Submitted:
28 June 2025
Posted:
30 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Comprehending the Colours of Hydrogen and Their Emissions
3. Hydrogen Demand: Current Policies and Promised Commitments
4. Economic and Technological Hurdles to Hydrogen Up-Take
5. Life Cycle and Environmental Impacts
6. Policy Implementation and the Role of Governance
7. Bridging Research Gaps and Future Directions
8. Conclusion
References
- Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., & Frusteri, F. (2007). Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis. [CrossRef]
- Azni, M. A., Md Khalid, R., Hasran, U. A., & Kamarudin, S. K. (2023). Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability, 15(5), 4033. [CrossRef]
- Baykara, S. Z. (2018). Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy. [CrossRef]
- Borgarello, E., Borgarello, E., Borgarello, E., Borgarello, E., Serpone, N., Grätzel, M., & Pelizzetti, E. (1985). Hydrogen production through microheterogeneous photocatalysis of hydrogen sulfide cleavage. The thiosulfate cycle. International Journal of Hydrogen Energy. [CrossRef]
- Chew, Y. E., Cheng, X. H., Loy, A. C. M., How, B. S., & Andiappan, V. (2023). Beyond the Colours of Hydrogen: Opportunities for Process Systems Engineering in Hydrogen Economy. Process Integration and Optimization for Sustainability, 7(4), 941–950. [CrossRef]
- Clark, W. W., & Rifkin, J. (2006). A green hydrogen economy. Energy Policy, 34(17), 2630–2639. [CrossRef]
- Das, K., Waiba, S., Jana, A., & Maji, B. (2022). Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chemical Society Reviews, 51(11), 4386–4464. [CrossRef]
- Deepanshu, Garg, K., Mittal, H., Yadav, V., & Kushwaha, O. S. (2025). Solar Panel Degradation Prediction using Machine Learning: A Comprehensive Approach. [CrossRef]
- Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116. [CrossRef]
- Feyer, V., Vesselli, E., Rizzi, M., Rogatis, L. De, Ding, X.-L., Baraldi, A., Comelli, G., Savio, L., Vattuone, L., Rocca, M., Fornasiero, P., Baldereschi, A., & Peressi, M. (2010). Hydrogen-Assisted Transformation of CO2 on Nickel: The Role of Formate and Carbon Monoxide. Journal of Physical Chemistry Letters. [CrossRef]
- Glenna, D. M., Jana, A., Xu, Q., Wang, Y., Meng, Y., Yang, Y., Neupane, M., Wang, L., Zhao, H., Qian, J., & Snyder, S. W. (2023). Carbon Capture: Theoretical Guidelines for Activated Carbon-Based CO2 Adsorption Material Evaluation. Journal of Physical Chemistry Letters, 10693–10699. [CrossRef]
- Gondal, I. A., Masood, S. A., & Khan, R. (2018). Green hydrogen production potential for developing a hydrogen economy in Pakistan. International Journal of Hydrogen Energy, 43(12), 6011–6039. [CrossRef]
- Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M., & Uratani, J. M. (2021). Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Research & Social Science, 80, 102208. [CrossRef]
- Gür, T. M. (2022). Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 89, 100965. [CrossRef]
- Jiang, X., Koizumi, N., Koizumi, N., Koizumi, N., Guo, X., & Song, C. (2015). Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Applied Catalysis B-Environmental. [CrossRef]
- Leachman, J., Jacobsen, R. T., Penoncello, S. G., & Lemmon, E. W. (2009). Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen. Journal of Physical and Chemical Reference Data. [CrossRef]
- Liu, W., Wan, Y., Xiong, Y., & Gao, P. (2022). Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen. International Journal of Hydrogen Energy. [CrossRef]
- McNeil, M. A., Schack, C. J., & Rinker, R. G. (1989). Methanol synthesis from hydrogen, carbon monoxide and carbon dioxide over a CuO/ZnO/Al2O3 catalyst: II. Development of a phenomenological rate expression. Applied Catalysis. [CrossRef]
- Mittal, H., Sehrawat, A., & Kushwaha, O. (2025). Energy, Environment and Biomedical Applications of Boron Nitride and Boron Nitride Carbon Nanotubes: A Sustainable Industrial Scale-Up Exegesis. [CrossRef]
- Mittal, H., Verma, S., Bansal, A., & Singh Kushwaha, O. (2024). Low-Carbon Hydrogen Economy Perspective and Net Zero-Energy Transition through Proton Exchange Membrane Electrolysis Cells (PEMECs), Anion Exchange Membranes (AEMs) and Wind for Green Hydrogen Generation. Qeios. [CrossRef]
- Murgod, S., Garg, K., Magadum, T., Yadav, V., Mittal, H., & Kushwaha, O. (2025). AI Powered Renewable Energy Balancing, Forecasting and Global Trend Analysis using ANN-LSTM Integration. [CrossRef]
