Submitted:
28 June 2025
Posted:
30 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Summary of Relevant Definitions
3. Periodic Behavior
4. Trajectory Catalog
4.1. Catalog of Primitive Itineraries
4.2. Traversal of Intersecting Primitive Itineraries
5. Conclusions
Appendix A. Justification of Mod 6 for Node Definitions
Appendix 1-Node Definition
Appendix 2-node definition
Appendix B. Proofs of Addition Rules
Appendix B.1. Transform 2 (1) →1
Appendix B.1.1. 2 (1) →1 (3) :
Appendix B.1.2. 2 (1) →1 (7) :
Appendix B.2. Transform 1→2 (1)
Appendix B.2.1. 1 (3) →2 (1)
Appendix B.2.2. 1 (7) →2 (1)
Appendix B.3. Transform 1→x
Appendix B.3.1. 1 (3) →x
Appendix B.3.2. 1 (7) →x
Appendix B.4. Transform x→1
Appendix B.4.1. x→1 (3)
Appendix B.4.2. x→1 (7)
Appendix C. Node Transition Rules
Appendix C.1. 8p+3 Node Transitions
| x | |||
| 1 | |||
| 2 | |||
| 1 |
Appendix C.2. 8p+7 Nodes Cannot Transition to an 8k+5 Node
Appendix C.3. 8p+7 Nodes Must Always Transition to Two Consecutive 1-Nodes
Appendix C.4. 8p+1 Transitions
References
- Lagarias,J.C.. The 3x+1 Problem and its Generalizations. The American Mathematical Monthly 1985, 92, 3–23. [CrossRef]
- Lagarias,J.C.. The 3x+1 problem: An annotated bibliography (1963-1999), https://arxiv.org/abs/math/0309224.
- Lagarias,J.C.. The 3x+1 problem: An annotated bibliography (2000-2009), https://arxiv.org/abs/math/0608208.
- Barina, D. Convergence verification of the Collatz problem. The Journal of Supercomputing 2021, 77. [Google Scholar] [CrossRef]
- Sakk, E. . Symbolic dynamic formulation for the Collatz Conjecture:I. Local and quasi-global behavior. Arxiv: 2403.19699, 2024.
- Terras,R.. Stopping time problem on the psotivie integers. Acta Arith. 1976, 30, 241–252. [CrossRef]
| 8p+1: | 1 | 9 | 17 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 8p+3,8p+7 : | 3 | 7 | 11 | 15 | 19 | |||||
| 8p+5: | 5 | 13 | ||||||||
| x | x |
| Initial condition | Trajectory | Sequence |
|---|---|---|
| 3: | 01] | |
| 15: | ||
| 27: | ||
| 39: | ||
| 51: | ||
| 63: | ||
| 75: | ||
| 87: | ||
| 99: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
