Submitted:
09 July 2025
Posted:
10 July 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Surgical Technique
2.5. Intraoperative Signs of Zonular Weakness
2.6. Data Collection and Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Changes in CECD
3.3. Changes in CCT, CV, and PHC
3.4. Changes in IOP
3.5. Changes in BCVA Over Time
3.6. Complications
4. Discussion
5. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PEX | Pseudoexfoliation |
| IOP | Intraocular pressure |
| CECD | Corneal endothelial cell density |
| CDE | Cumulative dissipated energy |
| IOL | Intraocular lens |
| BCVA | Best-corrected visual acuity |
| CCT | Central corneal thickness |
| CV | Coefficient of variation |
| PHC | Percentage of hexagonal cells |
| SD | Standard deviation |
| CTR | Capsular tension ring |
References
- Thomas, M.N.; Skopiński, P.; Roberts, H.; Woronkowicz, M. The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review. Int J Mol Sci 2025, 26. [CrossRef]
- Preoteasa, L.D.; Baltă, G.; Baltă, F.N. Investigation of Risk Factors Predicting Cataract Surgery Complications in Patients with Pseudoexfoliation Syndrome: A Systematic Review. J Clin Med 2024, 13. [CrossRef]
- Zenkel, M.; Krysta, A.; Pasutto, F.; Juenemann, A.; Kruse, F.E.; Schlötzer-Schrehardt, U. Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 2011, 52, 8488–8495. [CrossRef]
- Mastronikolis, S.; Pagkalou, M.; Baroutas, G.; Kyriakopoulou, K.; Makri O, E.; Georgakopoulos, C.D. Pseudoexfoliation syndrome: The critical role of the extracellular matrix in pathogenesis and treatment. IUBMB Life 2022, 74, 995–1002. [CrossRef]
- Ovodenko, B.; Rostagno, A.; Neubert, T.A.; Shetty, V.; Thomas, S.; Yang, A.; Liebmann, J.; Ghiso, J.; Ritch, R. Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci 2007, 48, 1447–1457. [CrossRef]
- Bora, R.R.; Prasad, R.; Mathurkar, S.; Bhojwani, K.; Prasad, A. Cardiovascular Manifestations of Pseudoexfoliation Syndrome: A Narrative Review. Cureus 2024, 16, e51492. [CrossRef]
- Naumann, G.O.; Schlötzer-Schrehardt, U. Keratopathy in pseudoexfoliation syndrome as a cause of corneal endothelial decompensation: a clinicopathologic study. Ophthalmology 2000, 107, 1111–1124. [CrossRef]
- Kristianslund, O.; Pathak, M.; Østern, A.E.; Drolsum, L. Corneal endothelial cell loss following cataract surgery in patients with pseudoexfoliation syndrome: a 2-year prospective comparative study. Acta Ophthalmol 2020, 98, 337–342. [CrossRef]
- Aoki, T.; Kitazawa, K.; Inatomi, T.; Kusada, N.; Horiuchi, N.; Takeda, K.; Yokoi, N.; Kinoshita, S.; Sotozono, C. Risk Factors for Corneal Endothelial Cell Loss in Patients with Pseudoexfoliation Syndrome. Sci Rep 2020, 10, 7260. [CrossRef]
- Batur, M.; Seven, E.; Tekin, S.; Yasar, T. Anterior Lens Capsule and Iris Thicknesses in Pseudoexfoliation Syndrome. Curr Eye Res 2017, 42, 1445–1449. [CrossRef]
