Submitted:
02 July 2025
Posted:
04 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Research Question and Criteria (Pico Framework)
2.3. Database Selection and Search Strategy
| Data Base | Boolean Equation |
| ProQuest and Scopus | ("hydraulic modeling" OR "hydrologic modeling" OR "flood modeling") AND ("flood defense" OR "flood protection" OR "flood control") AND ("river basin" OR "watershed") AND ("extreme events" OR "hydrological extremes" OR "climate change") AND ("simulation" OR "HEC-HMS" OR "HEC-RAS" OR "MIKE" OR "LISFLOOD") |
2.4. Inclusion and Exclusion Criteria
2.5. Article Selection Process
2.6. Data Extraction and Synthesis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- V. Ariza Flores, F. O. de Sousa, and S. Oda, “Enhancing Risk Management in Road Infrastructure Facing Flash Floods through Epistemological Approaches,” Buildings, vol. 14, no. 7, p. 1931, Jun. 2024. [CrossRef]
- A. Foucher, S. Morera, M. Sanchez, J. Orrillo, and O. Evrard, “El Niño–Southern Oscillation (ENSO)-driven hypersedimentation in the Poechos Reservoir, northern Peru,” Hydrol Earth Syst Sci, vol. 27, no. 17, pp. 3191–3204, Sep. 2023. [CrossRef]
- M. Farias de Reyes, E. Chávarri-Velarde, V. Cotrina, P. Aguilar, and L. Vegas, “Space-Time Variability of Maximum Daily Rainfall in Piura River Basin in Peru Related to El Niño Occurrence,” Water (Basel), vol. 16, no. 23, p. 3452, Nov. 2024. [CrossRef]
- C. Rodríguez-Morata, H. F. Díaz, J. A. Ballesteros-Canovas, M. Rohrer, and M. Stoffel, “The anomalous 2017 coastal El Niño event in Peru,” Clim Dyn, vol. 52, no. 9–10, 2019. [CrossRef]
- NOAA. “February 2019 ENSO Update: El Niño conditions are here,” Maryland, Feb. 2019. Available online: https://www.climate.gov/news-features/blogs/enso/february-2019-enso-update-el-ni%C3%B1o-conditions-are-here (accessed on 9 January 2023).
- B. Datta and, G. Kourakos, “Preface: Optimization for groundwater characterization and management,” Hydrogeol J, vol. 23, no. 6, pp. 1043–1049, Sep. 2015. [CrossRef]
- Y. Jiang, M. Cao, D. Yuan, Y. Zhang, and Q. He, “Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China,” Hydrogeol J, vol. 26, no. 5, pp. 1487–1497, Aug. 2018. [CrossRef]
- V. A. Ariza Flores and R. Salvador, “Adaptive Risk Management in Road Construction: Oyon-Ambo Highway Insights, El Niño 2019 Case Study,” E3S Web of Conferences, vol. 497, p. 02020, Mar. 2024. [CrossRef]
- C. Cherubini, S. Sathish, and N. Pastore, “Dynamics of Coastal Aquifers: Conceptualization and Steady-State Calibration of Multilayer Aquifer System—Southern Coast of Emilia Romagna,” Water (Basel), vol. 15, no. 13, p. 2384, Jun. 2023. [CrossRef]
- R. Talchabhadel, H. McMillan, S. S. Palmate, R. Sanchez, Z. Sheng, and S. Kumar, “Current Status and Future Directions in Modeling a Transboundary Aquifer: A Case Study of Hueco Bolson,” Water (Basel), vol. 13, no. 22, p. 3178, Nov. 2021. [CrossRef]
- K. Harizi, M. R. Menani, N. Chabour, and S. Labar, “Initial assessment of the groundwater flow and budget using Geographic Information System, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria),” Acque Sotterranee - Italian Journal of Groundwater, vol. 10, no. 3, pp. 41–51, Sep. 2021. [CrossRef]
- J. M. Murillo and L. Vega, “Groundwater and Protected Natural Areas in Spain. The hydrogeological characterization of National Parks,” Boletín Geológico y Minero, vol. 130, no. 4, pp. 549–592, Dec. 2019. [CrossRef]
- P. Carrión-Mero, N. Montalván-Burbano, G. Herrera-Franco, L. Domínguez-Granda, Lady Bravo-Montero, and F. Morante-Carballo, “Research Trends in Groundwater and Stable Isotopes,” Water (Basel), vol. 14, no. 19, p. 3173, Oct. 2022. [CrossRef]
- R. Barthel and S. Banzhaf, “Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models,” Water Resources Management, vol. 30, no. 1, pp. 1–32, Jan. 2016. [CrossRef]
