Preprint
Article

This version is not peer-reviewed.

Tri–Periodic Fibonacci Numbers and Tri–Periodic Leonardo Numbers

Submitted:

07 July 2025

Posted:

09 July 2025

Read the latest preprint version here

Abstract
In this study, we explore the properties of tri-periodic Fibonacci and tri-periodic Leonardo number sequences. Then we derive generating function of these sequences and give Binet's formula for the tri-periodic Fibonacci sequence. Furthermore, we present Cassani's identity associated with tri-periodic Fibonacci sequnce.
Keywords: 
;  ;  ;  

1. Introduction

The number sequences have a crucial place in the literature. Because these sequences have wide-ranging applications, i.e, cryptology, computer science,art, architecture, finance and algorithm analysis to natural phenomena [1,2,3,4,5,6,7,8,9,10]. As a special cases of number sequences, named Fibonacci and Leonardo sequences have attracted the authors in the literature and have celebrated their recurrence relations. Also, they have connections to different mathematical problems.
Over the years, interest has grown in generalized forms of these sequences, particularly those governed by periodic recurrence relations. In this study, we focus on tri-periodic variants of the Fibonacci and Leonardo sequences, where the recurrence relation alternates cyclically every three terms. First, we remember some essential properties of Fibonacci and Leonardo numbers.
Fibonacci sequence is defined as reccursevily by
F n = F n 1 + F n 2 , F 0 = 0 , F 1 = 1
respectively. The first few Fibonacci sequence numbers are given below
0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , . . .
Then the characteristic equation of these sequences is given by
x 2 x 1 = 0
that the roots are
α = 1 + 5 2 and β = 1 + 5 2
Hence, the Binet’s formula of Fibonacci sequence is
F n = α n β n α β
and generating function of Fibonacci sequence is
n = 0 F n z n = z 1 z z 2
There are many study in literature related to the Fibonacci sequence and so there are many properties found in the literature [10,11,12,13,14,15,16].
Now, we give the recurrance relation of Leonardo sequence as
L n = L n 1 + L n 2 + 1 , L 0 = 1 , L 1 = 1
The first few Leonardo numbers are given below
1 , 1 , 3 , 5 , 9 , 15 , 25 , 41 , 67 , 109 , 177 , 287 , 465 , 753 , 1219 , 1973 , 3193 , 5167 , 8361 , . . .
The Leonardo numbers are related to the Fibonacci numbers given by
L n = 2 F n + 1 1 .
Hence, Binet’s formula of Leonardo numbers can be given by
L n = α n β n α β 1 .
Also there are many study in literature corresponding to the Leonardo sequence. So there are many relation between Leonardo numbers and Fibonacci numbers [17,18,19,20,21,22,23,23].
The extensions of number sequences studied in literature are named bi-periodic number sequences, where the terms of bi-periodic sequences are generated based on odd and even indices. Unlike classical definition of number sequences, the structure of bi-periodic sequences makes them suitable for modeling systems with changing conditions for odd and even indices. Also many authors studied bi periodic sequences related to the special numbers and its properties, i.e , the generating function, Binet’s formula, Catalan’s and D’ocgane’s identities. Now we present some examples from the literature raleted to the study of bi-periodic sequences. Next, we present some study that found in literature.
  • Edson Yayenie whose first studied bi-periodic sequences based on Fibonacci numbers [24], defined bi-periodic Fibonacci sequences indicated by q n n 0 which is defined as
    q n = a q n 1 + q n 2 , if n is even b q n 1 + q n 2 , if n is odd for n 2
    with the initial conditions q 0 = 0 and q 1 = 1 , where a and b are nonzero real numbers.
  • Catarino and Spreafico [25] defined bi-periodic Leonardo sequences denoted by G L e n n 0 which is defined as
    G L e n = a G L e n 1 + G L e n 2 + a , if n is even b G L e n 1 + G L e n 2 + b , if n is odd for n 2
    with the initial conditions G L e 0 = 2 a 1 and G L e 1 = 2 a b 1 , where a and b are nonzero real numbers.
  • Costa et al. [26] defined bi-periodic Eduard and Eduard-Lucas sequences denoted by E n ( a , b ) n 0 and K n ( a , b ) n 0 , respecitively, which are defined as
    E n ( a , b ) = 6 a E n 1 ( a , b ) + E n 2 ( a , b ) , if n is even 6 b E n 1 ( a , b ) + E n 2 ( a , b ) , if n is odd for n 2
    with the initial conditions E 0 ( a , b ) = 0 and E 1 ( a , b ) = 1 , and
    K n ( a , b ) = 6 a K n 1 ( a , b ) + K n 2 ( a , b ) , if n is even 6 b K n 1 ( a , b ) + K n 2 ( a , b ) , if n is odd for n 2
    with the initial conditions K 0 ( a , b ) = 3 and K 1 ( a , b ) = 7 where a and b are nonzero real numbers.
In this study we present the different expension of Fibonacci and Leonardo sequences named tri-periodic Fibonacci and tri-periodic Leonardo sequences where the terms of these sequences based on mod 3 indices. Then we investigate generating function of tri-periodic Fibonacci and tri-periodic Leonardo sequences, Binet’s formula of tri-periodic Fibonacci and tri-periodic Leonardo sequences and also Cassani’s identity of tri-periodic Fibonacci numbers.

2. Tri-Fibonacci Numbers

In this section, we define generalization of Fibonacci numbers denoted F n ( a , b , c ) called tri-periodic Fibonacci numbers and generalization of Leonardo numbers denoted L n ( a , b , c ) called tri-periodic Leonardo numbers.
Definition 1.
For any real nonzero numbers a, b and c the tri-periodic Fibonacci sequence is defined as reccursevily by,
F n ( a , b , c ) = a F n 1 ( a , b , c ) + F n 2 ( a , b , c ) b F n 1 ( a , b , c ) + F n 2 ( a , b , c ) c F n 1 ( a , b , c ) + F n 2 ( a , b , c ) n 0 ( mod 3 ) n 1 ( mod 3 ) n 2 ( mod 3 ) n 3 ,
with the initial condition F 0 ( a , b , c ) = 0 , F 1 ( a , b , c ) = 1 , and F 2 ( a , b , c ) = c .
Definition 2.
For any real nonzero numbers a, b and c the tri-periodic Leonardo sequence is defined as recurrsively by,
l n ( a , b , c ) = a l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a b l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + b c l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + c n 0 ( mod 3 ) n 1 ( mod 3 ) n 2 ( mod 3 ) n 3 ,
with the initial condition l 0 ( a , b , c ) = 1 , l 1 ( a , b , c ) = 1 , and l 2 ( a , b , c ) = 2 c + 1 .