- Eremenko, R.; Neimark, E.; Shalev, D.; Harel, G.; Kleinmann, G. Prevalence and prediction of intraoperative floppy iris syndrome in patients with pseudoexfoliation syndrome. Can J Ophthalmol 2025, 60, 79–84. [CrossRef]
- Thevi, T.; Abas, A.L. Intraoperative and postoperative complications of cataract surgery in eyes with pseudoexfoliation - An 8-year analysis. Oman J Ophthalmol 2019, 12, 160–165. [CrossRef]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 479–484. [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J Clin Med 2024, 13, 7298. [CrossRef]
- Sato, T. Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. J Clin Med 2025, 14. [CrossRef]
- Sato, T. Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. J Pers Med 2025, 15, 209. [CrossRef]
- Sato, T. Corneal endothelial cell loss in shallow anterior chamber eyes after phacoemulsification using the eight-chop technique. J Clin Med 2025, 14, 3045. [CrossRef]
- Borjan, I.; Stanić, R.; Pleština-Borjan, I.; Pavić, M.; Hertzberg, S.N.W.; Znaor, L.; Petrovski, B.; Petrovski, G. Pseudoexfoliative Syndrome in Cataract Surgery-A Quality Register Study and Health Economic Analysis in the Split-Dalmatia County, Croatia. J Clin Med 2023, 13, 38. [CrossRef]
- Emery, J.M. Kelman phacoemulsification; patient selection. In Extracapsular cataract surgery, Emery, J.M., Mclyntyre, D.J., Eds. CV Mosby: St Louis, 1983; pp. 95–100.
- Shingleton, B.J.; Neo, Y.N.; Cvintal, V.; Shaikh, A.M.; Liberman, P.; O'Donoghue, M.W. Outcome of phacoemulsification and intraocular lens implantion in eyes with pseudoexfoliation and weak zonules. Acta Ophthalmol 2017, 95, 182–187. [CrossRef]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am J Ophthalmol 2019, 207, 10–17. [CrossRef]
- Hayashi, K.; Manabe, S.; Yoshimura, K.; Kondo, H. Corneal endothelial damage after cataract surgery in eyes with pseudoexfoliation syndrome. J Cataract Refract Surg 2013, 39, 881–887. [CrossRef]
- Ramezani, F.; Nazarian, M.; Rezaei, L. Intraocular pressure changes after phacoemulsification in pseudoexfoliation versus healthy eyes. BMC Ophthalmol 2021, 21, 198. [CrossRef]
- Demircan, S.; Atas, M.; Yurtsever, Y. Effect of torsional mode phacoemulsification on cornea in eyes with/without pseudoexfoliation. Int J Ophthalmol 2015, 8, 281–287. [CrossRef]
- Tulu Aygun, B.; Altan, C.; Kirmaci Kabakci, A. Comparison of phacoemulsification parameters in eyes with and without exfoliation syndrome. J Fr Ophtalmol 2020, 43, 1031–1038. [CrossRef]
- Kaljurand, K.; Teesalu, P. Exfoliation syndrome as a risk factor for corneal endothelial cell loss in cataract surgery. Ann Ophthalmol (Skokie) 2007, 39, 327–333. [CrossRef]
- Khalid, M.; Hanif, M.K.; Islam, Q.U.; Mehboob, M.A. Change in corneal endothelial cell density after phacoemulsification in patients with type II diabetes mellitus. Pak J Med Sci 2019, 35, 1366–1369. [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: a randomized study. Indian J Ophthalmol 2022, 70, 794–798. [CrossRef]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine (Baltimore) 2021, 100, e27141. [CrossRef]