- F. Oliveira de Sousa, V. A. Ariza Flores, C. S. Cunha, S. Oda, and H. Xavier Ratton Neto, “Multi-Criteria Assessment of Flood Risk on Railroads Using a Machine Learning Approach: A Case Study of Railroads in Minas Gerais,” Infrastructures (Basel), vol. 10, no. 1, p. 12, Jan. 2025. [CrossRef]
- X. Duan, Z. Sun, S. Li, Z. Jiang, and H. Liao, “Hydrogeochemical Characteristics and Environment Quality Assessment of Karst Groundwater in Mengzi Basin of Yunnan Province, China,” Water (Basel), vol. 15, no. 11, p. 2126, Jun. 2023. [CrossRef]
- Z. Moussaoui et al., “Hydrogeochemical and Stable Isotope Data of the Groundwater of a Multi-Aquifer System in the Maknessy Basin (Mediterranean Area, Central Tunisia),” Hydrology, vol. 10, no. 2, p. 32, Jan. 2023. [CrossRef]
- S. Banerjee and P. K. Sikdar, “Hydrogeological characterization of the Quaternary aquifer of south Bengal Basin in India and the impact of urbanization on the groundwater resources of the system,” Hydrogeol J, vol. 29, no. 4, pp. 1463–1484, Jun. 2021. [CrossRef]
- W. Richardson, M. Wilson, J. Nishikawa, and R. Hayward, “The well-built clinical question: a key to evidence-based decisions,” ACP J Club, 1005. [CrossRef]
- C. Schardt, M. B. Adams, T. Owens, S. Keitz, and P. Fontelo, “Utilization of the PICO framework to improve searching PubMed for clinical questions,” BMC Med Inform Decis Mak, vol. 7, no. 1, p. 16, Dec. 2007. [CrossRef]
- D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” BMJ, vol. 339, no. jul21 1, pp. b2535–b2535, Jul. 2009. [CrossRef]
- M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, p. n71, Mar. 2021. [CrossRef]
- N. Jadidoleslam, R. Goska, R. Mantilla, and W. F. Krajewski, “Hydrovise: A non-proprietary open-source software for hydrologic model and data visualization and evaluation,” Environmental Modelling & Software, vol. 134, p. 104853, Dec. 2020. [CrossRef]
- K. Harizi, M. R. Menani, N. Chabour, and S. Labar, “Initial assessment of the groundwater flow and budget using Geographic Information System, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria),” Acque Sotterranee - Italian Journal of Groundwater, vol. 10, no. 3, pp. 41–51, Sep. 2021. [CrossRef]
- S.-S. Baek et al., “Developing a hydrological simulation tool to design bioretention in a watershed,” Environmental Modelling & Software, vol. 122, p. 104074, Dec. 2019. [CrossRef]
- Z. H. Dahri et al., “Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios,” Science of The Total Environment, vol. 768, p. 144467, May 2021. [CrossRef]
- D. B. Wijayarathne and P. Coulibaly, “Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada,” J Hydrol Reg Stud, vol. 27, p. 100646, Feb. 2020. [CrossRef]
- D. Halwatura and M. M. M. Najim, “Application of the HEC-HMS model for runoff simulation in a tropical catchment,” Environmental Modelling & Software, vol. 46, pp. 155–162, Aug. 2013. [CrossRef]
- W. Gumindoga, D. T. Rwasoka, I. Nhapi, and T. Dube, “Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: Application of the HEC-HMS model,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 100, pp. 371–382, Aug. 2017. [CrossRef]
- A. T. Haile, F. T. Tefera, and T. Rientjes, “Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data,” International Journal of Applied Earth Observation and Geoinformation, vol. 52, pp. 475–484, Oct. 2016. [CrossRef]
- L. M. Timbe Castro, P. J. Crespo Sánchez, and J. J. Cabrera-Balarezo, “Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin,” Dyna (Medellin), vol. 86, no. 210, pp. 338–344, Jul. 2019. [CrossRef]
- J. J. López, M. González, A. Scaini, M. Goñi, J. V. Valdenebro, and F. N. Gimena, “Caracterización del modelo HEC-HMS en la cuenca de río Arga en Pamplona y su aplicación a cinco avenidas significativas,” Obras y proyectos, no. 12, pp. 15–30, 2012. [CrossRef]
- P. Sari, D. Legono, and J. Sujono, “Performance of Retarding Basin in Flood Disaster Risk Mitigation in Welang River, East Java Province, Indonesia,” Journal of the Civil Engineering Forum, vol. 4, no. 2, p. 109, May 2018. [CrossRef]
