Submitted:
24 June 2025
Posted:
26 June 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials
2.1. Fungal Species
2.2. Substrates
2.3. Fungal Growth Conditions: Moisture Content and Temperature
2.4. Growth Profile and Biomass Fabrication

3. Properties
3.1. Mechanical Properties
3.1.1. Tensile Strength
3.1.2. Compression Strength
3.1.3. Flexural Strength
3.2. Physical Properties
3.2.1. Density
3.2.2. Water Absorption Rate
3.2.3. Acoustic Absorption Behaviour
3.2.4. Thermal Conductivity/Degradation
3.2.5. Shrinkage
4. Scanning Electron Microscopy Analysis
5. Fourier Transform Infrared (FTIR) Spectroscopy
6. Cost Comparison
7. Termite Resistance
8. Life Cycle Assessment

9. Future Directions and Outlook
10. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| MBC | Mycelium-based Composite |
| MDD | Material Driven Design |
| PDB | Potato Dextrose Broth |
| H2O2 | Hydrogen Peroxide |
| BC | Bacterial Cellulose |
| MBF | Mycelium-based Foam |
| NRPs | Natural Reinforcing Particles |
| PFA | Polyfurfuryl Alcohol |
| SiO2 | Silica |
| PMMA | Poly Methyl Methacrylate |
| PLA FTIR |
Polylactic Acid Fourier Transform Infrared |
| TGA | Thermogravimetric Analysis |
| SEM | Scanning Electron Microscopy |
| CPI | Consumer Price Index |
| LCA | Life Cycle Assessment |
| GWP | Global Warming Potential |
| GHG | Greenhouse Gas |
References
- Aiduang, W.; Jatuwong, K.; Jinanukul, P.; Suwannarach, N.; Kumla, J.; Thamjaree, W.; Teeraphantuvat, T.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S. Sustainable Innovation: Fabrication and characterization of mycelium-based green composites for modern interior materials using agro-industrial wastes and different species of fungi. Polymers 2024, 16, 550. [Google Scholar] [CrossRef] [PubMed]
- Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A. Application of agro-waste for sustainable construction materials: A review. Construction and Building materials 2013, 38, 872–878. [Google Scholar] [CrossRef]
- Pheng, S.; Premnath, R. Construction quality and the economy; Springer, 2019. [Google Scholar]
- Sahu, M.K.; Singh, L.; Choudhary, S.N. Critical review on bricks. International Journal of Engineering and Management Research (IJEMR) 2016, 6, 80–88. [Google Scholar]
- Sharma, R.; Sumbria, R. Mycelium bricks and composites for sustainable construction industry: A state-of-the-art review. Innovative Infrastructure Solutions 2022, 7, 298. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: policy challenges and potential solutions. International journal of environmental research and public health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed]
- Defonseka, C. Polymeric Composites with Rice Hulls: An Introduction; Walter de Gruyter GmbH & Co KG, 2019. [Google Scholar]
- Javadian, A.; Le Ferrand, H.; Hebel, D.E.; Saeidi, N. Application of mycelium-bound composite materials in construction industry: A short review. SOJ Materials Science & Engineering 2020, 7, 1–9. [Google Scholar]
- Lingam, D.; Narayan, S.; Mamun, K.; Charan, D. Engineered mycelium-based composite materials: Comprehensive study of various properties and applications. Construction and Building Materials 2023, 391, 131841. [Google Scholar] [CrossRef]
- Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M.P. Biodegradability of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing 2014, 59, 37–44. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium composites: a review of engineering characteristics and growth kinetics. Journal of Bionanoscience 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Nawawi, W.M.; Jones, M.; Murphy, R.J.; Lee, K.-Y.; Kontturi, E.; Bismarck, A. Nanomaterials derived from fungal sources—is it the new hype? Biomacromolecules 2019, 21, 30–55. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R. Morphology and mechanics of fungal mycelium. Scientific reports 2017, 7, 13070. [Google Scholar] [CrossRef] [PubMed]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Scientific reports 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed]
- Swift, R.S. Organic matter characterization. Methods of soil analysis: Part 3 chemical methods 1996, 5, 1011–1069. [Google Scholar]
- Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in mycelium-based composites: usage and recommendations. Materials 2022, 15, 6283. [Google Scholar] [CrossRef] [PubMed]
- Victoria, S. Market summary–recycled glass. Retrieved May 2017. [Google Scholar]
- Appels, F.V.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials & Design 2019, 161, 64–71. [Google Scholar]
- Zimele, Z.; Irbe, I.; Grinins, J.; Bikovens, O.; Verovkins, A.; Bajare, D. Novel mycelium-based biocomposites (Mbb) as building materials. Journal of Renewable Materials 2020, 8, 1067–1076. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Cordeiro, N.; Mozetic, M.; Mathew, A.P.; Oksman, K.; Faria, M.; Thomas, S.; Pothan, L.A. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 2015, 22, 1075–1090. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; De Laet, L. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 2019, 14, e0213954. [Google Scholar] [CrossRef]
- Abhijith, R.; Ashok, A.; Rejeesh, C. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Materials today: proceedings 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R.E.; Singha, S. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Composites Part C: Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, F.; Still, B.; White, M.; Amstislavski, P. Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering 2017, 29, 04017030. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Tarazi, E.; Pereman, I.; Grobman, Y.J. Implementing bio-design tools to develop mycelium-based products. The Design Journal 2019, 22, 1647–1657. [Google Scholar] [CrossRef]
- Shakir, M.A.; Azahari, B.; Yusup, Y.; Yhaya, M.F.; Salehabadi, A.; Ahmad, M.I. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2020, 65, 253–263. [Google Scholar]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design 2020, 187, 108397. [Google Scholar]
- Attias, N.; Danai, O.; Ezov, N.; Tarazi, E.; Grobman, Y.J. Developing novel applications of mycelium based bio-composite materials for design and architecture. Proceedings of building with biobased materials: best practice and performance specification 2017, 1. [Google Scholar]
- Gezer, E.D.; Gümüşkaya, E.; Uçar, E.; Ustaömer, D. Mechanical properties of mycelium based MDF. Sigma Journal of Engineering and Natural Sciences 2020, 11, 135–140. [Google Scholar]
- Elsacker, E.; Vandelook, S.; Van Wylick, A.; Ruytinx, J.; De Laet, L.; Peeters, E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of The Total Environment 2020, 725, 138431. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R. A new approach to manufacturing biocomposite sandwich structures: Mycelium-based cores. In International Manufacturing Science and Engineering Conference; American Society of Mechanical Engineers, 2016. [Google Scholar]
- Qi, Y.; Zhao, S.; Shen, Y.; Jiang, X.; Lv, H.; Han, C.; Liu, W.; Zhao, Q. A critical review of clay mineral-based photocatalysts for wastewater treatment. Catalysts 2024, 14, 575. [Google Scholar] [CrossRef]
- Gao, D.-c.; Sun, Y.; Fong, A.M.; Gu, X. Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review. Energy Storage Materials 2022, 46, 100–128. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Al Faruque, M.A.; Bilisik, K.; Naebe, M. Plant-based natural fibre reinforced composites: a review on fabrication, properties and applications. Coatings 2020, 10, 973. [Google Scholar] [CrossRef]
- Courard, L.; Vallas, T. Using nature in architecture: building a living house with mycelium and living trees. Frontiers of Architectural Research 2017, 6. [Google Scholar]
- Karana, E.; Blauwhoff, D.; Hultink, E.-J.; Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. International Journal of Design 2018, 12. [Google Scholar]
- Santhosh, B.; Bhavana, D.; Rakesh, M. Mycelium composites: An emerging green building material. International Research Journal of Engineering and Technology 2018, 5. [Google Scholar]
- Ghazvinian, A.; Farrokhsiar, P.; Vieira, F.; Pecchia, J.; Gursoy, B. Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength. Mater. Res. Innov 2019, 2, 505–514. [Google Scholar]
- Blauwhoff, D. Mycelium based materials: a study on material driven design and forecasting acceptance. 2016.