- Palko, J.R.; Qi, O.; Sheybani, A. Corneal Alterations Associated with Pseudoexfoliation Syndrome and Glaucoma: A Literature Review. J Ophthalmic Vis Res 2017, 12, 312–324. [CrossRef]
- Damji, K.F.; Konstas, A.G.; Liebmann, J.M.; Hodge, W.G.; Ziakas, N.G.; Giannikakis, S.; Mintsioulis, G.; Merkur, A.; Pan, Y.; Ritch, R. Intraocular pressure following phacoemulsification in patients with and without exfoliation syndrome: a 2 year prospective study. Br J Ophthalmol 2006, 90, 1014–1018. [CrossRef]
- Moghimi, S.; Johari, M.; Mahmoudi, A.; Chen, R.; Mazloumi, M.; He, M.; Lin, S.C. Predictors of intraocular pressure change after phacoemulsification in patients with pseudoexfoliation syndrome. Br J Ophthalmol 2017, 101, 283–289. [CrossRef]
- Moghimi, S.; Abdi, F.; Latifi, G.; Fakhraie, G.; Ramezani, F.; He, M.; Lin, S.C. Lens parameters as predictors of intraocular pressure changes after phacoemulsification. Eye (Lond) 2015, 29, 1469–1476. [CrossRef]
- Drolsum, L.; Ringvold, A.; Nicolaissen, B. Cataract and glaucoma surgery in pseudoexfoliation syndrome: a review. Acta Ophthalmol Scand 2007, 85, 810–821. [CrossRef]
- Shingleton, B.J.; Marvin, A.C.; Heier, J.S.; O'Donoghue, M.W.; Laul, A.; Wolff, B.; Rowland, A. Pseudoexfoliation: High risk factors for zonule weakness and concurrent vitrectomy during phacoemulsification. J Cataract Refract Surg 2010, 36, 1261–1269. [CrossRef]
- Hayashi, K.; Yoshida, M.; Manabe, S.I.; Hirata, A. High-risk factors for zonular complications during cataract surgery in eyes with pseudoexfoliation syndrome. Br J Ophthalmol 2024, 108, 1193–1199. [CrossRef]
- Xu, J.; Feng, K.; Mo, E.; Xu, Y.; Zhu, C.; Zhao, Y.E.; Li, J.; Huang, F. Effect of Capsular Tension Ring on the Accuracy of Nine New-Generation IOL Formulas in Long Eyes. J Refract Surg 2025, 41, e114–e119. [CrossRef]
- Liu, E.; Cole, S.; Werner, L.; Hengerer, F.; Mamalis, N.; Kohnen, T. Pathologic evidence of pseudoexfoliation in cases of in-the-bag intraocular lens subluxation or dislocation. J Cataract Refract Surg 2015, 41, 929–935. [CrossRef]
- Ahmed, II; Chen, S.H.; Kranemann, C.; Wong, D.T. Surgical repositioning of dislocated capsular tension rings. Ophthalmology 2005, 112, 1725–1733. [CrossRef]
- Artzen, D.; Samolov, B.; Lundström, M.; Montan, P. Visual acuity and intraocular pressure after surgical management of late in-the-bag dislocation of intraocular lenses. A single-centre prospective study. Eye (Lond) 2020, 34, 1406–1412. [CrossRef]
- Mayer-Xanthaki, C.F.; Hirnschall, N.; Pregartner, G.; Gabriel, M.; Falb, T.; Sommer, M.; Haas, A. Capsular tension ring as protective measure against in-the-bag dislocations after cataract surgery. J Cataract Refract Surg 2023, 49, 154–158. [CrossRef]
- Akahoshi, T. Phaco Prechop. In Phaco Chop and Advanced Phaco Techniques, Second Edition ed.; Chang, D.F., Ed. SLACK Incorporated: Thorofare, NJ, 2013; pp. 55–76.