- P. C. Duong, A. Nauditt, D. H. Nam, and N. T. Phong, “Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin,” Journal of Natural Resources and Development, vol. 6, pp. 81–91, 2016. [CrossRef]
- H. Tu, X. Wang, W. Zhang, H. Peng, Q. Ke, and X. Chen, “Flash Flood Early Warning Coupled with Hydrological Simulation and the Rising Rate of the Flood Stage in a Mountainous Small Watershed in Sichuan Province, China,” Water (Basel), vol. 12, no. 1, p. 255, Jan. 2020. [CrossRef]
- A. David and, B. Schmalz, “Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall,” J Flood Risk Manag, vol. 13, no. 4, Dec. 2020. [CrossRef]
- H. M. Baduna Koçyiğit, H. Akay, and A. M. Yanmaz, “Estimation of Hydrologic Parameters of Kocanaz Watershed by a Hydrologic Model,” International Journal Of Engineering & Applied Sciences, vol. 9, no. 4, pp. 42–50, Dec. 2017. [CrossRef]
- A. Alarcón-Neva, J. Chávez-Morales, Ó. L. Palacios-Vélez, and L. A. Ibáñez-Castillo, “Estimación de áreas vulnerables a inundaciones en zonas urbanas: Morelia, Michoacán, México,” Tecnología y ciencias del agua, vol. 11, no. 3, pp. 01–26, May 2020. [CrossRef]
- I. C. Wulan Dhari, “The Use of Rainfall Variability in Flood Countermeasure Planning,” Journal of the Civil Engineering Forum, vol. 3, no. 3, p. 157, Sep. 2017. [CrossRef]
- A. Ramos Moreno and J., A. Pacheco Fontalvo, “Análisis hidrológico e hidráulico de la cuenca del Río Frío, municipios de Ciénaga y zona bananera, departamento del Magdalena.,” Revista Logos, Ciencia & Tecnología, vol. 9, no. 1, Jul. 2017. [CrossRef]
- R. Paudel and K. Basnte, “Application of HEC-HMS model for runoff simulation: A case study of Marshyangdi River Basin in Nepal,” in Proceedings of Graduate Conference,2019-Winter, Nepal, 2019. [CrossRef]
- D. A. Zema, A. Labate, D. Martino, and S. M. Zimbone, “Comparing Different Infiltration Methods of the HEC-HMS Model: The Case Study of the Mésima Torrent (Southern Italy),” Land Degrad Dev, vol. 28, no. 1, pp. 294–308, Jan. 2017. [CrossRef]
- J. Wang, M. Jin, G. Lu, D. Zhang, F. Kang, and B. Jia, “Investigation of discharge-area groundwaters for recharge source characterization on different scales: the case of Jinan in northern China,” Hydrogeol J, vol. 24, no. 7, pp. 1723–1737, Nov. 2016. [CrossRef]
- G. Antzoulatos et al., “Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data,” Sustainability, vol. 14, no. 6, p. 3251, Mar. 2022. [CrossRef]




| Item | Inclusion Criteria |
|---|---|
| IC1 | The published and peer-reviewed studies must refer to hydraulic modeling. |
| IC2 | The published and peer-reviewed studies must discuss riverbank or flood defense systems. |
| IC3 | The published and peer-reviewed studies must present patterns of precipitation, river discharge, or the management of vulnerable areas. |
| IC4 | The published and peer-reviewed studies must report results from hydraulic modeling in river basins for the purpose of flood defense design. |
| IC5 | The published and peer-reviewed studies must fall within the five-year time frame from 2020 to 2025. |
| Item | Exclusion Criteria |
|---|---|
| EC1 | Published and peer-reviewed studies that are not open access. |
| EC2 | Published and peer-reviewed studies that are not related to hydraulic modeling in civil engineering. |
| EC3 | Published and peer-reviewed studies that do not correspond to scientific journal articles. |
| Database | Quantity | |
|---|---|---|
| Documents | Percentage | |
| ProQuest | 16 | 17% |
| Scopus | 76 | 83% |
| Total | 120 | 100% |
| Nº | Author(s) | Title | Year | Journal | Country/City | Tools | Source |
|---|---|---|---|---|---|---|---|
| 1 | Jadidoleslam, N., Goska, R., Mantilla, R., Witold, F. | Hydrovise: An open-source, non-proprietary software for hydraulic data and model visualization and evaluation | 2020 | ScienceDirect | USA | Hydrovise | [23] |