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.; Heredia-Guerrero, J.; Athanassiou, A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Tudryn, G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. Journal of Manufacturing Processes 2017, 28, 50–59. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Progress in polymer science 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Reviews in Microbiology 1968, 22, 87–108. [Google Scholar] [CrossRef]
- Wessels, J.; Mol, P.; Sietsma, J.; Vermeulen, C. Wall structure, wall growth, and fungal cell morphogenesis. In Biochemistry of cell walls and membranes in fungi; Springer, 1990; pp. 81–95. [Google Scholar]
- Appels, F.V.; Dijksterhuis, J.; Lukasiewicz, C.E.; Jansen, K.M.; Wösten, H.A.; Krijgsheld, P. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Scientific reports 2018, 8, 4703. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef]
- Prasher, I. Wood-rotting non-gilled Agaricomycetes of Himalayas; Springer, 2015. [Google Scholar]
- Golak-Siwulska, I.; Kałużewicz, A.; Spiżewski, T.; Siwulski, M.; Sobieralski, K. Bioactive compounds and medicinal properties of Oyster mushrooms (sp.). Folia Horticulturae 2018, 30, 191–201. [Google Scholar] [CrossRef]
- Josephine, R. A review on oyster mushroom (Pleurotus spp). International Journal of Current Research 2015, 7, 11225–11227. [Google Scholar]
- Sharma, M.; Verma, S.; Chauhan, G.; Arya, M.; Kumari, A. Mycelium-based biocomposites: synthesis and applications. Environmental Sustainability 2024, 1–14. [Google Scholar] [CrossRef]
- Zabel, R.; Morrell, J. The characteristics and classification of fungi and bacteria. Wood microbiology 2020, 55–98. [Google Scholar]
- Geoghegan, I.; Steinberg, G.; Gurr, S. The role of the fungal cell wall in the infection of plants. Trends in microbiology 2017, 25, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Pegler, D. Hyphal analysis of basidiomata. Mycological Research 1996, 100, 129–142. [Google Scholar] [CrossRef]
- Islam, M.R.; Omar, M.; PK MMU, M.M.; Phytochemicals, K. Ganoderma lucidum and Lentinula edodes accessible in Bangladesh. Am J Biol Life Sci 2015, 3, 31–35. [Google Scholar]
- Uddin Pk, M.; Talukder, R.I.; Sarkar, M.K.; Rahman, T.; Pervin, R.; Rahman, M.; Zenat, E.A.; Akther, L. Effect of Solvents on Phytochemicals Content and Antioxidant Activity of. The Open Microbiology Journal 2019, 13. [Google Scholar] [CrossRef]
- Petre, M. Mushroom biotechnology: developments and applications; Academic Press, 2015. [Google Scholar]
- Bayer, E.; McIntyre, G. Substrate composition and method for growing mycological materials; Google Patents, 2012. [Google Scholar]
- Bayer, E.; McIntyre, G.R. Method for growing mycological materials; Google Patents, 2016. [Google Scholar]
- Parisi, S.; Rognoli, V.; Garcia, C.A. Designing materials experiences through passing of time: Material driven design method applied to mycelium-based composites. In Celebration & Contemplation: Proceedings of the 10th International Conference on Design and Emotion 2016; The Design and Emotion Society, 2016. [Google Scholar]
- Ziegler, A.R.; Bajwa, S.G.; Holt, G.A.; McIntyre, G.; Bajwa, D.S. Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Applied engineering in agriculture 2016, 32, 931–938. [Google Scholar]
- Dahmen, J. Soft futures: mushrooms and regenerative design. Journal of architectural education 2017, 71, 57–64. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing fungi for eco-friendly composite materials: A comprehensive review. Journal of Fungi 2022, 8, 842. [Google Scholar] [CrossRef]
- Suwannarach, N.; Kumla, J.; Zhao, Y.; Kakumyan, P. Impact of cultivation substrate and microbial community on improving mushroom productivity: A review. Biology 2022, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Rana, R.; Thapliyal, D.; Verma, S.; Mehra, A.; Bhargava, C.K.; Tewari, K.; Verros, G.D.; Arya, R.K. Potential Exploitation of Agro-Industrial Waste. In From Waste to Wealth; Springer, 2024; pp. 1013–1046. [Google Scholar]
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Wang, Y.; Chen, S. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia environmental sciences 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, P.; Shu, H.; Wang, R.; Zhang, S. Agricultural waste. Water Environment Research 2016, 88, 1334–1369. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Dutta, A.; Ray, S. Municipal solid waste management in Kolkata, India–A review. Waste management 2009, 29, 1449–1458. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a waste: a global review of solid waste management. 2012.
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Antinori, M.E.; Contardi, M.; Suarato, G.; Armirotti, A.; Bertorelli, R.; Mancini, G.; Debellis, D.; Athanassiou, A. Advanced mycelium materials as potential self-growing biomedical scaffolds. Scientific Reports 2021, 11, 12630. [Google Scholar] [CrossRef]
- Paul, V.; Kanny, K.; Redhi, G.G. Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source. Composites Part A: Applied Science and Manufacturing 2015, 68, 90–100. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G. A new process for manufacturing biocomposite laminate and sandwich parts using mycelium as a binder. ASC 2014 proceedings 2014, 8–10. [Google Scholar]
- Jiang, L.; Walczyk, D.F.; McIntyre, G. Vacuum infusion of mycelium-bound biocomposite preforms with natural resins. In CAMX Conference Proceedings; 2014. [Google Scholar]
- He, J.; Cheng, C.M.; Su, D.G.; Zhong, M.F. Study on the mechanical properties of the latex-mycelium composite. Applied Mechanics and Materials 2014, 507, 415–420. [Google Scholar] [CrossRef]
- Travaglini, S.; Dharan, C.; Ross, P. Mycology matrix sandwich composites flexural characterization. In Proceedings of the American Society for Composites; 2014. [Google Scholar]
- TRAVAGLINI, S.; Dharan, C.; ROSS, P.G. Thermal properties of mycology materials. in American Society of Composites-30th Technical Conference; 2015. [Google Scholar]
- Lelivelt, R.; Lindner, G.; Teuffel, P.; Lamers, H. The production process and compressive strength of mycelium-based materials. In First International Conference on Bio-based Building Materials. 22-25 June 2015, Clermont-Ferrand, France; 2015. [Google Scholar]
- Travaglini, S.; Dharan, C.; Ross, P. Manufacturing of mycology composites. In Proceedings of the American Society for Composites: Thirty-First Technical Conference; 2016. [Google Scholar]
- Mayoral González, E.; Gonzalez Diez, I. Bacterial induced cementation processes and mycelium panel growth from agricultural waste. Key Engineering Materials 2016, 663, 42–49. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G. A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. Journal of Manufacturing Science and Engineering 2017, 139, 021014. [Google Scholar] [CrossRef]
- Pelletier, M.; Holt, G.; Wanjura, J.; Lara, A.; Tapia-Carillo, A.; McIntyre, G.; Bayer, E. An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Industrial crops and products 2017, 95, 342–347. [Google Scholar] [CrossRef]
- Tudryn, G.J.; Smith, L.C.; Freitag, J.; Bucinell, R.; Schadler, L.S. Processing and morphology impacts on mechanical properties of fungal based biopolymer composites. Journal of Polymers and the Environment 2018, 26, 1473–1483. [Google Scholar] [CrossRef]
- Campbell, S.; Correa, D.; Wood, D.; Menges, A. Modular Mycelia. Scaling Fungal Growth for Architectural Assembly. In Proceedings of the Computational Fabrication—eCAADe RIS; 2017. [Google Scholar]
- Jones, M.; Bhat, T.; Huynh, T.; Kandare, E.; Yuen, R.; Wang, C.H.; John, S. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire and Materials 2018, 42, 816–825. [Google Scholar] [CrossRef]
- Xing, Y.; Brewer, M.; El-Gharabawy, H.; Griffith, G.; Jones, P. Growing and testing mycelium bricks as building insulation materials. In IOP conference series: earth and environmental science; IOP Publishing, 2018. [Google Scholar]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Li, B. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. Journal of cleaner production 2019, 207, 123–135. [Google Scholar] [CrossRef]
- Islam, M.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R. Stochastic continuum model for mycelium-based bio-foam. Materials & Design 2018, 160, 549–556. [Google Scholar]