- Sato, T. Reply: Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 1078–1079. [CrossRef]
| Characteristic/Parameter | PEX Group | Control Group | p-value |
|---|---|---|---|
| Number of eyes | 109 | 110 | |
| Age (y) | 75.7 ± 6.7 | 75.8 ± 3.3 | 0.40 a |
| Gender: Men | 40 (36.7%) | 41 (37.2%) | 0.93 b |
| Women | 69 (63.3%) | 69 (62.8%) | |
| Glaucoma | 30 (27.5%) | 0 | |
| Anterior chamber depth (mm) | 3.31 ± 0.33 | 3.26 ± 0.36 | 0.49 a |
| Preoperative pupil size (mm) | 6.2 ± 1.0 | 6.9 ± 0.5 | <0.01 c |
| Lens hardness | 2.3 ± 0.3 | 2.3 ± 0.3 | 0.50 a |
| Operative time (min) | 6.5 ± 3.4 | 4.5 ± 0.8 | <0.01 c |
| Phaco time (s) | 16.8 ± 7.2 | 14.2 ± 3.7 | 0.01 c |
| Aspiration time (s) | 83.8 ± 24.8 | 63.82 ± 12.3 | <0.01 c |
| CDE | 6.67 ± 2.66 | 5.79 ± 1.53 | 0.02 c |
| Volume of fluid used (mL) | 32.9 ± 10.3 | 25.3 ± 5.4 | <0.01 c |
| Mean CECD ± SD (% Decrease) | |||
|---|---|---|---|
| Time period | PEX group (n = 67) |
Control group (n = 110) |
p-value |
| Preoperatively | 2579 ± 291 | 2694 ± 240 | 0.01 a |
| 7 weeks postoperatively | 2547 ± 286 b | 2622 ± 236 c | 0.10 d |
| % Decrease | 1.1 ± 5.1 | 2.6 ± 2.4 | 0.02 a |
| 19 weeks postoperatively | 2563 ± 285 b | 2655 ± 248 c | 0.06 d |
| % Decrease | 0.5 ± 4.9 | 1.4 ± 2.1 | 0.27 d |
| Time period | PEX group (n = 82) |
Control group (n = 110) |
p-value |
|---|---|---|---|
| CCT | Mean ± SD | ||
| Preoperatively | 529 ± 33.4 | 532 ± 30.2 | 0.59 a |
| 7 weeks postoperatively | 537 ± 38.7 c | 535 ± 27.9 d | 0.81 a |
| 19 weeks postoperatively | 532 ± 34.8 d | 531 ± 29.0 d | 0.99 a |
| CV | Mean ± SD | ||
| Preoperatively | 41.2 ± 7.2 | 39.5 ± 6.6 | 0.07 a |
| 7 weeks postoperatively | 41.1 ± 5.2 d | 38.8 ± 5.4 d | < 0.01 b |
| 19 weeks postoperatively | 39.7 ± 6.6 d | 37.2 ± 5.4 c | 0.01 b |
| PHC | Mean ± SD | ||
| Preoperatively | 43.3 ± 8.2 | 45.3 ± 6.1 | 0.17 a |
| 7 weeks postoperatively | 41.3 ± 7.1 c | 45.8 ± 6.4 d | < 0.01 b |
| 19 weeks postoperatively | 43.5 ± 7.9 d | 47.7 ± 5.9 c | < 0.01 b |
| Mean IOP ± SD (% Decrease) | |||
|---|---|---|---|
| Time period | PEX group (n = 107) | Control group (n = 110) | p-value |
| Preoperatively | 14.6 ± 3.0 | 14.0 ± 2.1 | 0.15 a |
| 7 weeks postoperatively | 12.4 ± 2.8 b | 11.9 ± 1.6 b | 0.20 a |
| % Decrease | 13.8 ± 17.2 | 14.4 ± 9.2 | 0.72 a |
| 19 weeks postoperatively | 12.4 ± 2.6 b | 12.5 ± 1.8 b | 0.51 a |
| % Decrease | 13.7 ± 16.4 | 9.9 ± 10.6 | 0.03 c |
| Best-corrected visual acuity logMAR | |||
|---|---|---|---|
| Time period | PEX group (n = 87) | Control group (n = 110) | p-value |
| Preoperatively | 0.110 ± 0.200 | 0.082 ± 0.108 | 0.20 a |
| 7 weeks postoperatively | -0.058 ± 0.041 b | -0.066 ± 0.029 b | 0.09 a |
| 19 weeks postoperatively | -0.060 ± 0.035 b | -0.068 ± 0.028 b | 0.11 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
