Submitted:
11 July 2025
Posted:
11 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Data and Methods
2.1. Observations
2.2. Prior Fluxes
2.3. Meteorological Data
2.4. Inverse Modeling System
2.4.1. NIES-TM-FLEXPART-VAR (NTFVAR) Inverse Modeling System
2.4.2. The Inverse Modeling Scheme
2.4.3. Posterior Uncertainties
2.4.4. Statistical Significance Test for Difference in Mean
3. Results and Discussion
3.1. Methane Emission Estimates by GOSAT and GOSAT-2 Inversions
3.2. Evaluation with Independent Observations
3.3. Attribution of Regional Differences in Posterior Emissions
3.3.1. Regional Inconsistency Between XCH4 Retrieval Products


3.3.2. Regional Differences in Data Density
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
References
- Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., Worthy, D., 2013. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmospheric Chemistry and Physics 13, 8695–8717. [CrossRef]
- Belikov, D.A., Maksyutov, S., Yaremchuk, A., Ganshin, A., Kaminski, T., Blessing, S., Sasakawa, M., J. Gomez-Pelaez, A., Starchenko, A., 2016. Adjoint of the global Eulerian-Lagrangian coupled atmospheric transport model (A-GELCA v1.0): Development and validation. Geoscientific Model Development 9, 749–764. [CrossRef]
- Chen, Z., Jacob, D.J., Nesser, H., Sulprizio, M.P., Lorente, A., Varon, D.J., Lu, X., Shen, L., Qu, Z., Penn, E., Yu, X., 2022. Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics 22, 10809–10826. [CrossRef]
- Chevallier, F., 2007. Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements. Geophysical Research Letters 34, 1–6. [CrossRef]
- Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., Janssens-Maenhout, G., 2020. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific Data 7, 121. [CrossRef]
- Dlugokencky, E. J., Lan, X., Crotwell, A., Thoning, K., and Crotwell, M.: Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network [dataset], ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/, 2021.
- Etiope, G., Ciotoli, G., Schwietzke, S., Schoell, M., 2019. Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data 11, 1–22. [CrossRef]
- Gilbert, J.C., Lemaréchal, C., 1989. Some numerical experiments with variable-storage quasi-Newton algorithms. Mathematical Programming 45, 407–435. [CrossRef]
- Höglund-Isaksson, L., 2012. Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs. Atmospheric Chemistry and Physics 12, 9079–9096. [CrossRef]
- ICOS RI, 2021. ICOS Atmosphere Release 2021-1 of Level 2 Greenhouse Gas Mole Fractions of CO2, CH4, N2O, CO, meteorology and 14CO2. [CrossRef]
- Janardanan, R., Maksyutov, S., Tsuruta, A., Wang, F., Tiwari, Y.K., Valsala, V., Ito, A., Yoshida, Y., Kaiser, J.W., Janssens-Maenhout, G., Arshinov, M., Sasakawa, M., Tohjima, Y., Worthy, D.E.J., Dlugokencky, E.J., Ramonet, M., Arduini, J., Lavric, J.V., Piacentino, S., Krummel, P.B., Langenfelds, R.L., Mammarella, I., Matsunaga, T., 2020. Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sensing 12. [CrossRef]
- Janardanan, R., Maksyutov, S., Wang, F., Nayagam, L., Sahu, S.K., Mangaraj, P., Saunois, M., Lan, X., Matsunaga, T., 2024. Country-level methane emissions and their sectoral trends during 2009–2020 estimated by high-resolution inversion of GOSAT and surface observations. Environmental Research Letters 19, 034007. [CrossRef]
- Kuze, A., Suto, H., Nakajima, M., Hamazaki, T., 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics 48, 6716–6716. [CrossRef]