Note that, if a = b = 1 , (4) gives Fibonacci numbers and if a = b = 1 , (4) gives k-Fibonacci numbers. Similarly, if a = b = 1 , (5) gives Leonardo numbers and if a = b = 1 , (5) gives k-Leonardo numbers. To write (4) and (5) in simple form, for all integer n, we define moduler Kronecker delta function that we denote δ k ( n ) as
δ k ( n ) = 1 0 if n = k ( mod 3 ) otherwise
where k = 0 , 1 , 2 . Thus the recurrence relation (4) and (5) can be written as
F n ( a , b , c ) = a δ 0 ( n ) b δ 1 ( n ) c δ 2 ( n ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) , n 3
l n ( a , b , c ) = a δ 0 ( n ) b δ 1 ( n ) c δ 2 ( n ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a δ 0 ( n ) b δ 1 ( n ) c δ 2 ( n ) , n 3
The (4) and (5) gives the following nonlinear quadratic equation for the tri-periodic Fibonacci sequence.
x 2 a b c x a b c = 0
with roots φ and ψ defined by
φ = a b c + a b c ( a b c + 4 ) 2 , ψ = a b c a b c ( a b c + 4 ) 2 .
Note that, the following equalities are true,
φ + ψ = a b c , φ ψ = a b c ψ 2 a b c = ψ + 1 , φ 2 a b c = φ + 1 , φ ψ = a b c , φ + ψ = a b c , φ + 1 ψ + 1 = 1 , φ + 1 ψ = φ , ψ + 1 φ = ψ .
In the Table 1, some terms of the tri-periodic Fibonacci sequence is given.
In the Table 2, some terms of the tri-periodic Leonardo sequence is given.
Theorem 1.
The tri-periodic Fibonacci sequence F n ( a , b , c ) and tri-periodic Leonardo sequence are hold the following equality.
(a)
F n + 2 ( a , b , c ) = ( ω δ 2 ( n ) a δ 0 ( n ) b δ 1 ( n ) c ) F n 1 ( a , b , c ) + ( a 1 δ 0 ( n ) b 1 δ 1 ( n ) c 1 δ 2 ( n ) + 1 ) F n 2 ( a , b , c ) .
(b)
l n + 2 ( a , b , c ) = ( ω δ 2 ( n ) a δ 0 ( n ) b δ 1 ( n ) c ) l n 1 ( a , b , c ) + ( a 1 δ 0 ( n ) b 1 δ 1 ( n ) c 1 δ 2 ( n ) + 1 ) l n 2 ( a , b , c ) + ω δ 2 ( n ) a δ 0 ( n ) b δ 1 ( n ) c + a 1 δ 0 ( n ) b 1 δ 1 ( n ) c 1 δ 2 ( n ) .
where ω = ( a b c + a + b + c ) .
Proof. (a) Let n 0 (mod 3) then using (4), we obtain
F n ( a , b , c ) = a F n 1 ( a , b , c ) + F n 2 ( a , b , c ) , F n + 1 ( a , b , c ) = b F n ( a , b , c ) + F n 1 ( a , b , c ) , F n + 2 ( a , b , c ) = c F n + 1 ( a , b , c ) + F n ( a , b , c ) ,
and summing side by side and reorganizing these equalities we have
F n + 2 ( a , b , c ) = ( c 1 ) F n + 1 ( a , b , c ) + b F n ( a , b , c ) + ( a + 1 ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) .
Hence, we obtain
F n + 2 ( a , b , c ) = ( c 1 ) ( b F n ( a , b , c ) + F n 1 ( a , b , c ) ) + b F n ( a , b , c ) + ( a + 1 ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) = c b ( a F n 1 ( a , b , c ) + F n 2 ( a , b , c ) ) + ( c + a ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) = ( a b c + a + c ) F n 1 ( a , b , c ) + ( b c + 1 ) F n 2 ( a , b , c ) .
Let n 1 (mod 3) then using (4), we obtain
F n ( a , b , c ) = b F n 1 ( a , b , c ) + F n 2 ( a , b , c ) , F n + 1 ( a , b , c ) = c F n ( a , b , c ) + F n 1 ( a , b , c ) , F n + 2 ( a , b , c ) = a F n + 1 ( a , b , c ) + F n ( a , b , c ) ,
and summing side by side and reorganizing these equalities we have
F n + 2 ( a , b , c ) = ( a 1 ) F n + 1 ( a , b , c ) + c F n ( a , b , c ) + ( b + 1 ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) .
Hence, we obtain
F n + 2 ( a , b , c ) = ( a 1 ) ( c F n ( a , b , c ) + F n 1 ( a , b , c ) ) + c F n ( a , b , c ) + ( b + 1 ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) = a c ( b F n 1 ( a , b , c ) + F n 2 ( a , b , c ) ) + ( a + b ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) = ( a b c + a + b ) F n 1 ( a , b , c ) + ( a c + 1 ) F n 2 ( a , b , c ) .
Similarly, Let n 2 (mod 3) then using (4), we obtain
F n ( a , b , c ) = c F n 1 ( a , b , c ) + F n 2 ( a , b , c ) , F n + 1 ( a , b , c ) = a F n ( a , b , c ) + F n 1 ( a , b , c ) , F n + 2 ( a , b , c ) = b F n + 1 ( a , b , c ) + F n ( a , b , c ) ,
and summing side by side and reorganizing these equalities we have
F n + 2 ( a , b , c ) = ( b 1 ) F n + 1 ( a , b , c ) + a F n ( a , b , c ) + ( c + 1 ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) .
Hence, we obtain
F n + 2 ( a , b , c ) = ( b 1 ) ( a F n ( a , b , c ) + F n 1 ( a , b , c ) ) + a F n ( a , b , c ) + ( c + 1 ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) = a b ( a F n 1 ( a , b , c ) + F n 2 ( a , b , c ) ) + ( b + c ) F n 1 ( a , b , c ) + F n 2 ( a , b , c ) = ( a b c + b + c ) F n 1 ( a , b , c ) + ( a b + 1 ) F n 2 ( a , b , c ) .
(b) Let n 0 (mod 3) then using (4), we obtain
l n ( a , b , c ) = a l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a , l n + 1 ( a , b , c ) = b l n ( a , b , c ) + l n 1 ( a , b , c ) + b , l n + 2 ( a , b , c ) = c l n + 1 ( a , b , c ) + l n ( a , b , c ) + c ,
and summing side by side and reorganizing these equalities we have
l n + 2 ( a , b , c ) = ( c 1 ) l n + 1 ( a , b , c ) + b l n ( a , b , c ) + ( a + 1 ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a + b + c .
