos, D.; Dimoska, S. Quantum machine learning in finance: Time series forecasting. arXiv preprint arXiv:2202.00599 2022.
- Tychola, K.A.; Kalampokas, T.; Papakostas, G.A. Quantum machine learning—an overview. Electronics 2023, 12, 2379. [CrossRef]
- Houssein, E.H.; Abohashima, Z.; Elhoseny, M.; Mohamed, W.M. Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision. Expert Systems with Applications 2022, 194, 116512. [CrossRef]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Reviews of Modern Physics 2019, 91, 045002. [CrossRef]
- Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [CrossRef]
- Upama, P.B.; Faruk, M.J.H.; Nazim, M.; Masum, M.; Shahriar, H.; Uddin, G.; Barzanjeh, S.; Ahamed, S.I.; Rahman, A. Evolution of quantum computing: A systematic survey on the use of quantum computing tools. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2022, pp. 520–529.
- Ngo, T.A.; Nguyen, T.; Thang, T.C. A survey of recent advances in quantum generative adversarial networks. Electronics 2023, 12, 856. [CrossRef]
- Zoufal, C.; Lucchi, A.; Woerner, S. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Information 2019, 5, 103. [CrossRef]
- Huang, K.; Wang, Z.A.; Song, C.; Xu, K.; Li, H.; Wang, Z.; Guo, Q.; Song, Z.; Liu, Z.B.; Zheng, D.; et al. Quantum generative adversarial networks with multiple superconducting qubits. npj Quantum Information 2021, 7, 165.
- Agliardi, G.; Prati, E. Optimal tuning of quantum generative adversarial networks for multivariate distribution loading. Quantum Reports 2022, 4, 75–105. [CrossRef]
- Liu, L.; Song, T.; Sun, Z.; Lei, J. Quantum generative adversarial networks based on Rényi divergences. Physica A: Statistical Mechanics and its Applications 2022, 607, 128169. [CrossRef]
- Situ, H.; He, Z.; Wang, Y.; Li, L.; Zheng, S. Quantum generative adversarial network for generating discrete distribution. Information Sciences 2020, 538, 193–208. [CrossRef]
- Stein, S.A.; Baheri, B.; Chen, D.; Mao, Y.; Guan, Q.; Li, A.; Fang, B.; Xu, S. Qugan: A quantum state fidelity based generative adversarial network. In Proceedings of the 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021, pp. 71–81.
- Chakrabarti, S.; Yiming, H.; Li, T.; Feizi, S.; Wu, X. Quantum Wasserstein generative adversarial networks. Advances in Neural Information Processing Systems 2019, 32.
- Assouel, A.; Jacquier, A.; Kondratyev, A. A quantum generative adversarial network for distributions. Quantum Machine Intelligence 2022, 4, 28. [CrossRef]
- Dallaire-Demers, P.L.; Killoran, N. Quantum generative adversarial networks. Physical Review A 2018, 98, 012324.
- Lloyd, S.; Weedbrook, C. Quantum generative adversarial learning. Physical review letters 2018, 121, 040502. [CrossRef]
- Ma, W.; Chen, K.C.; Yu, S.; Liu, M.; Deng, R. Robust decentralized quantum kernel learning for noisy and adversarial environment. arXiv preprint arXiv:2504.13782 2025.
- Yocam, E.; Rizi, A.; Kamepalli, M.; Vaidyan, V.; Wang, Y.; Comert, G. Quantum Adversarial Machine Learning and Defense Strategies: Challenges and Opportunities. arXiv preprint arXiv:2412.12373 2024.
- Tsang, S.L.; West, M.T.; Erfani, S.M.; Usman, M. Hybrid quantum–classical generative adversarial network for high-resolution image generation. IEEE Transactions on Quantum Engineering 2023, 4, 1–19.
- Edwards, D.; Rawat, D.B. Quantum adversarial machine learning: Status, challenges and perspectives. In Proceedings of the 2020 Second IEEE international conference on trust, privacy and security in intelligent systems and applications (TPS-ISA). IEEE, 2020, pp. 128–133.