- Lan, X., Tans, P., Thoning, K., & NOAA Global Monitoring Laboratory, 2023. NOAA Greenhouse Gas Marine Boundary Layer Reference - CH4. [Data set]. NOAA GML. [CrossRef]
- Lan, X., K.W. Thoning, and E.J. Dlugokencky, 2022. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2024-11. [CrossRef]
- Liang, R., Zhang, Y., Chen, W., Zhang, P., Liu, J., Chen, C., Mao, H., Shen, G., Qu, Z., Chen, Z., Zhou, M., Wang, P., Parker, R.J., Boesch, H., Lorente, A., Maasakkers, J.D., Aben, I., 2023. East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis. Atmospheric Chemistry and Physics 23, 8039–8057. [CrossRef]
- Maksyutov, S., Oda, T., Saito, M., Janardanan, R., Belikov, D., Kaiser, J.W., Zhuravlev, R., Ganshin, A., Valsala, V.K., Andrews, A., Chmura, L., Dlugokencky, E., Haszpra, L., Langenfelds, R.L., Machida, T., Nakazawa, T., Ramonet, M., Sweeney, C., Worthy, D., 2021. Technical note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM–FLEXPART coupled transport model and its adjoint. Atmospheric Chemistry and Physics 21, 1245–1266. [CrossRef]
- Meirink, J.F., Bergamaschi, P., Krol, M.C., 2008. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: Method and comparison with synthesis inversion. Atmospheric Chemistry and Physics 8, 6341–6353. [CrossRef]
- Murguia-Flores, F., Arndt, S., Ganesan, A.L., Murray-Tortarolo, G., Hornibrook, E.R.C., 2018. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development 11, 2009–2032. [CrossRef]
- Nesser, H., Jacob, D. J., Maasakkers, J. D., Lorente, A., Chen, Z., Lu, X., Shen, L., Qu, Z., Sulprizio, M. P., Winter, M., Ma, S., Bloom, A. A., Worden, J. R., Stavins, R. N., and Randles, C. A., 2024. High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills, Atmos. Chem. Phys., 24, 5069–5091. [CrossRef]
- Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., mannoji, N., Taira, R., 2007. The JRA-25 Reanalysis. Journal of the Meteorological Society of Japan 85, 369–432. [CrossRef]
- Peng, S., Lin, X., Thompson, R.L., Xi, Y., Liu, G., Hauglustaine, D., Lan, X., Poulter, B., Ramonet, M., Saunois, M., Yin, Y., Zhang, Z., Zheng, B., Ciais, P., 2022. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482. [CrossRef]
- Randerson, J.T., Van der Werf, G.R., Giglio, L., Collatz, G.J., Kasibhatla, P.S., 2017. Global Fire Emissions Database, Version 4.1 (GFEDv4). [CrossRef]
- Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P., Regnier, P., Canadell, J.G., Jackson, R.B., Patra, P.K., Bousquet, P., Ciais, P., Dlugokencky, E.J., Lan, X., Allen, G.H., Bastviken, D., Beerling, D.J., Belikov, D.A., Blake, D.R., Castaldi, S., Crippa, M., Deemer, B.R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M.A., Hopcroft, P.O., Hugelius, G., Ito, A., Jain, A.K., Janardanan, R., Johnson, M.S., Kleinen, T., Krummel, P., Lauerwald, R., Li, T., Liu, X., McDonald, K.C., Melton, J.R., Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R.J., Peng, C., Ramonet, M., Riley, W.J., Rocher-Ros, G., Rosentreter, J.A., Sasakawa, M., Segers, A., Smith, S.J., Stanley, E.H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F.N., Weber, T.S., van der Werf, G., Worthy, D.E., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., Zhuang, Q., 2025. Global Methane Budget 2000–2020. Earth System Science Data 17, 1873–147. [CrossRef]
- Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K., Bastviken, D., Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K., Curry, C.L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M.I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M., Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L., Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., Miller, P.A., Melton, J.R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., Smith, S.J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., Zhuang, Q., 2020. The Global Methane Budget 2000–2017. Earth System Science Data 12, 1561–1623. [CrossRef]
- Schuldt, K.N., Di Sarra, A.G., Zahn, A., Watson, A., Ankur Desai, Karion, A., Arlyn Andrews, Colomb, A., Scheeren, B., Baier, B., Viner, B., Stephens, B., Daube, B., Labuschagne, C., Myhre, C.L., Miller, C.E., Choong-Hoon Lee, Plass-Duelmer, C., Plass-Duelmer, C., Gerbig, C., Sloop, C.D., Sweeney, C., Kubistin, D., Goto, D., Jaffe, D., Munro, D., Worthy, D., Dlugokencky, E., Kozlova, E., Gloor, E., Cuevas, E., Hintsa, E., Kort, E., Obersteiner, F., Moore, F., Vitkova, G., Manca, G., Brailsford, G., Santoni, G., Haeyoung Lee, Boenisch, H., Timas, H., Matsueda, H., Kang, H.-Y., Huilin Chen, Lehner, I., Mammarella, I., Elkins, J.W., Pittman, J., Pichon, J.M., Müller-Williams, J., Jgor Arduini, Turnbull, J., Miller, J.B., Lee, J., DiGangi, J.P., Hatakka, J., Worsey, J., Holst, J., Kominkova, K., McKain, K., Saito, K., Davis, K., Tørseth, K., Haszpra, L., Gatti, L.V., Emmenegger, L., Sha, M.K., Delmotte, M., Fischer, M.L., Schumacher, M., Torn, M., Leuenberger, M., Heimann, M., Steinbacher, M., De Mazière, M., Lindauer, M., Mölder, M., Martin, M.Y., Ko, M.-Y., Heliasz, M., Marek, M.V., Ramonet, M., Lopez, M., Sasakawa, M., Miles, N., Laurent, O., Hermanssen, O., Trisolino, P., Cristofanelli, P., Krummel, P., Shepson, P., Smith, P., Rivas, P.P., Bergamaschi, P., Keronen, P., Langenfelds, R., Leppert, R., Piacentino, S., Richardson, S., Biraud, S.C., Conil, S., Morimoto, S., Aoki, S., O’Doherty, S., Wofsy, S., Nichol, S., Schuck, T., Lauvaux, T., Seifert, T., Biermann, T., Gehrlein, T., Machida, T., Laurila, T., Aalto, T., Kazan, V., Ivakhov, V., Joubert, W., Niwa, Y., Loh, Z., 2021. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1983-2020; obspack_ch4_1_GLOBALVIEWplus_v4.0_2021-10-14.
- Shen, L., Jacob, D.J., Gautam, R., Omara, M., Scarpelli, T.R., Lorente, A., Zavala-Araiza, D., Lu, X., Chen, Z., Lin, J., 2023. National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations. Nature Communications 14, 4948. [CrossRef]
- Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R.O., Butz, A., Haun, M., Buijs, H., Shiomi, K., Imai, H., Kuze, A., 2021. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. Atmospheric Measurement Techniques 14, 2013–2039. [CrossRef]
- Tunnicliffe, R.L., Ganesan, A.L., Parker, R.J., Boesch, H., Gedney, N., Poulter, B., Zhang, Z., Lavrič, J.V., Walter, D., Rigby, M., Henne, S., Young, D., O’Doherty, S., 2020. Quantifying sources of Brazil’s CH4 emissions between 2010 and 2018 from satellite data. Atmospheric Chemistry and Physics 20, 13041–13067. [CrossRef]
- Wang, F., Maksyutov, S., Tsuruta, A., Janardanan, R., Ito, A., Sasakawa, M., Machida, T., Morino, I., Yoshida, Y., Kaiser, J.W., Janssens-Maenhout, G., Dlugokencky, E.J., Mammarella, I., Lavric, J.V., Matsunaga, T., 2019. Methane emission estimates by the global high-resolution inverse model using national inventories. Remote Sensing 11. [CrossRef]
- Weber, T., Wiseman, N.A., Kock, A., 2019. Global ocean methane emissions dominated by shallow coastal waters. Nature Communications 10, 4584. [CrossRef]
- Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34:28–35.
- Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S., 2009. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA 5, 160–163. [CrossRef]
- Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G.C., Wunch, D., Roehl, C.M., Wennberg, P.O., Griffith, D.W.T., Deutscher, N.M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., Heikkinen, P., Kyro, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., Yokota, T., 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques 6, 1533–1547. [CrossRef]
- Yoshida, Y., Someya, Y., Ohyama, H., Morino, I., Matsunaga, T., Deutscher, N.M., Griffith, D.W.T., Hase, F., Iraci, L.T., Kivi, R., Notholt, J., Pollard, D.F., Té, Y., Velazco, V.A., Wunch, D., 2023. Quality Evaluation of the Column-Averaged Dry Air Mole Fractions of Carbon Dioxide and Methane Observed by GOSAT and GOSAT-2. SOLA 19, 173–184. [CrossRef]
- Zhang, Z., Poulter, B., Feldman, A.F., Ying, Q., Ciais, P., Peng, S., Li, X., 2023. Recent intensification of wetland methane feedback. Nature Climate Change 13, 430–433. [CrossRef]





| Sectors | Prior | GOSAT inversion | GOSAT-2 inversion |
| Total | 615.27 | 605.20 | 601.83 |
| Agriculture | 159.85 | 156.23 | 154.72 |
| Waste | 82.34 | 80.02 | 80.28 |
| Biomass burning | 26.86 | 22.78 | 22.79 |
| Coal | 37.81 | 36.50 | 36.14 |
| Geological* | 23.02 | 23.02 | 23.02 |
| Other microbial* | 9.91 | 9.91 | 9.91 |
| Ocean* | 11.48 | 11.48 | 11.48 |
| Oil & gas | 90.02 | 83.52 | 87.79 |
| Wetlands | 173.99 | 177.84 | 171.80 |
| Soil sink* | -35.51 | -35.51 | -35.51 |
| Sectors | Agriculture | Waste | Biomass and biofuel | Coal | Oil & Gas | Wetland | ||||||
| Country | GOSAT | GOSAT-2 | GOSAT | GOSAT-2 | GOSAT | GOSAT-2 | GOSAT | GOSAT-2 | GOSAT | GOSAT-2 | GOSAT | GOSAT-2 |
| ARG | 2.34±0.25 | 2.97±0.31 | 0.52±0.01 | 0.55±0.01 | 0.11±0.00 | 0.11±0.00 | 0.00±0.00 | 0.00±0.00 | 0.44±0.01 | 0.47±0.01 | 3.58±0.15 | 3.86±0.16 |
| AUS.1 | 1.89±0.24 | 2.04±0.26 | 0.31±0.01 | 0.31±0.01 | 0.88±0.02 | 0.88±0.02 | 0.79±0.05 | 0.79±0.05 | 0.27±0.00 | 0.26±0.00 | 3.84±0.16 | 3.40±0.14 |
| BOL | 0.72±0.02 | 0.75±0.02 | 0.08±0.00 | 0.08±0.00 | 0.44±0.00 | 0.44±0.00 | 0.00±0.00 | 0.00±0.00 | 0.12±0.00 | 0.12±0.00 | 4.68±0.27 | 4.38±0.26 |
| BRA | 13.52±0.36 | 14.29±0.38 | 4.91±0.09 | 5.06±0.09 | 1.85±0.04 | 1.85±0.04 | 0.05±0.00 | 0.05±0.00 | 0.22±0.01 | 0.23±0.01 | 30.50±1.67 | 26.19±1.44 |
| CAN | 1.06±0.02 | 1.15±0.02 | 0.57±0.01 | 0.62±0.01 | 0.46±0.00 | 0.46±0.00 | 0.08±0.01 | 0.08±0.01 | 2.68±0.11 | 2.84±0.12 | 11.20±0.70 | 13.49±0.84 |