Hence, we obtain
l n + 2 ( a , b , c ) = ( c 1 ) ( b l n ( a , b , c ) + l n 1 ( a , b , c ) + b ) + b l n ( a , b , c ) + ( a + 1 ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a + b + c = b c ( a l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a ) + ( a + c ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + b c + a + c = ( a b c + a + c ) l n 1 ( a , b , c ) + ( b c + 1 ) l n 2 ( a , b , c ) + a b c + b c + a + c .
Let n 1 (mod 3) then using (4), we obtain
l n ( a , b , c ) = b l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + b , l n + 1 ( a , b , c ) = c l n ( a , b , c ) + l n 1 ( a , b , c ) + c , l n + 2 ( a , b , c ) = a l n + 1 ( a , b , c ) + l n ( a , b , c ) + a ,
and summing side by side and reorganizing these equalities we have
l n + 2 ( a , b , c ) = ( a 1 ) l n + 1 ( a , b , c ) + c l n ( a , b , c ) + ( b + 1 ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a + b + c .
Hence, we obtain
l n + 2 ( a , b , c ) = ( a 1 ) ( c l n ( a , b , c ) + l n 1 ( a , b , c ) + c ) + c l n ( a , b , c ) + ( b + 1 ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a + b + c = a c ( b l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + b ) + ( a + b ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a c + a + b = ( a b c + a + b ) l n 1 ( a , b , c ) + ( a c + 1 ) l n 2 ( a , b , c ) + a b c + a c + a + b .
Similarly, Let n 2 (mod 3) then using (4), we obtain
l n ( a , b , c ) = c l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + c , l n + 1 ( a , b , c ) = a l n ( a , b , c ) + l n 1 ( a , b , c ) + a , l n + 2 ( a , b , c ) = b l n + 1 ( a , b , c ) + l n ( a , b , c ) + b ,
and summing side by side and reorganizing these equalities we have
l n + 2 ( a , b , c ) = ( b 1 ) l n + 1 ( a , b , c ) + a l n ( a , b , c ) + ( c + 1 ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a + b + c .
Hence, we obtain
l n + 2 ( a , b , c ) = ( b 1 ) ( a l n ( a , b , c ) + l n 1 ( a , b , c ) + a ) + a l n ( a , b , c ) + ( c + 1 ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a + b + c = a b ( c l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + c ) + ( b + c ) l n 1 ( a , b , c ) + l n 2 ( a , b , c ) + a b + b + c = ( a b c + b + c ) l n 1 ( a , b , c ) + ( a b + 1 ) l n 2 ( a , b , c ) + a b c + a b + b + c .
Theorem 2.
The tri-periodic Fibonacci sequence F n ( a , b , c ) and tri-periodic Leonardo sequence hold the following equality.
F n ( a , b , c ) = ω F n 3 ( a , b , c ) + F n 6 ( a , b , c ) ,
l n ( a , b , c ) = ω l n 3 ( a , b , c ) + l n 6 ( a , b , c ) + ω ,
where ω = ( a b c + a + b + c ) .
Proof. (a) For the case n 0 (mod 3), using (4), we have
F 3 n ( a , b , c ) = a F 3 n 1 ( a , b , c ) + F 3 n 2 ( a , b , c ) = a c F 3 n 2 ( a , b , c ) + a F 3 n 3 ( a , b , c ) + F 3 n 2 ( a , b , c ) = a c b F 3 n 3 ( a , b , c ) + a c F 3 n 4 ( a , b , c ) + a F 3 n 3 ( a , b , c ) + F 3 n 2 ( a , b , c ) = a c b F 3 n 3 ( a , b , c ) + c F 3 n 3 ( a , b , c ) c F 3 n 5 ( a , b , c ) + a F 3 n 3 ( a , b , c ) + F 3 n 2 ( a , b , c ) = ( a b c + a + b + c ) F 3 n 3 ( a , b , c ) ( F 3 n 4 ( a , b , c ) F 3 n 6 ( a , b , c ) ) + F 3 n 4 ( a , b , c ) = ( a b c + a + b + c ) F 3 n 3 ( a , b , c ) + F 3 n 6 ( a , b , c ) .
For the case n 1 (mod 3), using (4), we have
F 3 n + 1 ( a , b , c ) = b F 3 n ( a , b , c ) + F 3 n 1 ( a , b , c ) = a b F 3 n 1 ( a , b , c ) + b F 3 n 2 ( a , b , c ) + F 3 n 1 ( a , b , c ) = a b c F 3 n 2 ( a , b , c ) + a b F 3 n 3 ( a , b , c ) + b F 3 n 2 ( a , b , c ) + F 3 n 1 ( a , b , c ) = a b c F 3 n 2 ( a , b , c ) + a F 3 n 2 ( a , b , c ) a F 3 n 4 ( a , b , c ) + b F 3 n 2 ( a , b , c ) + F 3 n 1 ( a , b , c ) = ( a b c + a + b + c ) F 3 n 2 ( a , b , c ) ( F 3 n 3 ( a , b , c ) F 3 n 5 ( a , b , c ) ) + F 3 n 3 ( a , b , c ) = ( a b c + a + b + c ) F 3 n 2 ( a , b , c ) + F 3 n 5 ( a , b , c ) .
For the case n 2 (mod 3), using (4), we have
F 3 n + 2 ( a , b , c ) = c F 3 n + 1 ( a , b , c ) + F 3 n ( a , b , c ) = c b F 3 n ( a , b , c ) + c F 3 n 1 ( a , b , c ) + F 3 n ( a , b , c ) = a b c F 3 n 1 ( a , b , c ) + c b F 3 n 2 ( a , b , c ) + c F 3 n 1 ( a , b , c ) + F 3 n ( a , b , c ) = a b c F 3 n 1 ( a , b , c ) + b F 3 n 1 ( a , b , c ) b F 3 n 3 ( a , b , c ) + c F 3 n 1 ( a , b , c ) + F 3 n ( a , b , c ) = ( a b c + a + b + c ) F 3 n 1 ( a , b , c ) ( F 3 n 2 ( a , b , c ) F 3 n 5 ( a , b , c ) ) + F 3 n 2 ( a , b , c ) = ( a b c + a + b + c ) F 3 n 1 ( a , b , c ) + F 3 n 5 ( a , b , c ) .