- Hu, L.; Wu, S.H.; Cai, W.; Ma, Y.; Mu, X.; Xu, Y.; Wang, H.; Song, Y.; Deng, D.L.; Zou, C.L.; et al. Quantum generative adversarial learning in a superconducting quantum circuit. Science advances 2019, 5, eaav2761. [CrossRef]
- Parigi, M.; Martina, S.; Caruso, F. Quantum-Noise-Driven Generative Diffusion Models. Advanced Quantum Technologies 2024, p. 2300401. [CrossRef]
- Aumentado, J.; Catelani, G.; Serniak, K. Quasiparticle poisoning in superconducting quantum computers. Physics Today 2023, 76, 34–39. [CrossRef]
- Chu, C.; Jiang, L.; Swany, M.; Chen, F. Qtrojan: A circuit backdoor against quantum neural networks. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.
- Kundu, S.; Ghosh, S. Adversarial poisoning attack on quantum machine learning models. arXiv preprint arXiv:2411.14412 2024.
- An, D.; Linden, N.; Liu, J.P.; Montanaro, A.; Shao, C.; Wang, J. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum 2021, 5, 481. [CrossRef]
- Wang, G.; Kan, A. Option pricing under stochastic volatility on a quantum computer. Quantum 2024, 8, 1504. [CrossRef]
- Espinoza-García, A.; Vega-Lara, P.; Díaz-Barrón, L.R.; Grovas, F. On Noncommutative Quantum Mechanics and the Black-Scholes Model. arXiv preprint arXiv:2502.00938 2025.
- Matsakos, T.; Nield, S. Quantum Monte Carlo simulations for financial risk analytics: scenario generation for equity, rate, and credit risk factors. Quantum 2024, 8, 1306. [CrossRef]
- Raj, S.; Kerenidis, I.; Shekhar, A.; Wood, B.; Dee, J.; Chakrabarti, S.; Chen, R.; Herman, D.; Hu, S.; Minssen, P.; et al. Quantum deep hedging. Quantum 2023, 7, 1191. [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. The quest for a quantum neural network. Quantum Information Processing 2014, 13, 2567–2586. [CrossRef]
- Killoran, N.; Bromley, T.R.; Arrazola, J.M.; Schuld, M.; Quesada, N.; Lloyd, S. Continuous-variable quantum neural networks. Physical Review Research 2019, 1, 033063.
- Arraut, I. Gauge symmetries and the Higgs mechanism in Quantum Finance. Europhysics Letters 2023, 143, 42001. [CrossRef]
- Baaquie, B.E. Interest rates in quantum finance: The Wilson expansion and Hamiltonian. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 2009, 80, 046119. [CrossRef]
- Montanaro, A. Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 471, 20150301.
- Kothari, R.; O’Donnell, R. Mean estimation when you have the source code; or, quantum Monte Carlo methods. In Proceedings of the Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2023, pp. 1186–1215.
- Ralph, J.F.; Maskell, S.; Jacobs, K. Multiparameter estimation along quantum trajectories with sequential Monte Carlo methods. Physical Review A 2017, 96, 052306. [CrossRef]
- Gubernatis, J.; Kawashima, N.; Werner, P. Quantum Monte Carlo Methods; Cambridge University Press, 2016.
- Paris, M.; Rehacek, J. Quantum state estimation; Vol. 649, Springer Science & Business Media, 2004.
- Layden, D.; Mazzola, G.; Mishmash, R.V.; Motta, M.; Wocjan, P.; Kim, J.S.; Sheldon, S. Quantum-enhanced markov chain monte carlo. Nature 2023, 619, 282–287. [CrossRef]
- Leclerc, L.; Ortiz-Gutiérrez, L.; Grijalva, S.; Albrecht, B.; Cline, J.R.; Elfving, V.E.; Signoles, A.; Henriet, L.; Del Bimbo, G.; Sheikh, U.A.; et al. Financial risk management on a neutral atom quantum processor. Physical Review Research 2023, 5, 043117. [CrossRef]
- Dalzell, A.M.; Clader, B.D.; Salton, G.; Berta, M.; Lin, C.Y.Y.; Bader, D.A.; Stamatopoulos, N.; Schuetz, M.J.; Brandão, F.G.; Katzgraber, H.G.; et al. End-to-end resource analysis for quantum interior-point methods and portfolio optimization. PRX Quantum 2023, 4, 040325. [CrossRef]
- Halperin, I. Qlbs: Q-learner in the black-scholes (-merton) worlds. arXiv preprint arXiv:1712.04609 2017.