- Sun, W.; Tajvidi, M.; Hunt, C.G.; McIntyre, G.; Gardner, D.J. Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Scientific reports 2019, 9, 3766. [Google Scholar] [CrossRef]
- Matos, M.P.; Teixeira, J.L.; Nascimento, B.L.; Griza, S.; Holanda, F.S.R.; Marino, R.H. Production of biocomposites from the reuse of coconut powder colonized by Shiitake mushroom. Ciência e Agrotecnologia 2019, 43, e003819. [Google Scholar] [CrossRef]
- Wimmers, G.; Klick, J.; Tackaberry, L.; Zwiesigk, C.; Egger, K.; Massicotte, H. Fundamental studies for designing insulation panels from wood shavings and filamentous fungi. BioResources 2019, 14, 5506–5520. [Google Scholar] [CrossRef]
- Bruscato, C.; Malvessi, E.; Brandalise, R.N.; Camassola, M. High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. Journal of Cleaner Production 2019, 234, 225–232. [Google Scholar] [CrossRef]
- de Lima, G.G.; Schoenherr, Z.C.P.; Magalhães, W.L.E.; Tavares, L.B.B.; Helm, C.V. Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. Bioresources and Bioprocessing 2020, 7, 1–17. [Google Scholar] [CrossRef]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Applied Bio Materials 2020, 3, 1884–1892. [Google Scholar] [CrossRef] [PubMed]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an extrudable paste to build mycelium-bound composites. Materials & Design 2020, 195, 109058. [Google Scholar]
- Liu, R.; Li, X.; Long, L.; Sheng, Y.; Xu, J.; Wang, Y. Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion. Composite Interfaces 2020, 27, 953–966. [Google Scholar] [CrossRef]
- César, E.; Canche-Escamilla, G.; Montoya, L.; Ramos, A.; Duarte-Aranda, S.; Bandala, V.M. Characterization and physical properties of mycelium films obtained from wild fungi: natural materials for potential biotechnological applications. Journal of Polymers and the Environment 2021, 29, 4098–4105. [Google Scholar] [CrossRef]
- Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials 2021, 283, 122732. [Google Scholar] [CrossRef]
- Sisti, L.; Gioia, C.; Totaro, G.; Verstichel, S.; Cartabia, M.; Camere, S.; Celli, A. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products 2021, 170, 113742. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Byju, S.K.; Prajith, C.; Shaju, J.; Rejeesh, C. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Materials Today: Proceedings 2021, 47, 5038–5044. [Google Scholar] [CrossRef]
- Sato, D.; Tsumori, F. Glass Microchannel Formation by Mycelium. Journal of photopolymer science and technology 2021, 34, 381–384. [Google Scholar] [CrossRef]
- Nashiruddin, N.I.; Chua, K.S.; Mansor, A.F.; Rahman, R.A.; Lai, J.C.; Wan Azelee, N.I.; El Enshasy, H. Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy 2022, 24, 351–361. [Google Scholar] [CrossRef]
- Trabelsi, M.; Mamun, A.; Klöcker, M.; Brockhagen, B.; Kinzel, F.; Kapanadze, D.; Sabantina, L. Polyacrylonitrile (PAN) nanofiber mats for mushroom mycelium growth investigations and formation of mycelium-reinforced nanocomposites. Journal of Engineered Fibers and Fabrics 2021, 16, 15589250211037982. [Google Scholar] [CrossRef]
- Cartabia, M.; Girometta, C.E.; Milanese, C.; Baiguera, R.M.; Buratti, S.; Branciforti, D.S.; Vadivel, D.; Girella, A.; Babbini, S.; Savino, E. Collection and characterization of wood decay fungal strains for developing pure mycelium mats. Journal of Fungi 2021, 7, 1008. [Google Scholar] [CrossRef] [PubMed]
- Angelova, G.; Brazkova, M.; Stefanova, P.; Blazheva, D.; Vladev, V.; Petkova, N.; Slavov, A.; Denev, P.; Karashanova, D.; Zaharieva, R. Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. Journal of Fungi 2021, 7, 866. [Google Scholar] [CrossRef] [PubMed]
- Alemu, D.; Tafesse, M.; Gudetta Deressa, Y. Production of mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Advances in Materials Science and Engineering 2022, 2022, 2876643. [Google Scholar] [CrossRef]
- Hoenerloh, A.; Ozkan, D.; Scott, J. Multi-organism composites: Combined growth potential of mycelium and bacterial cellulose. Biomimetics 2022, 7, 55. [Google Scholar] [CrossRef]
- Liang, M.; Cai, X.; Gao, Y.; Yan, H.; Fu, J.; Tang, X.; Zhang, Q.; Li, P. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosensors and Bioelectronics 2022, 213, 114435. [Google Scholar] [CrossRef]
- Özdemir, E.; Saeidi, N.; Javadian, A.; Rossi, A.; Nolte, N.; Ren, S.; Dwan, A.; Acosta, I.; Hebel, D.E.; Wurm, J. Wood-veneer-reinforced mycelium composites for sustainable building components. Biomimetics 2022, 7, 39. [Google Scholar] [CrossRef]
- Walter, N.; Gürsoy, B. A study on the sound absorption properties of mycelium-based composites cultivated on waste paper-based substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef]
- Elsacker, E.; Peeters, E.; De Laet, L. Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustainable Futures 2022, 4, 100085. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Solueva, D.; Spyridonos, E.; Dahy, H. Mycomerge: fabrication of mycelium-based natural fiber reinforced composites on a rattan framework. Biomimetics 2022, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- César, E.; Montoya, L.; Bárcenas-Pazos, G.M.; Ordóñez-Candelaria, V.R.; Bandala, V.M. Performance of mycelium composites of Lentinus crinitus under two compression protocols. Madera y bosques 2021, 27. [Google Scholar] [CrossRef]
- Aiduang, W.; Kumla, J.; Srinuanpan, S.; Thamjaree, W.; Lumyong, S.; Suwannarach, N. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. Journal of Fungi 2022, 8, 1125. [Google Scholar] [CrossRef]
- Elsacker, E.; De Laet, L.; Peeters, E. Functional grading of mycelium materials with inorganic particles: The effect of nanoclay on the biological, chemical and mechanical properties. Biomimetics 2022, 7, 57. [Google Scholar] [CrossRef]
- Yari, T.; Vaghari, H.; Adibpour, M.; Jafarizadeh-Malmiri, H.; Berenjian, A. Potential application of Aspergillus terreus, as a biofactory, in extracellular fabrication of silver nanoparticles. Fuel 2022, 308, 122007. [Google Scholar] [CrossRef]
- Mancera-López, M.E.; Barrera-Cortés, J.; Mendoza-Serna, R.; Ariza-Castolo, A.; Santillan, R. Polymeric encapsulate of Streptomyces mycelium resistant to dehydration with air flow at room temperature. Polymers 2022, 15, 207. [Google Scholar] [CrossRef]
- Charpentier-Alfaro, C.; Benavides-Hernández, J.; Poggerini, M.; Crisci, A.; Mele, G.; Della Rocca, G.; Emiliani, G.; Frascella, A.; Torrigiani, T.; Palanti, S. Wood-decaying fungi: From timber degradation to sustainable insulating biomaterials production. Materials 2023, 16, 3547. [Google Scholar] [CrossRef]
- French, V.; Du, C.; Foster, E.J. Mycelium as a self-growing biobased material for the fabrication of single-layer masks. Journal of Bioresources and Bioproducts 2023, 8, 399–407. [Google Scholar] [CrossRef]
- Olivero, E.; Gawronska, E.; Manimuda, P.; Jivani, D.; Chaggan, F.Z.; Corey, Z.; de Almeida, T.S.; Kaplan-Bie, J.; McIntyre, G.; Wodo, O. Gradient porous structures of mycelium: a quantitative structure–mechanical property analysis. Scientific Reports 2023, 13, 19285. [Google Scholar] [CrossRef]
- Kohphaisansombat, C.; Jongpipitaporn, Y.; Laoratanakul, P.; Tantipaibulvut, S.; Euanorasetr, J.; Rungjindamai, N.; Chuaseeharonnachai, C.; Kwantong, P.; Somrithipol, S.; Boonyuen, N. Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. Mycology 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gough, P.; Perera, P.B.; Kertesz, M.A.; Withana, A. Design, Mould, Grow!: A Fabrication Pipeline for Growing 3D Designs Using Myco-Materials. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems; 2023. [Google Scholar]
- Bagheriehnajjar, G.; Yousefpour, H.; Rahimnejad, M. Environmental impacts of mycelium-based bio-composite construction materials. International Journal of Environmental Science and Technology 2024, 21, 5437–5458. [Google Scholar] [CrossRef]
- Teeraphantuvat, T.; Jatuwong, K.; Jinanukul, P.; Thamjaree, W.; Lumyong, S.; Aiduang, W. Improving the physical and mechanical properties of mycelium-based green composites using paper waste. Polymers 2024, 16, 262. [Google Scholar] [CrossRef]