(b) For the case n 0 (mod 3), using (10), we have
l 3 n ( a , b , c ) = a l 3 n 1 ( a , b , c ) + l 3 n 2 ( a , b , c ) + a = a c l 3 n 2 ( a , b , c ) + a l 3 n 3 ( a , b , c ) + l 3 n 2 ( a , b , c ) + a c + a = a c b l 3 n 3 ( a , b , c ) + a c l 3 n 4 ( a , b , c ) + a l 3 n 3 ( a , b , c ) + l 3 n 2 ( a , b , c ) + a b c + a c + a = a c b l 3 n 3 ( a , b , c ) + c l 3 n 3 ( a , b , c ) c l 3 n 5 ( a , b , c ) + a l 3 n 3 ( a , b , c ) + l 3 n 2 ( a , b , c ) + a b c + a = ( a b c + a + b + c ) l 3 n 3 ( a , b , c ) ( l 3 n 4 ( a , b , c ) l 3 n 6 ( a , b , c ) c ) + l 3 n 4 ( a , b , c ) + a b c + a + b = ( a b c + a + b + c ) l 3 n 3 ( a , b , c ) + l 3 n 6 ( a , b , c ) + a b c + a + b + c .
For the case n 1 (mod 3), using (10), we have
l 3 n + 1 ( a , b , c ) = b l 3 n ( a , b , c ) + l 3 n 1 ( a , b , c ) + b = a b l 3 n 1 ( a , b , c ) + b l 3 n 2 ( a , b , c ) + l 3 n 1 ( a , b , c ) + a b + b = a b c l 3 n 2 ( a , b , c ) + a b l 3 n 3 ( a , b , c ) + b l 3 n 2 ( a , b , c ) + l 3 n 1 ( a , b , c ) + a b c + a b + b = a b c l 3 n 2 ( a , b , c ) + a l 3 n 2 ( a , b , c ) a l 3 n 4 ( a , b , c ) + b l 3 n 2 ( a , b , c ) + l 3 n 1 ( a , b , c ) + a b c + b = ( a b c + a + b + c ) l 3 n 2 ( a , b , c ) a l 3 n 4 ( a , b , c ) + l 3 n 3 ( a , b , c ) + a b c + b + c = ( a b c + a + b + c ) l 3 n 2 ( a , b , c ) + l 3 n 5 ( a , b , c ) + a b c + a + b + c .
For the case n 2 (mod 3), using (10), we have
l 3 n + 2 ( a , b , c ) = c l 3 n + 1 ( a , b , c ) + l 3 n ( a , b , c ) + c = c b l 3 n ( a , b , c ) + c l 3 n 1 ( a , b , c ) + l 3 n ( a , b , c ) + b c + c = a b c l 3 n 1 ( a , b , c ) + c b l 3 n 2 ( a , b , c ) + c l 3 n 1 ( a , b , c ) + l 3 n ( a , b , c ) + a b c + b c + c = a b c l 3 n 1 ( a , b , c ) + b l 3 n 1 ( a , b , c ) b l 3 n 3 ( a , b , c ) + c l 3 n 1 ( a , b , c ) + l 3 n ( a , b , c ) + a b c + c = ( a b c + a + b + c ) l 3 n 1 ( a , b , c ) ( l 3 n 2 ( a , b , c ) l 3 n 5 ( a , b , c ) b ) + l 3 n 2 ( a , b , c ) + a b c + a + c = ( a b c + a + b + c ) l 3 n 1 ( a , b , c ) + l 3 n 5 ( a , b , c ) + a b c + a + b + c .
The recurrence (9) and (10) hold the following characteristic equation:
x 6 ω x 3 1 = x 3 α x 3 β = 0
where α = ω + ω 2 + 4 2 and β = ω ω 2 + 4 2 .
Theorem 3.
Suppose that F ( z ) = n = 0 F n ( a , b , c ) z n is the ordinary generating function of the tri-periodic Fibonacci sequence. Then F ( z ) is given by
F ( z ) = F 0 ( a , b , c ) + F 1 ( a , b , c ) z + F 2 ( a , b , c ) z 2 + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) z 3 + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) z 4 + ( F 5 ( a , b , c ) ω F 2 ( a , b , c ) ) z 5 1 ω z 3 z 6 .
Proof. Consider the generating function as
F ( z ) = n = 0 F n ( a , b , c ) z n = n = 0 F 3 n ( a , b , c ) z 3 n + n = 0 F 3 n + 1 ( a , b , c ) z 3 n + 1 + n = 0 F 3 n + 2 ( a , b , c ) z 3 n + 2 = G ( z ) + H ( z ) + T ( z ) .
Hence, if we multiply G ( z ) = n = 0 F 3 n ( a , b , c ) z 3 n with 1 ω z 3 z 6 and using (9), we obtain
1 ω z 3 z 6 G ( z ) = 1 ω z 3 z 6 n = 0 F 3 n ( a , b , c ) z 3 n = n = 0 F 3 n ( a , b , c ) z 3 n ω n = 1 F 3 n 3 ( a , b , c ) z 3 n n = 2 F 3 n 6 ( a , b , c ) z 3 n = F 0 ( a , b , c ) + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) z 3 + n = 2 ( F 3 n ( a , b , c ) ω F 3 n 3 ( a , b , c ) F 3 n 6 ( a , b , c ) ) equal to zero z 3 n .
That means
G ( z ) = F 0 ( a , b , c ) + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) z 3 1 ω z 3 z 6
Next, if we multiply H ( z ) = n = 0 F 3 n + 1 ( a , b , c ) z 3 n + 1 with 1 ω z 3 z 6 and using (9), we obtain
1 ω z 3 z 6 H ( z ) = 1 ω z 3 z 6 n = 0 F 3 n + 1 ( a , b , c ) z 3 n + 1 = n = 0 F 3 n + 1 ( a , b , c ) z 3 n + 1 ω n = 1 F 3 n 2 ( a , b , c ) z 3 n + 1 n = 2 F 3 n 5 ( a , b , c ) z 3 n + 1 = F 1 ( a , b , c ) z + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) z 4 + n = 2 ( F 3 n + 1 ( a , b , c ) ω F 3 n 2 ( a , b , c ) F 3 n 5 ( a , b , c ) ) equal to zero z 3 n + 1 .
That means
H ( z ) = F 1 ( a , b , c ) z + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) z 4 1 ω z 3 z 6
Eventually, if we multiply T ( z ) = n = 0 F 3 n + 2 ( a , b , c ) z 3 n + 2 with 1 ω z 3 z 6 and using (9), we obtain
1 ω z 3 z 6 T ( z ) = 1 ω z 3 z 6 n = 0 F 3 n + 2 ( a , b , c ) z 3 n + 2 = n = 0 F 3 n + 2 ( a , b , c ) z 3 n + 2 ω n = 1 F 3 n 1 ( a , b , c ) z 3 n + 2 n = 2 F 3 n 4 ( a , b , c ) z 3 n + 2 = F 2 ( a , b , c ) z 2 + ( F 5 ( a , b , c ) ω F 2 ( a , b , c ) ) z 5 + n = 2 ( F 3 n + 2 ( a , b , c ) ω F 3 n 1 ( a , b , c ) F 3 n 4 ( a , b , c ) ) equal to zero z 3 n + 2 .