- Panchenko, V. A., Daus, Yu. V., Kovalev, A. A., Yudaev, I. V., & Litti, Yu. V. (2023). Prospects for the production of green hydrogen: Review of countries with high potential. International Journal of Hydrogen Energy, 48(12), 4551–4571. [CrossRef]
- Rahimirad, Z., & Sadabadi, A. A. (2023). Green hydrogen technology development and usage policymaking in Iran using SWOT analysis and MCDM methods. International Journal of Hydrogen Energy, 48(40), 15179–15194. [CrossRef]
- Rahmad, E. U., Girsang, C., Khairunnisa, A., Suci, D. H., Prima, W., & Faradina, R. (2022). HYDROGEN DRY CELL GENERATOR FOR HYDROGEN PRODUCTION BY SPLITING WATER. ELECTROLYTE, 1(01), 41–49. [CrossRef]
- Ren, Y., Yang, Y., & Wei, M. (2023). Recent Advances on Heterogeneous Non-noble Metal Catalysts toward Selective Hydrogenation Reactions. In ACS Catalysis (Vol. 13, Issue 13, pp. 8902–8924). American Chemical Society. [CrossRef]
- Rout, D., Shyamsukha, N., Mittal, H., & Kushwaha, O. S. (2025). Solar energy generation and power prediction through computer vision and machine intelligence. In Computer Vision and Machine Intelligence for Renewable Energy Systems (pp. 103–123). Elsevier. [CrossRef]
- Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M. K., Sefidkon, F., Klemeš, J. J., & Baxter, L. L. (2017). Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends. Renewable & Sustainable Energy Reviews. [CrossRef]
- Salvi, B. L., & Subramanian, K. A. (2015). Sustainable development of road transportation sector using hydrogen energy system. Renewable & Sustainable Energy Reviews. [CrossRef]
- Sehrawat, A., Bhatnagar, R. M., Magadum, T., Mittal, H., & Kushwaha, O. (2025). Comparative Analysis of Bio-Based and Traditional Plastics: Life Cycle Assessment, Cost-Benefit Analysis, and Health Impact Evaluation. [CrossRef]
- Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished. Energy Policy. [CrossRef]
- Thomare, C., Magadum, T., & Mittal, H. (2025). Conversion of Cow Dung to Electricity: Process Analysis and Energy Yield Assessment. [CrossRef]
- Thomare, C., Nagappagol, A., Magadum, T., Mittal, H., & Kushwaha, O. (2025). Simulation and Parametric Analysis of Microbial Fuel Cells Using MATLAB-Based Mathematical Modelling. [CrossRef]
- Urakawa, A., Jutz, F., Laurenczy, G., & Baiker, A. (2007). Carbon Dioxide Hydrogenation Catalyzed by a Ruthenium Dihydride: A DFT and High-Pressure Spectroscopic Investigation. Chemistry: A European Journal. [CrossRef]
- Vezirolu, T., & Barbir, F. (1992). Hydrogen: the wonder fuel. International Journal of Hydrogen Energy. [CrossRef]
- Williams, N. J., Williams, N. J., Seipp, C. A., Brethomé, F. M., Ma, Y.-Z., Ma, Y.-Z., Ivanov, A. S., Ivanov, A. S., Bryantsev, V. S., Kidder, M. K., Martin, H., Holguin, E., Garrabrant, K. A., & Custelcean, R. (2019). CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers. Chem. [CrossRef]
- Xiao, J., Mao, D., Guo, X., Guo, X., Yu, J., & Yu, J. (2015). Methanol Synthesis from CO2 Hydrogenation over CuO–ZnO–TiO2 Catalysts: The Influence of TiO2 Content. Energy Technology. [CrossRef]
- Yadav, V., Deepanshu, Mittal, H., Shah, V., & Kushwaha, O. S. (2025). Fuel Cell Degradation Prediction Using Machine Learning Models: A Study on Proton Exchange Membrane (PEM) Fuel Cell Dataset. [CrossRef]
- Yadav, V., Mittal, H., Shah, V., & Kushwaha, O. S. (2025a). Environmental Conversation and Safety Analysis of Ammonia Storage Tanks: An Indian Perspective from Lab to Industrial Scale. [CrossRef]
- Yadav, V., Mittal, H., Shah, V., & Kushwaha, O. S. (2025b). Sustainability Analysis of Polymers, Fibres and Nanomaterials for Ballistic Applications. [CrossRef]
- Yadav, V., Sehrawat, A., Magadum, T., Mittal, H., Shah, V., & Kushwaha, O. (2025). Green Hydrogen Generation Through Novel Electrolysers Towards Low Carbon Economy: An Opiniated Perspective. [CrossRef]
- Yan, J., Wood, D. A., Zhang, Z., & Zhang, Z. (2019). Carbon Capture, Utilization and Storage (CCUS). Applied Energy. [CrossRef]
- Yang, C., Mu, R., Wang, G., Song, J., Tian, H., Zhao, Z.-J., & Gong, J. (2019). Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chemical Science. [CrossRef]
- Yanxing, Z., Maoqiong, G., Yuan, Z., Xueqiang, D., & Jun, S. (2019). Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. International Journal of Hydrogen Energy. [CrossRef]
- Zhang, Y., Tian, Q.-F., Liu, S.-S., & Sun, L.-X. (2008). The destabilization mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system. Journal of Power Sources, 185(2), 1514–1518. [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