- Wolf, M.O.; Ewen, T.; Turkalj, I. Quantum architecture search for quantum Monte Carlo integration via conditional parameterized circuits with application to finance. In Proceedings of the 2023 IEEE international conference on quantum computing and engineering (QCE). IEEE, 2023, Vol. 1, pp. 560–570.
- Arraut, I.; Au, A.; Tse, A.C.b. Spontaneous symmetry breaking in quantum finance. Europhysics Letters 2020, 131, 68003. [CrossRef]
- Alaminos, D.; Salas, M.B.; Fernández-Gámez, M.Á. Quantum Monte Carlo simulations for estimating FOREX markets: a speculative attacks experience. Humanities and Social Sciences Communications 2023, 10, 1–21. [CrossRef]
- Rishiwal, V.; Agarwal, U.; Yadav, M.; Tanwar, S.; Garg, D.; Guizani, M. A new alliance of machine learning and quantum computing: concepts, attacks, and challenges in iot networks. IEEE Internet of Things Journal 2025.
- Chen, S.Y.C.; Yang, C.H.H.; Qi, J.; Chen, P.Y.; Ma, X.; Goan, H.S. Variational quantum circuits for deep reinforcement learning. IEEE access 2020, 8, 141007–141024. [CrossRef]
- Wei, Q.; Ma, H.; Chen, C.; Dong, D. Deep reinforcement learning with quantum-inspired experience replay. IEEE Transactions on Cybernetics 2021, 52, 9326–9338. [CrossRef]
- Meyer, N.; Ufrecht, C.; Periyasamy, M.; Scherer, D.D.; Plinge, A.; Mutschler, C. A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 2022.
- Dunjko, V.; Taylor, J.M.; Briegel, H.J. Advances in quantum reinforcement learning. In Proceedings of the 2017 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, 2017, pp. 282–287.
- Dong, D.; Chen, C.; Li, H.; Tarn, T.J. Quantum reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 2008, 38, 1207–1220.
- Dai, X.; Wei, T.C.; Yoo, S.; Chen, S.Y.C. Quantum machine learning architecture search via deep reinforcement learning. In Proceedings of the 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2024, Vol. 1, pp. 1525–1534.
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience 2022, 52, 66–114. [CrossRef]
- Perdomo-Ortiz, A.; Benedetti, M.; Realpe-Gómez, J.; Biswas, R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Science and Technology 2018, 3, 030502. [CrossRef]
- Biswas, R.; Jiang, Z.; Kechezhi, K.; Knysh, S.; Mandra, S.; O’Gorman, B.; Perdomo-Ortiz, A.; Petukhov, A.; Realpe-Gómez, J.; Rieffel, E.; et al. A NASA perspective on quantum computing: Opportunities and challenges. Parallel Computing 2017, 64, 81–98. [CrossRef]
- Di Meglio, A.; Jansen, K.; Tavernelli, I.; Alexandrou, C.; Arunachalam, S.; Bauer, C.W.; Borras, K.; Carrazza, S.; Crippa, A.; Croft, V.; et al. Quantum computing for high-energy physics: State of the art and challenges. Prx quantum 2024, 5, 037001. [CrossRef]
- Ajagekar, A.; You, F. Quantum computing for energy systems optimization: Challenges and opportunities. Energy 2019, 179, 76–89. [CrossRef]
- Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Applied physics reviews 2019, 6. [CrossRef]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics 2022, 94, 015004. [CrossRef]
- Meyer, J.J. Fisher information in noisy intermediate-scale quantum applications. Quantum 2021, 5, 539. [CrossRef]
- Kusyk, J.; Saeed, S.M.; Uyar, M.U. Survey on quantum circuit compilation for noisy intermediate-scale quantum computers: Artificial intelligence to heuristics. IEEE Transactions on Quantum Engineering 2021, 2, 1–16. [CrossRef]
- Chen, C.C.; Shiau, S.Y.; Wu, M.F.; Wu, Y.R. Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines. Scientific reports 2019, 9, 16251. [CrossRef]
- Lloyd, S.; Garnerone, S.; Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nature communications 2016, 7, 10138. [CrossRef]
- Wahlstrøm, R.R.; Paraschiv, F.; Schürle, M. A comparative analysis of parsimonious yield curve models with focus on the Nelson-Siegel, Svensson and Bliss versions. Computational Economics 2022, 59, 967–1004. [CrossRef]
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
Quantum machine learning,emmanoulopoulos2022quantum |
| 6 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).