Submitted:
16 July 2025
Posted:
17 July 2025
You are already at the latest version
Abstract
Keywords:
1. Temporal Blindness Problem
2. Uncovering the Fundamental Law of Thought
3. Unparalleled Temporal Cognition Data and ConversationNet
4. Temporal Intelligence as a Prerequisite for Real Artificial Intelligence
References
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (Vol. 30). https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
- Bhatia, K., Zhang, Y., & Singh, A. (2024). DateLogicQA: Benchmarking temporal biases in large language models. arXiv. https://arxiv.org/abs/2412.13377.
- Fatemi, A., Rao, D., & Subramanian, S. (2024). Test of time: A benchmark for evaluating LLMs on temporal reasoning. arXiv. https://arxiv.org/abs/2406.09170.
- Xiong, C., Tan, Y., & Lin, X. (2024). Large language models can learn temporal reasoning. arXiv. https://arxiv.org/abs/2401.06853.
- Liu, Z., Chen, H., Wang, Y., & Zhang, Q. (2025). Time-R1: Towards comprehensive temporal reasoning in LLMs. arXiv. https://arxiv.org/abs/2505.13508.
- Wang, M., Li, J., & Yang, T. (2025). Discrete minds in a continuous world: Do language models know time passes? arXiv. https://arxiv.org/abs/2506.05790.
- Wang, Y., Zhao, L., & Xu, H. (2025, May). ChronoSteer: Bridging large language models and time-series foundation models via synthetic data. arXiv. https://arxiv.org/abs/2505.10083.
- Islakoglu, A., & Kalo, M. (2025, January). ChronoSense: Exploring temporal understanding in large language models with time intervals of events. arXiv. https://arxiv.org/abs/2501.09214.
- Zhou, F., Patel, R., & Lee, S. (2024). Back to the future: Towards explainable temporal reasoning with large language models. arXiv. https://arxiv.org/abs/2310.01074.
- Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10(2), 113–125. [CrossRef]
- Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506. [CrossRef]
- Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. [CrossRef]
- Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. [CrossRef]
- Northoff, G., & Huang, Z. (2017). How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC). Neuroscience & Biobehavioral Reviews, 80, 630–645. [CrossRef]
- Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. MIT Press.
- Naim, M., Katkov, M., Romani, S., & Tsodyks, M. (2020). Fundamental law of memory recall. Physical Review Letters, 124(1), 018101. [CrossRef]
- Adéyẹ́fà Ọlásùpọ̀, I. E. (2023). Fundamental law underlying predictive remapping. Physical Review Research, 5, 013214. [CrossRef]
- Adéyẹ́fà Ọlásùpọ̀, I. E. (2021). Retinotopic mechanics derived using classical physics. arXiv. https://arxiv.org/abs/2109.11632.
- Adéyẹ́fà Ọlásùpọ̀, I. E., & Xiao, Z. (2021). Visual space curves before eye movements. bioRxiv. [CrossRef]
- Han, Z., Zhao, Z., Liu, B., Wang, K., Zhang, Y., Li, Y., & Wang, J. (2025). Multimodal fusion and vision-language models: A survey for robot vision. arXiv. https://arxiv.org/abs/2504.02477.
- Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5, 42. [CrossRef]
- Frege, G. (1918). The thought: A logical inquiry (P. Geach & M. Black, Trans.). In P. Geach & M. Black (Eds.), Translations from the philosophical writings of Gottlob Frege (pp. 287–322). Basil Blackwell.
- Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker–listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences, 107(32), 14425–14430. [CrossRef]
- Felsberger, L., & Koutsourelakis, P. S. (2018). Physics-constrained, data-driven discovery of coarse-grained dynamics. arXiv:1802.03824. https://arxiv.org/abs/1802.03824.
- Ghadami, A., & Epureanu, B. I. (2022). Data-driven prediction in dynamical systems: Recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2229), 20210213. [CrossRef]
- Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma, D. A., Bernstein, M. S., & Li, F.-F. (2017). Visual Genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision, 123(1), 32–73. [CrossRef]
- Li, F.-F. (2024, December 11). From seeing to doing: Ascending the ladder of visual intelligence [Invited talk]. NeurIPS 2024, Vancouver, Canada. https://neurips.cc/virtual/2024/invited-talk/101127.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).