That means
T ( z ) = F 2 ( a , b , c ) z 2 + ( F 5 ( a , b , c ) ω F 2 ( a , b , c ) ) z 5 1 ω z 3 z 6
So, if we substitute the expressions G ( z ) , H ( z ) and T ( z ) into (12) we get the result.□
Theorem 4.
Suppose that l ( z ) = n = 0 l n ( a , b , c ) z n is the ordinary generating function of the tri-periodic Leonardo sequence. Then l ( z ) is given by
l ( z ) = 1 ( 1 z ) 1 ω z 3 z 6 ( l 0 ( a , b , c ) ( 1 z ) + l 1 ( a , b , c ) z ( 1 z ) + l 2 ( a , b , c ) z 2 ( 1 z ) + ( l 3 ( a , b , c ) ω l 0 ( a , b , c ) ) z 3 ( 1 z ) + ( l 4 ( a , b , c ) ω l 1 ( a , b , c ) ) z 4 ( 1 z ) + ( l 5 ( a , b , c ) ω l 2 ( a , b , c ) ) z 5 ( 1 z ) + ω z 6 ) .
Proof. Consider the generating function as
l ( z ) = n = 0 l n ( a , b , c ) z n = n = 0 l 3 n ( a , b , c ) z 3 n + n = 0 l 3 n + 1 ( a , b , c ) z 3 n + 1 + n = 0 l 3 n + 2 ( a , b , c ) z 3 n + 2 = K ( z ) + M ( z ) + N ( z ) .
Hence, if we multiply K ( z ) = n = 0 l 3 n ( a , b , c ) z 3 n with 1 ω z 3 z 6 and using (9), we obtain
1 ω z 3 z 6 K ( z ) = 1 ω z 3 z 6 n = 0 l 3 n ( a , b , c ) z 3 n = n = 0 l 3 n ( a , b , c ) z 3 n ω n = 1 l 3 n 3 ( a , b , c ) z 3 n n = 2 l 3 n 6 ( a , b , c ) z 3 n = l 0 ( a , b , c ) + ( l 3 ( a , b , c ) ω l 0 ( a , b , c ) ) z 3 + n = 2 ( F 3 n ( a , b , c ) ω F 3 n 3 ( a , b , c ) F 3 n 6 ( a , b , c ) ) equal to ω z 3 n = l 0 ( a , b , c ) + ( l 3 ( a , b , c ) ω l 0 ( a , b , c ) ) z 3 + ω ( 1 1 z 3 1 z 3 ) = l 0 ( a , b , c ) ( 1 z 3 ) + ( l 3 ( a , b , c ) ω l 0 ( a , b , c ) ) z 3 ( 1 z 3 ) + ω z 6 1 z 3 .
That means
K ( z ) = l 0 ( a , b , c ) ( 1 z 3 ) + ( l 3 ( a , b , c ) ω l 0 ( a , b , c ) ) z 3 ( 1 z 3 ) + ω z 6 1 ω z 3 z 6 ( 1 z 3 )
Next, if we multiply M ( z ) = n = 0 F 3 n + 1 ( a , b , c ) z 3 n + 1 with 1 ω z 3 z 6 and using (9), we obtain
1 ω z 3 z 6 M ( z ) = 1 ω z 3 z 6 n = 0 l 3 n + 1 ( a , b , c ) z 3 n + 1 = n = 0 l 3 n + 1 ( a , b , c ) z 3 n + 1 ω n = 1 l 3 n 2 ( a , b , c ) z 3 n + 1 n = 2 l 3 n 5 ( a , b , c ) z 3 n + 1 = l 1 ( a , b , c ) z + ( l 4 ( a , b , c ) ω l 1 ( a , b , c ) ) z 4 + n = 2 ( l 3 n + 1 ( a , b , c ) ω l 3 n 2 ( a , b , c ) l 3 n 5 ( a , b , c ) ) equal to ω z 3 n + 1 = l 1 ( a , b , c ) z + ( l 4 ( a , b , c ) ω l 1 ( a , b , c ) ) z 4 + ω z ( 1 1 z 3 1 z 3 ) = l 1 ( a , b , c ) z ( 1 z 3 ) + ( l 4 ( a , b , c ) ω l 1 ( a , b , c ) ) z 4 ( 1 z 3 ) + ω z 7 1 z 3 .
That means
M ( z ) = l 1 ( a , b , c ) z ( 1 z 3 ) + ( l 4 ( a , b , c ) ω l 1 ( a , b , c ) ) z 4 ( 1 z 3 ) + ω z 7 ( 1 z 3 ) 1 ω z 3 z 6
Eventually, if we multiply N ( z ) = n = 0 F 3 n + 2 ( a , b , c ) z 3 n + 2 with 1 ω z 3 z 6 and using (9), we obtain
1 ω z 3 z 6 N ( z ) = 1 ω z 3 z 6 n = 0 l 3 n + 2 ( a , b , c ) z 3 n + 2 = n = 0 l 3 n + 2 ( a , b , c ) z 3 n + 2 ω n = 1 l 3 n 1 ( a , b , c ) z 3 n + 2 n = 2 l 3 n 4 ( a , b , c ) z 3 n + 2 = l 2 ( a , b , c ) z 2 + ( l 5 ( a , b , c ) ω l 2 ( a , b , c ) ) z 5 + n = 2 ( l 3 n + 2 ( a , b , c ) ω l 3 n 1 ( a , b , c ) l 3 n 4 ( a , b , c ) ) equal to ω z 3 n + 2 = l 2 ( a , b , c ) z 2 + ( l 5 ( a , b , c ) ω l 2 ( a , b , c ) ) z 5 + ω z 2 ( 1 1 z 3 1 z 3 ) = l 2 ( a , b , c ) z 2 ( 1 z 3 ) + ( l 5 ( a , b , c ) ω l 2 ( a , b , c ) ) z 5 ( 1 z 3 ) + ω z 8 1 z 3 .