| CHN | 23.18±1.54 | 16.82±1.12 | 14.36±0.70 | 13.35±0.65 | 2.47±0.03 | 2.42±0.03 | 18.97±0.98 | 18.31±0.95 | 2.69±0.02 | 2.75±0.02 | 3.03±0.09 | 2.92±0.09 |
| COL | 1.89±0.05 | 1.80±0.05 | 0.82±0.01 | 0.80±0.01 | 0.07±0.00 | 0.07±0.00 | 0.20±0.00 | 0.20±0.00 | 0.44±0.02 | 0.43±0.02 | 6.19±0.35 | 4.71±0.27 |
| COG | 0.02±0.00 | 0.03±0.00 | 0.03±0.00 | 0.03±0.00 | 0.08±0.00 | 0.08±0.00 | 0.00±0.00 | 0.00±0.00 | 0.06±0.00 | 0.07±0.00 | 5.97±0.25 | 5.95±0.25 |
| COD | 0.30±0.00 | 0.31±0.00 | 0.64±0.02 | 0.64±0.02 | 1.35±0.04 | 1.35±0.04 | 0.00±0.00 | 0.00±0.00 | 0.02±0.00 | 0.02±0.00 | 13.59±0.80 | 13.44±0.79 |
| IND | 16.37±1.63 | 15.73±1.56 | 6.56±0.15 | 6.44±0.15 | 1.23±0.05 | 1.23±0.05 | 1.11±0.05 | 1.05±0.05 | 0.47±0.01 | 0.47±0.01 | 3.92±0.17 | 4.06±0.17 |
| IDN | 3.70±0.34 | 3.20±0.30 | 2.04±0.11 | 1.89±0.10 | 2.17±0.01 | 2.17±0.01 | 4.83±0.30 | 4.53±0.28 | 0.79±0.06 | 0.60±0.04 | 12.12±0.77 | 7.72±0.49 |
| IRQ | 0.13±0.02 | 0.14±0.03 | 0.44±0.01 | 0.46±0.01 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 6.38±0.96 | 6.91±1.04 | 0.09±0.00 | 0.10±0.00 |
| MEX | 2.67±0.05 | 2.65±0.05 | 2.48±0.03 | 2.43±0.03 | 0.21±0.00 | 0.21±0.00 | 0.01±0.01 | 0.01±0.01 | 0.29±0.02 | 0.30±0.02 | 1.35±0.05 | 1.29±0.05 |
| NGA | 1.85±0.04 | 2.25±0.05 | 1.47±0.02 | 1.57±0.02 | 0.85±0.01 | 0.90±0.01 | 0.00±0.00 | 0.00±0.00 | 2.08±0.37 | 2.86±0.51 | 1.77±0.11 | 2.09±0.13 |
| PAK | 5.34±0.37 | 5.87±0.41 | 1.30±0.03 | 1.33±0.04 | 0.32±0.01 | 0.33±0.01 | 0.03±0.00 | 0.03±0.00 | 0.53±0.03 | 0.56±0.04 | 0.16±0.01 | 0.16±0.01 |
| PER | 0.53±0.00 | 0.52±0.00 | 0.27±0.00 | 0.27±0.00 | 0.04±0.00 | 0.04±0.00 | 0.00±0.00 | 0.00±0.00 | 0.03±0.00 | 0.03±0.00 | 7.80±0.53 | 6.18±0.42 |
| RUS | 1.59±0.02 | 1.67±0.02 | 3.36±0.03 | 3.53±0.04 | 2.93±0.35 | 2.93±0.35 | 3.15±0.13 | 3.24±0.13 | 15.78±0.41 | 16.36±0.43 | 14.54±1.19 | 15.50±1.27 |
| SDN | 2.58±0.03 | 2.98±0.04 | 0.44±0.01 | 0.45±0.01 | 0.34±0.00 | 0.34±0.00 | 0.00±-0.00 | 0.00±-0.00 | 0.59±0.02 | 0.61±0.02 | 3.13±0.23 | 3.40±0.25 |
| THA | 2.50±0.49 | 2.01±0.39 | 0.95±0.03 | 0.87±0.03 | 0.13±0.03 | 0.13±0.03 | 0.01±0.00 | 0.01±0.00 | 0.12±0.01 | 0.08±0.01 | 1.10±0.08 | 0.89±0.06 |
| USA | 9.63±0.29 | 10.79±0.32 | 4.29±0.05 | 4.62±0.06 | 0.68±0.08 | 0.68±0.08 | 1.44±0.28 | 1.60±0.31 | 20.57±0.28 | 21.09±0.29 | 5.58±0.28 | 6.20±0.32 |
| VEN | 1.17±0.02 | 1.12±0.02 | 0.36±0.00 | 0.36±0.00 | 0.15±0.01 | 0.15±0.01 | 0.01±0.00 | 0.01±0.00 | 0.47±0.01 | 0.45±0.01 | 4.52±0.35 | 3.44±0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