| 2 | Khaled et al. | Initial assessment of the groundwater flow and budget using GIS, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria) | 2021 | PagePress Publ. | Pavia | MODFLOW-2005 and FREEWAT | [24] |
| 3 | Baek, S. et al. | Developing a hydrological simulation tool to design bioretention in a watershed | 2019 | ScienceDirect | Philippines | Proprietary modeling software | [25] |
| 4 | Hussain, Z. et al. | Climate change and hydrological regime of the upper Indus basin under extreme climate scenarios | 2021 | ScienceDirect | Pakistan | MIROC5 and MPI-ESM-LR | [26] |
| 5 | Buddika, D., Coulibaly, P. | Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada | 2020 | ScienceDirect | Canada | SAC-SMA, GR4J, HEC-HMS | [27] |
| 6 | Halwatura, D., Najim, M. | Application of the HEC-HMS model for riverbank defense simulation in a tropical watershed | 2013 | ScienceDirect | Kelaniya | HEC-HMS | [28] |
| 7 | Gumindoga, W. et al. | Ungauged runoff simulation in Upper Manyame catchment, Zimbabwe: Application of the HEC-HMS model | 2017 | ScienceDirect | Zimbabwe | HEC-HMS | [29] |
| 8 | Tamiru, H., Teshome, T., Rientjes, T. | Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data | 2016 | ScienceDirect | Netherlands | HEC-HMS | [30] |
| 9 | Cabrera, J., Castro, L., Crespo, P. | Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin | 2019 | Dialnet | Colombia | HEC-HMS | [31] |
| 10 | Lopez, J. et al. | Caracterización del modelo HEC-HMS en la cuenca de río Arga en Pamplona y su aplicación a cinco avenidas significativas | 2022 | Scopus | Spain | HEC-HMS | [32] |
| 11 | Sari, P. | Performance of Retarding Basin in Flood Disaster Risk Mitigation in Welang River, East Java Province, Indonesia | 2018 | UGM Repository | Indonesia | HEC-HMS | [33] |
| 12 | Duong, P. et al. | Assessment of climate change impact on river flow regimes in the Red River Delta, Vietnam: Case study of Nhue-Day River basin | 2017 | JNRD | Vietnam | HEC-HMS | [34] |
| 13 | Tu, H. et al. | Flash Flood Early Warning Coupled with Hydrological Simulation and the Rising Rate of the Flood Stage in a Mountainous Small Watershed in Sichuan Province, China | 2020 | Scopus | China | HEC-HMS | [35] |
| 14 | Amrei, D., Schmalz, B. | Flood hazard analysis in small catchments: comparison of hydraulic and hydrodynamic approaches using river defenses | 2020 | Scopus | Germany | HEC-HMS, HEC-RAS | [36] |
| 15 | Baduna, M., Akay, H., Melih, A. | Estimación de áreas vulnerables a inundaciones en zonas urbanas: Morelia, Michoacán, México | 2017 | Scopus | India | HEC-HMS, HEC-RAS | [37] |
| 16 | Alarcón, A. et al. | Estimation of flood-vulnerable areas in urban zones: Morelia, Michoacán, Mexico | 2020 | Scopus | Mexico | HEC-HMS | [38] |
| 17 | Wulan, L. | The Use of Rainfall Variability in Flood Countermeasure Planning | 2017 | Scopus | China | HEC-HMS, HEC-RAS | [39] |
| 18 | Ramos, A., Pacheco, J. | Análisis hidrológico e hidráulico de la cuenca del Río Frío, municipios de Ciénaga y zona bananera, departamento del Magdalena. | 2017 | Redalyc | USA | HEC-HMS, HEC-RAS | [40] |
| 19 | Rodriguez, S. | Dynamic flood simulation under maximum runoff conditions for five return periods, Quebrada La Virgen, San José de Miranda, Santander | 2017 | Scopus | USA | GIS; HEC-HMS; I-RIC | |
| 20 | Paudel, R., Basnte, K. | Application of HEC-HMS model for runoff simulation: A case study of Marshyangdi River Basin in Nepal | 2019 | Scopus | India | HEC-HMS, SWAT | [41] |
| 21 | Demetrio, A., Labate, A., Martino, D., Zimbone, M. | Comparing Different Infiltration Methods of the HEC-HMS Model: The Case Study of the Mésima Torrent (Southern Italy) | 2016 | Scopus | USA | HEC-HMS, Green-Ampt | [42] |
| 22 | Thu, K. | Development of Flood Inundation Map for Upper Chindwin River Basin By Using HEC-HMS and HEC-RAS | 2020 | Scopus | China | HEC-HMS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).