That means
T ( z ) = l 2 ( a , b , c ) z 2 ( 1 z 3 ) + ( l 5 ( a , b , c ) ω l 2 ( a , b , c ) ) z 5 ( 1 z 3 ) + ω z 8 ( 1 z 3 ) 1 ω z 3 z 6
So, if we substitute the expressions K ( z ) , M ( z ) and N ( z ) into (12), we obtain
l ( z ) = 1 ( 1 z ) 1 ω z 3 z 6 ( l 0 ( a , b , c ) ( 1 z ) + l 1 ( a , b , c ) z ( 1 z ) + l 2 ( a , b , c ) z 2 ( 1 z ) + ( l 3 ( a , b , c ) ω l 0 ( a , b , c ) ) z 3 ( 1 z ) + ( l 4 ( a , b , c ) ω l 1 ( a , b , c ) ) z 4 ( 1 z ) + ( l 5 ( a , b , c ) ω l 2 ( a , b , c ) ) z 5 ( 1 z ) + ω z 6 ) .
Note that the following equality is true by using Maclaurin series expansion
1 1 d z 3 = n = 0 d n z 3 n , d z 3 1 ,
z 1 d z 3 = n = 0 d n z 3 n + 1 , d z 3 1 ,
z 2 1 d z 3 = n = 0 d n z 3 n + 2 , d z 3 1 .
Theorem 5.
The Binet’s formula of the tri-periodic Fibonacci sequence is given by
F n ( a , b , c ) = F ˜ 0 δ 0 ( n ) + F ˜ 1 δ 1 ( n ) + F ˜ 2 δ 2 ( n ) .
where
F ˜ 0 = ( 1 + a c ) ( α n 3 β n 3 ) α β , F ˜ 1 = ( α n 1 3 + 1 β n 1 3 + 1 ) a ( α n 1 3 β n 1 3 ) α β , F ˜ 2 = c ( α n 2 3 + 1 β n 2 3 + 1 ) + ( α n 2 3 β n 2 3 ) α β .
Proof. Using Theorem 3, (14)-(16) and (11), we obtain
F ( z ) = F 0 ( a , b , c ) + F 1 ( a , b , c ) z + F 2 ( a , b , c ) z 2 + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) z 3 + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) z 4 + ( F 5 ( a , b , c ) ω F 2 ( a , b , c ) ) z 5 1 ω z 3 z 6 = r 1 z 2 + r 2 z + r 3 1 α z 3 + r 4 z 2 + r 5 z + r 6 1 β z 3 = n = 0 r 1 α n z 3 n + 2 + n = 0 r 2 α n z 3 n + 1 + n = 0 r 3 α n z 3 n + n = 0 r 4 β n z 3 n + 2 + n = 0 r 5 β n z 3 n + 1 + n = 0 r 6 β n z 3 n .
Hence, we obtain
F 0 ( a , b , c ) + F 1 ( a , b , c ) z + F 2 ( a , b , c ) z 2 + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) z 3 + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) z 4 + ( F 5 ( a , b , c ) ω F 3 ( a , b , c ) ) z 5 = r 3 + r 6 + z r 2 + r 5 + z 2 r 1 + r 4 z 3 β r 3 + α r 6 z 4 β r 2 + α r 5 z 5 β r 1 + α r 4 .
From this, we have the following equalities:
r 3 + r 6 = F 0 ( a , b , c ) r 2 + r 5 = F 1 ( a , b , c ) r 1 + r 4 = F 2 ( a , b , c ) β r 3 α r 6 = F 3 ( a , b , c ) ω F 0 ( a , b , c ) β r 2 α r 5 = F 4 ( a , b , c ) ω F 1 ( a , b , c ) β r 1 α r 4 = F 5 ( a , b , c ) ω F 2 ( a , b , c )
Hence, we have
0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 β 0 0 α 0 β 0 0 α 0 β 0 0 α 0 0 r 1 r 2 r 3 r 4 r 5 r 6 = F 0 ( a , b , c ) F 1 ( a , b , c ) F 2 ( a , b , c ) F 3 ( a , b , c ) ω F 0 ( a , b , c ) F 4 ( a , b , c ) ω F 1 ( a , b , c ) F 5 ( a , b , c ) ω F 3 ( a , b , c ) .
and
r 1 = 1 α β F 2 ( a , b , c ) α + F 5 ( a , b , c ) ω F 2 ( a , b , c ) , r 2 = 1 α β F 1 ( a , b , c ) α + F 4 ( a , b , c ) ω F 1 ( a , b , c ) , r 3 = 1 α β F 0 ( a , b , c ) α + F 3 ( a , b , c ) ω F 0 ( a , b , c ) , r 4 = 1 α β F 2 ( a , b , c ) β + F 5 ( a , b , c ) ω F 2 ( a , b , c ) , r 5 = 1 α β F 1 ( a , b , c ) β + F 4 ( a , b , c ) ω F 1 ( a , b , c ) , r 6 = 1 α β F 0 ( a , b , c ) β + F 3 ( a , b , c ) ω F 0 ( a , b , c ) .
Thus, (18) can be written as
F ( z ) = n = 0 1 α β F 0 ( a , b , c ) α + F 3 ( a , b , c ) ω F 0 ( a , b , c ) α n z 3 n n = 0 1 α β F 0 ( a , b , c ) β + F 3 ( a , b , c ) ω F 0 ( a , b , c ) β n z 3 n + n = 0 1 α β F 1 ( a , b , c ) α + F 4 ( a , b , c ) ω F 1 ( a , b , c ) α n z 3 n + 1 n = 0 1 α β F 1 ( a , b , c ) β + F 4 ( a , b , c ) ω F 1 ( a , b , c ) β n z 3 n + 1 + n = 0 1 α β F 2 ( a , b , c ) α + F 5 ( a , b , c ) ω F 2 ( a , b , c ) α n z 3 n + 2 n = 0 1 α β F 2 ( a , b , c ) β + F 5 ( a , b , c ) ω F 2 ( a , b , c ) β n z 3 n + 2 .
So, using (9), we have
F ( z ) = n = 0 1 α β F 0 ( a , b , c ) ( α n + 1 β n + 1 ) + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) ( α n β n ) z 3 n + n = 0 1 α β F 1 ( a , b , c ) ( α n + 1 β n + 1 ) + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) ( α n β n ) z 3 n + 1 + n = 0 1 α β F 2 ( a , b , c ) ( α n + 1 β n + 1 ) + ( F 5 ( a , b , c ) ω F 2 ( a , b , c ) ) ( α n β n ) z 3 n + 2 .