- Sadaf, A.; Afolayan, J.S.; Perry, C.C. Developing gold nanoparticle mycelial composites: Effect of nanoparticle surface functionality on Aspergillus niger viability and cell wall biochemistry. Current Research in Biotechnology 2024, 7, 100185. [Google Scholar] [CrossRef]
- Wang, H.; Tao, J.; Wu, Z.; Weiland, K.; Wang, Z.; Masania, K.; Wang, B. Fabrication of Living Entangled Network Composites Enabled by Mycelium. Advanced Science 2024, 2309370. [Google Scholar] [CrossRef] [PubMed]
- Jinanukul, P.; Kumla, J.; Aiduang, W.; Thamjaree, W.; Oranratmanee, R.; Shummadtayar, U.; Tongtuam, Y.; Lumyong, S.; Suwannarach, N.; Waroonkun, T. Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from Lentinus sajor-caju with Various Ratios of Corn Husk and Sawdust. Journal of Fungi 2024, 10, 634. [Google Scholar] [CrossRef]
- Butu, A.; Rodino, S.; Miu, B.; Butu, M. Mycelium-based materials for the ecodesign of bioeconomy. Dig. J. Nanomater. Biostruct 2020, 15, 1129–1140. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences 2019, 26, 633–646. Saudi Journal of Biological Sciences 2019, 26, 633–646. [Google Scholar] [CrossRef]
- Kuribayashi, T.; Lankinen, P.; Hietala, S.; Mikkonen, K.S. Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Composites Part A: Applied Science and Manufacturing 2022, 152, 106688. [Google Scholar] [CrossRef]
- Agustina, W.; Aditiawati, P.; Kusumah, S.; Dungani, R. Physical and mechanical properties of composite boards from the mixture of palm sugar fiber and cassava bagasse using mycelium of Ganoderma lucidum as a biological adhesive. In IOP Conference Series: Earth and Environmental Science; IOP Publishing, 2019. [Google Scholar]
- Hoa, H.T.; Wang, C.-L. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Velasco, P.M.; Ortiz, M.P.M.; Giro, M.A.M.; Castelló, M.C.J.; Velasco, L.M. Development of better insulation bricks by adding mushroom compost wastes. Energy and Buildings 2014, 80, 17–22. [Google Scholar] [CrossRef]
- Deacon, J.W. Fungal biology; John Wiley & Sons, 2005. [Google Scholar]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. Journal of Cleaner Production 2020, 246, 119037. [Google Scholar] [CrossRef]
- Silverman, J.; Cao, H.; Cobb, K. Development of mushroom mycelium composites for footwear products. Clothing and Textiles Research Journal 2020, 38, 119–133. [Google Scholar] [CrossRef]
- Cerimi, K.; Akkaya, K.C.; Pohl, C.; Schmidt, B.; Neubauer, P. Fungi as source for new bio-based materials: a patent review. Fungal biology and biotechnology 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Gortner, F.; Schüffler, A.; Fischer-Schuch, J.; Mitschang, P. Use of bio-based and renewable materials for sheet molding compounds (SMC)–Mechanical properties and susceptibility to fungal decay. Composites Part C: Open Access 2022, 7, 100242. [Google Scholar] [CrossRef]
- Taylor, E.C. Seasonal distribution and abundance of fungi in two desert grassland communities. Journal of Arid Environments 1979, 2, 295–312. [Google Scholar] [CrossRef]
- Rowan, N.J.; Johnstone, C.M.; McLean, R.C.; Anderson, J.G.; Clarke, J.A. Prediction of toxigenic fungal growth in buildings by using a novel modelling system. Applied and environmental microbiology 1999, 65, 4814–4821. [Google Scholar] [CrossRef]
- Lelivelt, R. The mechanical possibilities of mycelium materials. Eindhoven university of technology (TU/e) 2015, 682. [Google Scholar]
- Holt, G.A.; Mcintyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.; Pelletier, M. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. Journal of Biobased Materials and Bioenergy 2012, 6, 431–439. [Google Scholar] [CrossRef]
- McIntyre, G.; Poetzsch, A.; Van Hook, S.; Flagg, D. Method for producing a composite material; Google Patents, 2012. [Google Scholar]
- Griffin, D.H. Fungal physiology; John Wiley & Sons, 1996. [Google Scholar]
- Jones, M.P.; Lawrie, A.C.; Huynh, T.T.; Morrison, P.D.; Mautner, A.; Bismarck, A.; John, S. Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochemistry 2019, 80, 95–102. [Google Scholar] [CrossRef]
- Gibson, I.; Ashby, M.F. The mechanics of three-dimensional cellular materials. Proceedings of the royal society of London. A. Mathematical and physical sciences 1982, 382, 43–59. [Google Scholar]
- Dai, C.; Yu, C.; Zhou, X. Heat and mass transfer in wood composite panels during hot pressing. Part II. Modeling void formation and mat permeability. Wood and Fiber Science 2005, 242–257. [Google Scholar]
- Qin, Z.; Jung, G.S.; Kang, M.J.; Buehler, M.J. The mechanics and design of a lightweight three-dimensional graphene assembly. Science advances 2017, 3, e1601536. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, B.; Chapman, K.; Christie, L.; Dickson, A. Ultrastructural characteristics of failure surfaces in medium density fibreboard; 1992. [Google Scholar]
- CARVALHO, L.M.; COSTA, C.A. Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (MDF). Chemical Engineering Communications 1998, 170, 1–21. [Google Scholar] [CrossRef]
- Travaglini, S.; Noble, J.; Ross, P.; Dharan, C. Mycology matrix composites. In Annual technical conference; 28th, American Society for Composites; 2013. [Google Scholar]
- Elsacker, E.; Vandelook, S.; Damsin, B.; Van Wylick, A.; Peeters, E.; De Laet, L. Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal biology and biotechnology 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Birinci, A.U.; Demir, A.; Ozturk, H. Comparison of thermal performances of plywood shear walls produced with different thermal insulation materials. Maderas. Ciencia y tecnología 2022, 24. [Google Scholar] [CrossRef]
- ASTM, C. 578-06. Standard specification for rigid cellular polystyrene thermal insulation; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- van Empelen, J.C. A Study into More Sustainable, Alternative Building Materials as A Substitute for Concrete in Tropical Climates; Delft University of Technology: Delft, Netherlands, 2018; pp. 1–26. [Google Scholar]
- Özlüsoylu, İ.; İstek, A. The effect of hybrid resin usage on thermal conductivity in ecological insulation panel production. In Proceedings of the 4th International Conference on Engineering Technology and Applied Sciences, Kiev, Ukraine; 2019. [Google Scholar]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. Journal of the royal society interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef]
- Yang, L.; Park, D.; Qin, Z. Material function of mycelium-based bio-composite: A review. Frontiers in Materials 2021, 8, 737377. [Google Scholar] [CrossRef]
- Chan, X.Y.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Gupta, M. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Scientific Reports 2021, 11, 22112. [Google Scholar] [CrossRef]
- Tacer-Caba, Z.; Varis, J.J.; Lankinen, P.; Mikkonen, K.S. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials & Design 2020, 192, 108728. [Google Scholar]
- Mardijanti, D.S.; Megantara, E.N.; Bahtiar, A.; Sunardi, S. Turning the cocopith waste into myceliated biocomposite to make an insulator. International journal of biomaterials 2021, 2021, 6630657. [Google Scholar] [CrossRef] [PubMed]
- López Nava, J.; Méndez González, J.; Ruelas Chacón, X.; Nájera Luna, J. Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Materials and Manufacturing Processes 2016, 31, 1085–1090. [Google Scholar] [CrossRef]
- Spyridonos, E.; Witt, M.-U.; Dippon, K.; Milwich, M.; Gresser, G.T.; Dahy, H. Natural fibre pultruded profiles: illustration of optimisation processes to develop high-performance biocomposites for architectural and structural applications. Composites Part C: Open Access 2024, 14, 100492. [Google Scholar] [CrossRef]
- Silverman, J. Development and testing of mycelium-based composite materials for shoe sole applications; University of Delaware, 2018. [Google Scholar]
- Alemu, D.; Tafesse, M.; Mondal, A.K. Mycelium-based composite: The future sustainable biomaterial. International journal of biomaterials 2022, 2022, 8401528. [Google Scholar] [CrossRef]
- Solomon, A.; Vinoth, J.; Sudhakar, R.; Hemalatha, G. Inspecting the behavior of insulated concrete form (icf) blocks with polypropylene sheet. Indian J. Sci. Res 2017, 14, 114–121. [Google Scholar]
- Wagner, M.; Biegler, V.; Wurm, S.; Baumann, G.; Nypelö, T.; Bismarck, A.; Feist, F. Pulp fibre foams: Morphology and mechanical performance. Composites Part A: Applied Science and Manufacturing 2025, 188, 108515. [Google Scholar] [CrossRef]