This implies that
F n ( a , b , c ) = F 0 ( a , b , c ) ( α k + 1 β k + 1 ) + ( F 3 ( a , b , c ) ω F 0 ( a , b , c ) ) ( α k β k ) α β F 1 ( a , b , c ) ( α k + 1 β k + 1 ) + ( F 4 ( a , b , c ) ω F 1 ( a , b , c ) ) ( α k β k ) α β F 2 ( a , b , c ) ( α k + 1 β k + 1 ) + ( F 5 ( a , b , c ) ω F 2 ( a , b , c ) ) ( α k β k ) α β n = 3 k n 3 k + 1 n 3 k + 2 , k Z
Using (9), the above equality can be written as
F n ( a , b , c ) = F 0 ( a , b , c ) ( α n 3 + 1 β n 3 + 1 ) + F 3 ( a , b , c ) ( α n 3 β n 3 ) α β F 1 ( a , b , c ) ( α n 1 3 + 1 β n 1 3 + 1 ) + F 2 ( a , b , c ) ( α n 1 3 β n 1 3 ) α β F 2 ( a , b , c ) ( α n 2 3 + 1 β n 2 3 + 1 ) + F 1 ( a , b , c ) ( α n 2 3 β n 2 3 ) α β n 0 ( mod 3 ) n 1 ( mod 3 ) n 2 ( mod 3 ) n 3 , = F ˜ 0 δ 0 ( n ) + F ˜ 1 δ 1 ( n ) + F ˜ 2 δ 2 ( n ) .
Theorem 6
(Cassani’s identity). For n 0 we have following equalities.
(a)
For n 0 (mod 3)
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = 1 ω 2 + 4 ( A 0 α 2 n 3 + B 0 β 2 n 3 + C 0 ( 1 ) n )
where
A 0 = ( 1 + α F 2 ( a , b , c ) ) ( α + F 2 ( a , b , c ) ) α F 3 ( a , b , c ) 2 B 0 = ( 1 + β F 2 ( a , b , c ) ) ( β + F 2 ( a , b , c ) ) β F 3 ( a , b , c ) 2 C 0 = ω 2 + 2 ω 2 F 3 ( a , b , c ) 2 .
(b)
For n 1 (mod 3)
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = 1 ω 2 + 4 ( A 1 α 2 n 2 3 + B 1 β 2 n 2 3 + C 1 ( 1 ) n )
where
A 1 = F 3 ( a , b , c ) ( 1 + F 2 ( a , b , c ) α ) ( α F 2 ( a , b , c ) ) 2 B 1 = F 3 ( a , b , c ) ( 1 + F 2 ( a , b , c ) β ) ( β F 2 ( a , b , c ) ) 2 C 1 = . F 3 ( a , b , c ) ( F 2 ( a , b , c ) ω 2 ) + 2 F 2 ( a , b , c ) 2 F 2 ( a , b , c ) 2 .
(c)
For n 2 (mod 3)
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = 1 ω 2 + 4 ( A 2 α 2 n 4 3 + B 2 β 2 n 4 3 + C 2 ( 1 ) n
where
A 2 = F 3 ( a , b , c ) ( α 2 + F 2 ( a , b , c ) α ) ( F 2 ( a , b , c ) + α ) 2 B 1 = F 3 ( a , b , c ) ( β 2 + F 2 ( a , b , c ) β ) ( F 2 ( a , b , c ) + β ) 2 C 1 = F 3 ( a , b , c ) ( 2 + F 2 ( a , b , c ) ω ) 2 F 2 ( a , b , c ) F 2 ( a , b , c ) + ω 2 .
Proof. (a) For the case, n = 3 k , k Z and using Theorem (5)
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = F 3 k 1 ( a , b , c ) F 3 k + 1 ( a , b , c ) F 3 k ( a , b , c ) 2 .
Hence, we have
F 3 k 1 ( a , b , c ) F 3 k + 1 ( a , b , c ) = c ( α k β k ) + ( α k 1 β k 1 ) α β ( α k + 1 β k + 1 ) a ( α k β k ) α β = 1 α β 2 ( α 2 k 1 ( 1 + c α ) ( α a ) + β 2 k 1 ( 1 + c β ) ( α β ) + ( 1 ) k ( ω 2 + 2 ω ) .
and
F 3 k ( a , b , c ) 2 = ( 1 + a c ) ( α k β k ) α β 2 = ( 1 + a c ) 2 α 2 k + ( 1 + a c ) β 2 k 2 ( 1 ) k ( 1 + a c ) 2 .
Therefore, we obtain
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = 1 ω 2 + 4 ( A 0 α 2 n 3 + B 0 β 2 n 3 + C 0 )
(b)For the case, n = 3 k + 1 , k Z and using Theorem (5)
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = F 3 k ( a , b , c ) F 3 k + 2 ( a , b , c ) F 3 k + 1 ( a , b , c ) 2 .
Hence, we have
F 3 k ( a , b , c ) F 3 k + 2 ( a , b , c ) = ( 1 + a c ) ( α k β k ) α β c ( α k + 1 β k + 1 ) + ( α k β k ) α β = 1 α β 2 ( α 2 k ( 1 + a c ) ( 1 + c α ) + β 2 k ( 1 + a c ) ( 1 + c β ) + ( 1 ) k ( ( 1 + a c ) ( c ω 2 ) ) )
and
F 3 k + 1 ( a , b , c ) 2 = ( α k + 1 β k + 1 ) a ( α k β k ) α β 2 = 1 α β 2 ( α 2 k ( α a ) 2 + β 2 k ( β a ) 2 ( 1 ) k ( 2 + 2 a ω + 2 a 2 ) )
Therefore, we obtain
F 3 k ( a , b , c ) F 3 k + 2 ( a , b , c ) F 3 k + 1 ( a , b , c ) 2 = 1 ω 2 + 4 ( A 1 α 2 n 2 3 + B 1 β 2 n 2 3 + C 1 ( 1 ) n )
(c)For the case, n = 3 k + 2 , k Z and using Theorem (5)
F n 1 ( a , b , c ) F n + 1 ( a , b , c ) F n ( a , b , c ) 2 = F 3 k + 1 ( a , b , c ) F 3 k + 3 ( a , b , c ) F 3 k + 2 ( a , b , c ) 2 .
Hence, we have
F 3 k + 1 ( a , b , c ) F 3 k + 3 ( a , b , c ) = ( α k + 1 β k + 1 ) a ( α k β k ) α β ( 1 + a c ) ( α k + 1 β k + 1 ) α β = 1 α β 2 ( α 2 k ( ( 1 + a c ) ( α 2 a α ) + β 2 k ( ( 1 + a c ) ( β 2 a β ) + ( 1 ) k ( ( 1 + a c ) ( 2 a ω ) )
and
F 3 k + 2 ( a , b , c ) 2 = 1 α β 2 ( α 2 k ( c + α ) 2 + β 2 k ( c + β ) 2 + ( 1 ) k ( 2 c 2 2 c ω 2 ) )
Hence, we have
F 3 k + 1 ( a , b , c ) F 3 k + 3 ( a , b , c ) F 3 k + 2 ( a , b , c ) 2 = 1 ω 2 + 4 ( A 3 α 2 n 4 3 + B 3 β 2 n 4 3 + C 3 ( 1 ) n .