- Gao, H.; Liu, J.; Liu, H. Geotechnical properties of EPS composite soil. International Journal of Geotechnical Engineering 2011, 5, 69–77. [Google Scholar] [CrossRef]
- Răut, I.; Călin, M.; Vuluga, Z.; Oancea, F.; Paceagiu, J.; Radu, N.; Doni, M.; Alexandrescu, E.; Purcar, V.; Gurban, A.-M. Fungal based biopolymer composites for construction materials. Materials 2021, 14, 2906. [Google Scholar] [CrossRef]
- Yang, K. Investigations of mycelium as a low-carbon building material; 2020. [Google Scholar]
- Gou, L.; Li, S.; Yin, J.; Li, T.; Liu, X. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. Construction and Building Materials 2021, 304, 124656. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K.; Verma, M. Green synthesis approach: extraction of chitosan from fungus mycelia. Critical reviews in biotechnology 2013, 33, 379–403. [Google Scholar] [CrossRef] [PubMed]
- Arifin, Y.H.; Yusuf, Y. Mycelium fibers as new resource for environmental sustainability. Procedia Engineering 2013, 53, 504–508. [Google Scholar] [CrossRef]
- Santos, I.S.; Nascimento, B.L.; Marino, R.H.; Sussuchi, E.M.; Matos, M.P.; Griza, S. Influence of drying heat treatments on the mechanical behavior and physico-chemical properties of mycelial biocomposite. Composites Part B: Engineering 2021, 217, 108870. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Schritt, H.; Vidi, S.; Pleissner, D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. Journal of Cleaner Production 2021, 313, 127910. [Google Scholar] [CrossRef]
- Huang, Z.; Wei, Y.; Hadigheh, S.A. Variations in the properties of engineered mycelium-bound composites (mbcs) under different manufacturing conditions. Buildings 2024, 14, 155. [Google Scholar] [CrossRef]
- Jia, N.; Kagan, V.A. Mechanical performance of polyamides with influence of moisture and temperature–accurate evaluation and better understanding. Plastics Failure Analysis and Prevention 2001, 1, 95–104. [Google Scholar]
- Li, M.M.; Pan, H.C.; Huang, S.L.; Scholz, M. Controlled experimental study on removing diesel oil spillages using agricultural waste products. Chemical Engineering & Technology 2013, 36, 673–680. [Google Scholar]
- Wei, L.; Liang, S.; McDonald, A.G. Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Industrial Crops and Products 2015, 69, 91–103. [Google Scholar] [CrossRef]
- Zabihzadeh, S.M. Water uptake and flexural properties of natural filler/HDPE composites. BioResources 2010, 5, 316–323. [Google Scholar] [CrossRef]
- Mokhothu, T.H.; John, M.J. Bio-based coatings for reducing water sorption in natural fibre reinforced composites. Scientific reports 2017, 7, 13335. [Google Scholar] [CrossRef] [PubMed]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polymer Degradation and Stability 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Pelletier, M.; Holt, G.; Wanjura, J.; Greetham, L.; McIntyre, G.; Bayer, E.; Kaplan-Bie, J. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Industrial Crops and Products 2019, 139, 111533. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Howell, C.; Hunt, C.G. Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties. Composites Part A: Applied Science and Manufacturing 2022, 161, 107125. [Google Scholar] [CrossRef]
- Castagnede, B.; Aknine, A.; Brouard, B.; Tarnow, V. Effects of compression on the sound absorption of fibrous materials. Applied acoustics 2000, 61, 173–182. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and building materials 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Schnabel, T.; Huber, H.; Petutschnigg, A.; Jäger, A. Analysis of plant materials pre-treated by steam explosion technology for their usability as insulating materials; 2019. [Google Scholar]
- Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Investigation of Mycelium-Miscanthus composites as building insulation material. Results in Materials 2021, 10, 100189. [Google Scholar] [CrossRef]
- Pruteanu, M. Investigations regarding the thermal conductivity of straw. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura 2010, 56, 9. [Google Scholar]
- Bergman, T.L. Fundamentals of heat and mass transfer; John Wiley & Sons, 2011. [Google Scholar]
- Das, O.; Mensah, R.A.; Balasubramanian, K.B.N.; Shanmugam, V.; Försth, M.; Hedenqvist, M.S.; Rantuch, P.; Martinka, J.; Jiang, L.; Xu, Q. Functionalised biochar in biocomposites: the effect of fire retardants, bioplastics and processing methods. Composites Part C: Open Access 2023, 11, 100368. [Google Scholar] [CrossRef]
- Jones, M.; Bhat, T.; Kandare, E.; Thomas, A.; Joseph, P.; Dekiwadia, C.; Yuen, R.; John, S.; Ma, J.; Wang, C.-H. Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. Scientific reports 2018, 8, 17583. [Google Scholar] [CrossRef]
- Teixeira, J.L.; Matos, M.P.; Nascimento, B.L.; Griza, S.; Holanda, F.S.R.; Marino, R.H. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia 2018, 42, 676–684. [Google Scholar] [CrossRef]
- Rantuch, P.; Kvorková, V.; Wachter, I.; Martinka, J.; Štefko, T. Is biochar a suitable fire retardant for furfurylated wood? Composites Part C: Open Access 2024, 14, 100454. [Google Scholar] [CrossRef]
- Jin, X.; Cui, S.; Sun, S.; Gu, X.; Li, H.; Liu, X.; Tang, W.; Sun, J.; Bourbigot, S.; Zhang, S. The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites. Composites Part A: Applied Science and Manufacturing 2019, 124, 105485. [Google Scholar] [CrossRef]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and mechanical characterization of mycelium-based composites towards future bioremediation and food production in the material manufacturing cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef]
- Aiduang, W.; Suwannarach, N.; Kumla, J.; Thamjaree, W.; Lumyong, S. Valorization of agricultural waste to produce myco-composite materials from mushroom mycelia and their physical properties. Agriculture and Natural Resources 2022, 56, 1083–1090. [Google Scholar]
- Rigobello, A.; Ayres, P. Compressive behaviour of anisotropic mycelium-based composites. Scientific Reports 2022, 12, 6846. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Valino, A.D.; Souza, L.R.; Espera, A.H.; Chen, Q.; Advincula, R.C. Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Communications 2019, 9, 1267–1283. [Google Scholar] [CrossRef]
- Laboratory, F.P.; Wisconsin, U.o. Manufacture and General Characteristics of Flat Plywood; US Department of Agriculture, Forest Service, Forest Products Laboratory, 1961. [Google Scholar]
- Schroeder, H.A. Shrinking and swelling differences between hardwoods and softwoods. Wood and Fiber Science 1972, 20–25. [Google Scholar]
- Rashidi, L. Magnetic nanoparticles: synthesis and characterization. In Magnetic Nanoparticle-Based Hybrid Materials; Elsevier, 2021; pp. 3–32. [Google Scholar]
- Hu, M.; Cao, X. Experimental Assessment of Multiple Properties of Mycelium-Based Composites with Sewage Sludge and Bagasse. Materials 2025, 18, 1225. [Google Scholar] [CrossRef]
- Shen, D.; Gu, S.; Bridgwater, A.V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. Journal of analytical and applied pyrolysis 2010, 87, 199–206. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Chan, W.K. Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. Journal of Manufacturing Systems 2016, 41, 8–20. [Google Scholar] [CrossRef]
- Osman, E.Y. Economic assessment of mycelia-based composite in the built environment; 2023. [Google Scholar]
- Monteiro, S.; de Assis, F.; Ferreira, C.; Simonassi, N.; Weber, R.; Oliveira, M.; Colorado, H.; Pereira, A. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vandi, L.-J.; Chan, C.M.; Werker, A.; Richardson, D.; Laycock, B.; Pratt, S. Wood-PHA composites: Mapping opportunities. Polymers 2018, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.S. Assessing Modifications on Mycelium-Based Composites and the Effects on Fungal Degradation and Material Properties; Eindhoven University of Technology Eindhoven: The Netherlands, 2023. [Google Scholar]
- Indexbox. Cement Price per kg [cited 2024 23/07]; Available from: Cement Price per kg. Available online: https://www.indexbox.io/search/cement-price-per-kg/ (accessed on 25 March 2024).
- Logan, J.; Buckley, D. Subterranean termite control in buildings. The chemistry of wood preservation 1991, 294–305. [Google Scholar]
- Guillebeau, L.P.; Hinkle, N.; Roberts, P. Summary of losses from insect damage and cost of control in Georgia 2006; 2008. [Google Scholar]
- Bajwa, D.S.; Holt, G.A.; Bajwa, S.G.; Duke, S.E.; McIntyre, G. Enhancement of termite (Reticulitermes flavipes L.) resistance in mycelium reinforced biofiber-composites. Industrial crops and products 2017, 107, 420–426. [Google Scholar] [CrossRef]
- Vachon, J.; Assad-Alkhateb, D.; Baumberger, S.; Van Haveren, J.; Gosselink, R.J.; Monedero, M.; Bermudez, J.M. Use of lignin as additive in polyethylene for food protection: Insect repelling effect of an ethyl acetate phenolic extract. Composites Part C: Open Access 2020, 2, 100044. [Google Scholar] [CrossRef]
- Bultman, J.; Chen, S.-L.; Schloman Jr, W. Anti-termitic efficacy of the resin and rubber in fractionator overheads from a guayule extraction process. Industrial crops and Products 1998, 8, 133–143. [Google Scholar] [CrossRef]
- Zhu, B.C.; Henderson, G.; Chen, F.; Fei, H.; Laine, R.A. Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subterranean termite. Journal of chemical ecology 2001, 27, 1617–1625. [Google Scholar] [CrossRef]
- Abrams, M. Construction materials made from ‘shrooms. The American Society of Mechanical Engineers 2014. [Google Scholar]
- Volk, R.; Schröter, M.; Saeidi, N.; Steffl, S.; Javadian, A.; Hebel, D.E.; Schultmann, F. Life cycle assessment of mycelium-based composite materials. Resources, Conservation and Recycling 2024, 205, 107579. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on life cycle assessment: operational guide to the ISO standards; Springer Science & Business Media, 2002; Vol. 7. [Google Scholar]
- Stelzer, L.; Hoberg, F.; Bach, V.; Schmidt, B.; Pfeiffer, S.; Meyer, V.; Finkbeiner, M. Life cycle assessment of fungal-based composite bricks. Sustainability 2021, 13, 11573. [Google Scholar] [CrossRef]
- Ravichandran, B.; Balasubramanian, M. Joining methods for Fiber Reinforced Polymer (FRP) composites− a critical review. Composites Part A: Applied Science and Manufacturing 2024, 108394. [Google Scholar] [CrossRef]
- Alaux, N.; Vašatko, H.; Maierhofer, D.; Saade, M.R.M.; Stavric, M.; Passer, A. Environmental potential of fungal insulation: A prospective life cycle assessment of mycelium-based composites. The International Journal of Life Cycle Assessment 2024, 29, 255–272. [Google Scholar] [CrossRef]
- Potrč Obrecht, T.; Jordan, S.; Legat, A.; Passer, A. The role of electricity mix and production efficiency improvements on greenhouse gas (GHG) emissions of building components and future refurbishment measures. The International Journal of Life Cycle Assessment 2021, 26, 839–851. [Google Scholar] [CrossRef]
- Zhang, X. The influence of future electricity supplies in life cycle assessment (LCA) of buildings. IEA EBC Annex 2022, 72. [Google Scholar]
- McNeill, D.C.; Pal, A.K.; Nath, D.; Rodriguez-Uribe, A.; Mohanty, A.K.; Pilla, S.; Gregori, S.; Dick, P.; Misra, M. Upcycling of Ligno-Cellulosic Nutshells Waste Biomass in Biodegradable Plastic-based Biocomposites Uses-A Comprehensive Review. Composites Part C: Open Access 2024, 100478. [Google Scholar] [CrossRef]
- Gosden, E. Ikea plans mushroom-based packaging as eco-friendly replacement for polystyrene. The Telegraph 2016. [Google Scholar]
- Asdrubali, F.; D'Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Dicker, M.P.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Composites part A: applied science and manufacturing 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Jones, M.; Bhat, T.; Wang, C.H.; Moinuddin, K.; John, S. Thermal degradation and fire reaction properties of mycelium composites. In Proceedings of the 21st international conference on composite materials, Xi’an, China; 2017. [Google Scholar]
- Ecovative Design, L. Mycocomposite—mycelium-bound agricultural byproducts; 2019. [Google Scholar]
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-based composites in art, architecture, and interior design: a review. Polymers 2021, 14, 145. [Google Scholar] [CrossRef]
- Design, K. Beautiful products with fungus and biomass; 2021. [Google Scholar]
- Zamani, A. Superabsorbent polymers from the cell wall of zygomycetes fungi; Chalmers University of Technology, 2010. [Google Scholar]
- Vasquez, E.S.L.; Vega, K. Myco-accessories: sustainable wearables with biodegradable materials. In Proceedings of the 2019 ACM International Symposium on Wearable Computers; 2019. [Google Scholar]
- Edebo, L. Porous structure comprising fungi cell walls; Google Patents, 2002. [Google Scholar]
- Saini, R.; Kaur, G.; Brar, S.K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Janesch, J.; Jones, M.; Bacher, M.; Kontturi, E.; Bismarck, A.; Mautner, A. Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. Reactive and Functional Polymers 2020, 146, 104428. [Google Scholar] [CrossRef]
- Zhao, A.; Berglund, L.; Rosenstock Völtz, L.; Swamy, R.; Antonopoulou, I.; Xiong, S.; Mouzon, J.; Bismarck, A.; Oksman, K. Fungal Innovation: Harnessing Mushrooms for Production of Sustainable Functional Materials. Advanced Functional Materials 2025, 35, 2412753. [Google Scholar] [CrossRef]
- Oksman, K.; Aitomäki, Y.; Mathew, A.P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing 2016, 83, 2–18. [Google Scholar] [CrossRef]
- Zhan, M.; Wool, R.P. Design and evaluation of bio-based composites for printed circuit board application. Composites Part A: Applied Science and Manufacturing 2013, 47, 22–30. [Google Scholar] [CrossRef]
- Vasquez, E.S.L.; Vega, K. From plastic to biomaterials: prototyping DIY electronics with mycelium. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers; 2019. [Google Scholar]
- Heide, A.; Wiebe, P.; Sabantina, L.; Ehrmann, A. Suitability of Mycelium-Reinforced Nanofiber Mats for Filtration of Different Dyes. Polymers 2023, 15, 3951. [Google Scholar] [CrossRef]
- Soon, C.F.; Yee, S.K.; Nordin, A.N.; Rahim, R.A.; Ma, N.L.; Hamed, I.S.L.A.; Tee, K.S.; Azmi, N.H.; Sunar, N.M.; Heng, C. Advancements in Biodegradable Printed Circuit Boards: Review of Material Properties, Fabrication Methods, Applications and Challenges. International Journal of Precision Engineering and Manufacturing 2024, 1–30. [Google Scholar] [CrossRef]
- Rapagnani, N.; van Bezooijen, A.; Borruso, L.; Mimmo, T.; Bouaicha, O. Bio Design for Footwear Innovation: Growing Sneaker Components with Composite Mycelium-based Materials; 2024. [Google Scholar]
- Oliver-Ortega, H.; Geng, S.; Espinach, F.X.; Oksman, K.; Vilaseca, F. Bacterial cellulose network from kombucha fermentation impregnated with emulsion-polymerized poly (methyl methacrylate) to form nanocomposite. Polymers 2021, 13, 664. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Aitomäki, Y.; Berglund, L.A.; Oksman, K.; Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 2014, 105, 15–27. [Google Scholar] [CrossRef]
- Bakare, F.O.; Ramamoorthy, S.K.; Åkesson, D.; Skrifvars, M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Composites Part A: Applied Science and Manufacturing 2016, 83, 176–184. [Google Scholar] [CrossRef]
- Hietala, M.; Mathew, A.P.; Oksman, K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal 2013, 49, 950–956. [Google Scholar] [CrossRef]
- Früchtl, M.; Senz, A.; Sydow, S.; Frank, J.B.; Hohmann, A.; Albrecht, S.; Fischer, M.; Holland, M.; Wilhelm, F.; Christ, H.-A. Sustainable pultruded sandwich profiles with mycelium core. Polymers 2023, 15, 3205. [Google Scholar] [CrossRef]
- Jonoobi, M.; Harun, J.; Mathew, A.P.; Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites science and technology 2010, 70, 1742–1747. [Google Scholar] [CrossRef]
- Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews 2012, 26, 39–60. [Google Scholar] [CrossRef]
- Gorzelak, M.A.; Asay, A.K.; Pickles, B.J.; Simard, S.W. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB plants 2015, 7. [Google Scholar] [CrossRef]
- Fricker, M.D.; Heaton, L.L.; Jones, N.S.; Boddy, L. The mycelium as a network. The fungal kingdom 2017, 335–367. [Google Scholar]
- Al-Taweil, H.I.; Osman, M.B.; Abdulhamid, A.; Mohammad, N.; Wan Yussof, W.M. Microbial inoculants for enhancing rice growth and sheath spots disease suppression. Archives of Agronomy and Soil Science 2010, 56, 623–632. [Google Scholar] [CrossRef]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Vassilev, N.; Mendes, G.d.O. Soil Fungi in Sustainable Agriculture; MDPI, 2024; p. 163. [Google Scholar]
- Gianinazzi, S.; Gollotte, A.; Binet, M.-N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef]









| Fungal Species | Substrate Type | Application | Year | Reference |
|---|---|---|---|---|
| N/A | woven textile and natural glue (water, starch, maltodextrin), kenaf pith | shoe sole | 2014 | [72] |
| N/A | core: kenaf and hemp. Textile skins: Biotex jute, flax, Biomid cellulose fibre | structure, construction | 2014 | [73] |
| Oyster mushroom | cotton seed hulls, carboxylated styrene butadiene rubber (sbr) latex, Silane coupling agent | structure, construction | 2014 | [74] |
| G. lucidum | N/A | sandwich composites | 2014 | [75] |
| N/A | ground corn stover, reinforcement layers: jute textile, kenaf mat, glue: G242 industrial corn starch, maltodextrin glue |
shoe sole, integral tooling | 2014 | [72] |
| N/A | N/A | insulation panels | 2015 | [76] |
| C. versicolor, P. ostreatus | wood chips, hemp hurd, loose hemp fibre and nonwoven, mats of hemp fibre | insulating foam | 2015 | [77] |
| N/A | core: cotton (ginning waste), hemp shell: woven or nonwoven mat | packaging | 2016 | [60] |
| P. ostreatus | wood sawdust | Structure, construction | 2016 | [60] |
| N/A | Ecovative DIY and psyllium, chia and linum seeds | N/A | 2016 | [59] |
| G. lucidum | wood, additives | subtractive manufacture | 2016 | [78] |
|
L. edodes, P. ostreatus, G. lucidum |
wood shavings, straw, corn stalk and rice husks | structural furniture |
2016 | [79] |
| Pleurotus sp. | wheat residues (Triticum sp.) | food & packaging | 2016 | [79] |
| N/A | core: corn stover, hemp; Shell: (a) Biotex Jute, (b) Biotex flax, and (c) BioMid fibre | sandwich core | 2016 | [31] |
| N/A | core: kenaf, hemp shell: jute/flax (Biotex) | preform Shell | 2017 | [80] |
| Alaska white rot | Alaska birch (Betula neoalaskana), millet grain, wheat bran, natural fibre, calcium sulfate | backfill/ structure | 2017 | [24] |
| Basidiomycetes | agricultural byproducts: cotton (leaves, sticks, burs); switchgrass, rice straw, sorghum stalks, cotton burs, kenaf and corn stalks | acoustic insulation | 2017 | [81] |
| G. lucidum, P. ostreatus | cellulose, cellulose & potato-dextrose (PDB) | mycelium films | 2017 | [14] |
| N/A | sawdust or agricultural waste, nutrients (not specified) | furniture | 2017 | [61] |
| T. versicolor | rice hulls, wheat grain inoculum | insulating foams | 2017 | [11] |
| P. pulmonarius, P. ostreatus, P. salmoneo, A. agrocibe | agricultural byproducts: woodchips of eucalyptus, oak, pine and apple |
composite & biopolymer | 2017 | [28] |
| N/A | skin: natural fibre textile (jute, hemp and cellulose). core: pre-grown kenaf - hemp mixtures | laminated bio-composite | 2017 | [41] |
| Basidiomycetes | agricultural waste: Corn stover particles; Calcium and carbohydrate (not specified) | composite & biopolymer | 2017 | [82] |
| (Ecovative) | calcium and carbohydrate (not specified) | synthetic polymer alternatives | 2017 | [13] |
| P. ostreatus | seeds (not specified) mixed with hydrogel | architectural assembly units | 2017 | [83] |
| S. commune | broth culture, agar minimal medium | thermoplastic alternative | 2018 | [18] |
| T. versicolor | rice hulls, glass fines, wheat grains | insulation, furniture, building | 2018 | [84] |
| O. latermarginatus, M. minor, G. resinaceum | wheat straw | insulation materials | 2018 | [85] |
| P. ostreatus, T. multicolor | rapeseed straw, beech sawdust, non-woven cotton fibres | product design | 2018 | [45] |
| N/A | N/A | laminated bio-composite | 2018 | [86] |
| Trametes sp. S. Commune | bread particles, banana peel, coffee residue, Styrofoam pellets, flower, orange peel, carrot leaves, cardboard, sawdust, straw | product design | 2018 | [36] |
| (Ecovative) | calcium and carbohydrate (not specified) | N/A | 2018 | [87] |
| T. versicolor | hemp, flax, flax waste, softwood, straw, varied processing: loose, chopped, dust, pre-compressed and tow | building materials | 2019 | [21] |
| (Ecovative) | a mixture of spruce, pine, and fir (SPF) particleboard particles | packaging and furniture | 2019 | [88] |
| L. edodes isolates | coconut powder-based supplemented with wheat bran | packaging | 2019 | [89] |
|
F. pinicola, G. sepiarium, L. sulphureus, P. schweinitzii, P. betulinus, P. ostreatus, P. arcularius, T. pubescens, T. suaveolens, T. abietinum |
wood shavings of Betula papyrifera (Birch), Populus tremuloides (Aspen), Picea glauca (Spruce), Pinus contorta (Pine), Abies lasiocarpa (Fir). Addition of nutrient solution: peptone, malt extract, and yeast |
thermal insulation boards | 2019 | [90] |
| C.versicolor T. multicolor G. sesille | vine and apple tree-pruning woodchips mixed with mixed with 1% flour and 3% wheat straw | thermal insulation water container | 2019 | [25] |
| P. sanguineus P. albidus L. velutinus | wood sawdust, wheat bran and calcium carbonate | EPS alternative | 2019 | [91] |
| Lentinula edodes | peach-palm residues, ammonium sulphate, potassium nitrate, and cooked soy flour | evaluation of MBC physico-chemical, enzymatic activities, thermal and mechanical properties | 2020 | [92] |
| Pleurotus ostreatus | wheat bran, sugarcane, sawdust | bio-blocks, sustainable applications | 2020 | [93] |
| Ganoderma lucidum | bamboo fibre | development of an extrudable and buildable composite | 2020 | [94] |
| Ganoderma lucidum | cotton stalk | property improvement of MBC | 2020 | [95] |
| Aurantiporus, Ganoderma, Lentinus, Pleurotus ostreatus and Panus sp. | PDA, PDB | biotechnological applications | 2021 | [96] |
| Trametes versicolor, Ganoderma resinaceum | hemp hurds, beechwood sawdust | formwork application | 2021 | [97] |
| Wood decay basidiomycete | hemp shive, cotton | enhancement of MBC | 2021 | [98] |
| Pleurotus Ostreatus | saw dust-coir pith | packaging | 2021 | [99] |
| N/A | silica compounds | glass microchannels fabrication | 2021 | [100] |
| P. ostreatus | rice husk | Bio-foam | 2021 | [101] |
| Pleurotus ostreatus | polyacrylonitrile (PAN) nano-fibre mats | reinforced nanocomposites | 2021 | [102] |
| Abortiporus biennis, Bjerkandera adusta, Coriolopsis gallica, Coriolopsis gallica, Coriolopsis trogii , Daedaleopsis confragosa, Daedaleopsis tricolor, Fomes fomentarius, Fomitiporia mediterranea, Fomitopsis iberica, Fomitopsis pinicola, Ganoderma carnosum, Ganoderma lucidum, Irpex lacteus, Irpiciporus pachyodon, Lenzites betulinus, Neofavolus alveolaris, Stereum hirsutum, erana caerulea, Trametes hirsuta, Trametes suaveolens | millet grains | MBC development | 2021 | [103] |
| Ganoderma resinaceum | waste Rose flower and Lavender straw | MBC development | 2021 | [104] |
| Pleurotus ostreatus | sawdust, bagasse, and coffee husk | construction | 2022 | [105] |
| N/A | strawbale, wood shavings, coffee grounds | muti-organism composite | 2022 | [106] |
| Aspergillus flavus | N/A | visual lateral flow immunoassays/bioanalysis | 2022 | [107] |
| Ganoderma lucidum | hemp fibres, hemp hurds, pine wood sawdust and shavings, and silvergrass (Miscanthus) shavings | building materials | 2022 | [108] |
| Pleurotus ostreatus | waste cardboard, paper, and newsprint substrates | sound absorption properties study | 2022 | [109] |
| Ganoderma lucidum | beechwood sawdust | robotic manufacturing | 2022 | [110] |
| Pleurotus ostreatus | wood plugs, hemp fibres, wood chips | fibre reinforced composite fabrication | 2022 | [111] |
| Lentinus crinitus | barley straw | fabrication of insulation panels | 2022 | [112] |
| Ganoderma fornicatum, Ganoderma williamsianum, Lentinus sajor-caju, Schizophyllum commune | sawdust, corn husk, and rice straw | chemical, physical and mechanical properties investigation | 2022 | [113] |
| Trametes versicolor | hemp fibres | evaluation of nano-clay effect on MBC properties | 2022 | [114] |
| Aspergillus terreus | silver salt solution, PDA, PDB | silver nanoparticles fabrication | 2022 | [115] |
| Streptomyces | calcium alginate, YGM medium | polymeric encapsulation | 2023 | [116] |
| Trametes versicolor, Pleurotus ostreatus, P. eryngii, Ganoderma carnosum and Fomitopsis pinicola | millet, wheat and a 1:1 mix of millet and wheat grains | insulation panels | 2023 | [117] |
| Pleurotus ostreatus | malt extract agar & activated charcoal | single-layer masks | 2023 | [118] |
| N/A | N/A | generating Gradient porous structures (GPS) | 2023 | [119] |
| Pleurotus ostreatus | spent coffee grounds, natural pineapple fibres (NPFs) | MBC fabrication | 2023 | [120] |
| Ganoderma lucidum (Reishi), Oyster mushrooms | N/A | tool design | 2023 | [121] |
| N/A | N/A | environmental evaluation | 2024 | [122] |
| Ganoderma fornicatum, Ganoderma williamsianum, Lentinus sajor-caju, Trametes coccinea | bamboo sawdust & corn pericarp | modern interior material | 2024 | [1] |
| Lentinus sajor-caju | corn husk and sawdust | MBC development | 2024 | [123] |
| Aspergillus niger | coating agents: Au nanoparticles, borohydride, glucose, citrate, and an antibiotic | biosensing and environmental applications | 2024 | [124] |
| Ganoderma lucidum | sawdust | MBC fabrication | 2024 | [125] |
| Lentinus sajor-caju | various ratios of corn husk and sawdust | MBC development | 2024 | [126] |
| Material | Density (kg/m3) | Water absorption (%) | Dimensional stability (%) | Thermal resistance (K·m2/W) |
|---|---|---|---|---|
| Mycelium-based composites | 59–318 [11] | 300 [142] | 0.64–2.4 [142] | 0.82–1.5 [142] |
| BC-mycelium composite [152] | 1208-2857 | - | - | - |
| Plywood | 512–596 [153] | 5–49 [27] | - | 0.084–0.1 [153] |
| Standard EPS board [154] | 12–48 | 0.3–4 | <2 | 0.55–0.88 |
| Polystyrene foams | 22–30 [155] | 0.03–9 [27] | - | 0.32–0.35 [156] |
| Property | Substrate | Fungal Species | Value (MPa) |
|---|---|---|---|
| Compressive strength | Oat husk | Agaricus bisporus | 0.06 [160] |
| Ganoderma lucidum | 0.13 [160] | ||
| Pleurotus ostreatus | 0.03 [160] | ||
| Sawdust | Ganoderma lucidum | 4.44 [159] | |
| Ganoderma resinaceum | 1.32 [97] | ||
| Lentinus velutinus | 1.3 [91] | ||
| Pleutorus albidus | 0.4 [91] | ||
| Pleurotus ostreatus | 1.02 [38] | ||
| Wheat straw | Ganoderma lucidum | 0.07 [169] | |
| Pleurotus sp. | 0.04 [162] | ||
| MBC-Regardless of substrate (average) | 0.36 - 0.52 [165] 0.17 - 1.1 [27] |
||
| Tensile strength | Rapeseed straw | Pleurotus ostreatus | 0.1 [18] |
| Pleurotus ostreatus | 0.03 [18] | ||
| Pleurotus ostreatus | 0.24 [18] | ||
| Trametes versicolor | 0.04 [18] | ||
| Trametes versicolor | 0.15 [18] | ||
| Sawdust | Ganoderma lucidum | 1.55 [159] | |
| Trametes versicolor | 0.05 [18] | ||
| Wheat straw | Pleurotus sp. | 0.05 [162] | |
| MBC-Regardless of substrate (average) | 0.03 – 0.24 [8] Up to 0.343 [170] |
||
| Flexural strength | Rapeseed straw | Pleurotus ostreatus | 0.06 [18] |
| Pleurotus ostreatus | 0.21 [18] | ||
| Trametes versicolor | 0.86 [18] | ||
| Trametes versicolor | 0.22 [18] | ||
| Pleurotus ostreatus | 0.87 [18] | ||
| Sawdust | Ganoderma lucidum | 2.68 [159] | |
| Pleurotus ostreatus | 3.91 [26] | ||
| Trametes versicolor | 0.29 [18] | ||
| Cotton | Pleurotus ostreatus | 0.05 [18] | |
| Pleurotus ostreatus | 0.24 [18] | ||
| Pleurotus ostreatus | 0.62 [18] | ||
| BC-mycelium composite | Trametes versicolor | 1.91-2.9 [152] | |
| MBC-Regardless of substrate (average) | 0.87 – 15 [8] 0.05 – 0.29 [27] |
| Substrate | Fungal Species | Value (kg/m3) |
|---|---|---|
| Oat husk | Agaricus bisporus | 36.0 [160] |
| Ganoderma lucidum | 25.0 [160] | |
| Pleurotus ostreatus | 38.0 [160] | |
| Sawdust | Ganoderma lucidum | 130.0 [159] |
| Ganoderma lucidum | 954.0 [159] | |
| Ganoderma resinaceum | 143.0 [97] | |
| Trametes versicolor | 170.0 [18] | |
| Trametes versicolor | 200.1 [176] | |
| Pine sawdust | Lentinus velutinus | 350.0 [91] |
| Pleutorus albidus | 300.0 [91] | |
| Pycnoporus sanguineus | 320.0 [91] | |
| Rapeseed cake | Agaricus bisporus | 58.0 [160] |
| Ganoderma lucidum | 41.0 [160] | |
| Pleurotus ostreatus | 49.0 [160] | |
| Rapeseed straw | Pleurotus ostreatus | 130.0 [18] |
| Pleurotus ostreatus | 240.0 [18] | |
| Pleurotus ostreatus | 390.0 [18] | |
| Trametes versicolor | 100.0 [18] | |
| Trametes versicolor | 350.0 [18] | |
| MBC-Regardless of substrate (average) | 110-330 [151] |
| Variables | Base Values (USD) |
|---|---|
| Price of mycelium / ft3 | $0.83 |
| Plexiglass | $190.53 |
| Strip plexiglass | $25.81 |
| Plywood | $40.00 |
| Strip plywood | $1.25 |
| Interest rate | 7.75% |
| CPI (inflation rate) | 6.50% |
| Concrete house | $61,873.00 |
| Lumber house | $61,200.00 |
| Mycelium-Plywood house | $17,263.75 |
| Mycelium-Plexiglass house | $59,810.62 |
| Material | Lifespan (Year) | Eco-costs (Euro) | Eco-costs in 500 years (Euro) | Fossil energy demand (MJ) | Climate change (kg CO2) |
|---|---|---|---|---|---|
| Concrete | 80-150 | 792 | 2640 | 7.47 | 0.5425 |
| Mycelium | < 50 | 16 | 160 | 7.26 | 0.6417 |
| CoRncrete | 50 | 168 | 1680 | - | - |
| Hempcrete | > 500 | 78 | 78 | 7.71 | 0.6933 |
| Bio-Bricks | 200 | 245 | 612.5 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