References

  1. Liu, Z. Analysis of the application of Fibonacci sequence in different fields. College of Engineering, The Pennsylvania State University. Journal of Undergraduate Research in Engineering 2023, 14(1), 45–58. [Google Scholar]
  2. Devlin, K. The man of numbers: Fibonacci’s arithmetic revolution. Walker & Company. Mathematics History Series 2011, 3, 1–275. [Google Scholar]
  3. Koshy, T. Fibonacci and Lucas numbers with applications. In Mathematics in Engineering; Wiley-Interscience, 2001; Volume 6, pp. 1–676. [Google Scholar]
  4. Stakhov, A. The mathematics of harmony: From Euclid to contemporary mathematics and computer science. World Scientific. Applied Mathematical Sciences 2009, 22, 1–570. [Google Scholar]
  5. Bergum, G. E. Applications of Fibonacci numbers: Volume 6. Springer. Proceedings of the Sixth International Conference 1996, 6, 1–432. [Google Scholar]
  6. Grigas, A. The Fibonacci sequence: Its history, significance, and manifestations in nature, 2013.
  7. Chastkofsky, L. The subtractive Euclidean algorithm and Fibonacci numbers. The Fibonacci Quarterly 2001, 39(4), 320–323. [Google Scholar] [CrossRef]
  8. Iliopoulos, C. S.; Moore, D.; Smyth, W. F. A characterization of the squares in a Fibonacci string. Theoretical Computer Science 1997, 172(1–2), 281–291. [Google Scholar] [CrossRef]
  9. Khattak, B. H. A.; Shafi, I.; Rashid, C. H.; Safran, M.; Alfarhood, S.; Ashraf, I. Profitability trend prediction in crypto financial markets using Fibonacci technical indicator and hybrid CNN model. Journal of Big Data 2024, 11(1), 58. [Google Scholar] [CrossRef]
  10. Négadi, T. A mathematical model for the genetic code(s) based on Fibonacci numbers and their q-analogues. arXiv 2015, arXiv:1510.01278. [Google Scholar] [CrossRef]
  11. Hoggatt, V. E., Jr. Fibonacci and Lucas numbers. The Fibonacci Quarterly 1969, 7(5), 482–500. [Google Scholar] [CrossRef]
  12. Horadam, A. F. Basic properties of a certain generalized sequence. The Fibonacci Quarterly 1965, 3(3), 161–176. [Google Scholar] [CrossRef]
  13. Miles, E. P., Jr. Generalized Fibonacci numbers and associated matrices. The American Mathematical Monthly 1960, 67(8), 745–752. [Google Scholar] [CrossRef]
  14. Lucas, É. Théorie des Fonctions Numériques Simplement Périodiques. American Journal of Mathematics 1(4), 289–321. [CrossRef]
  15. Panwar, Y. K.; Singh, B.; Gupta, V. K. Generalized Fibonacci Sequences and Its Properties. Palestine Journal of Mathematics 2014, 3(2), 283–289. [Google Scholar]
  16. Gosai, I. Fibonacci Sequence and Its Applications. International Journal of Research and Analytical Reviews 2019, 6(2), 843–847. [Google Scholar]
  17. Catarino, P. On Leonardo numbers. Acta Math. Univ. Comenianae 2021, Vol. LXXXIX, 1, 75–86. [Google Scholar]
  18. Catarino, P.; Borges, A. On Leonardo numbers. Acta Mathematica Universitatis Comenianae 2020, 89(2), 135–141. [Google Scholar]
  19. Shannon, A. G. A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics 2019, 25(3), 97–101. [Google Scholar] [CrossRef]
  20. Bravo, J.; Gomez, C. A.; Herrera, J. L. On The Intersection of k-Fibonacci and Pell Numbers. Bulletin ofthe Korean Mathematical Society 2019, 56(2), 535–547. [Google Scholar]
  21. Vieira; Mangueria, M.; Alves, F.; Catarino, P. A forma matricial dos numeros de Leonardo. UniversidadeFederal de Santa Maria 2020, 42, 1–12. [Google Scholar] [CrossRef]
  22. Yaying, T.; Hazarika, B. On New Banach Sequence Spaces Involving Leonardo Numbers and theAssociated Mapping Ideal. Hindawi Journal of Function Spaces 2022. [Google Scholar] [CrossRef]
  23. Gökbaş, H. k-Leonardo numbers. Palestine Journal of Mathematics 2024, Vol 13(4), 1427–1435. [Google Scholar]
  24. Edson, M.; Yayenie, O. M. A New Generalization of Fibonacci Sequence & Extended Binet’s Formula. Integers 2009, 9(6), 639–654. [Google Scholar]
  25. Catarino, P. M. M.; Spreafico, E. V. P. A Note on Bi-Periodic Leonardo Sequence. Armenian Journal of Mathematics 2024, 16, 1–17. [Google Scholar] [CrossRef]
  26. A. Costa, E.; V. P. Spreafico, E.; M. M. C. Catarino, P. On The Bi-periodic Eduard and Eduard-Lucas Numbers. V International Conference on Mathematics and its Applications in Science and Engineering; 2024. [Google Scholar] [CrossRef]
Table 1. A few values of the the tri-periodic Fibonacci sequence.
Table 1. A few values of the the tri-periodic Fibonacci sequence.
n F n ( a , b , c )
0 0
1 1
2 c
3 a c + 1
4 b + c + a b c
5 a b c 2 + c 2 + a c + b c + 1
6 a c + 1 a + b + c + a b c = b a 2 c 2 + a 2 c + a c 2 + 2 b a c + a + c + b
Table 2. A few values of the the tri-periodic Leonardo sequence.
Table 2. A few values of the the tri-periodic Leonardo sequence.
n l n ( a , b , c )
0 1
1 1
2 2 c + 1
3 2 a c + 2 a + 1
4 2 a b c + 2 a b + 2 b + 2 c + 1
5 2 a b c 2 + 2 a b c + 2 a + 2 c + 2 a c + 2 b c + 2 c 2 + 1
6 2 a 2 b c 2 + 2 a 2 b c + 4 a b c + 2 a + 2 b + 2 c + 2 a 2 c + 2 a b + 2 a c + 2 a c 2 + 2 a 2 + 1
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated