Submitted:
24 June 2025
Posted:
25 June 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Energy Harvesting
2.1. Antennas Using FR4 Substrate
2.2. Specialized Substrates
2.3. Advanced Fabrication Techniques
2.4. Common Substrates and Techniques
2.5. Diverse Applications and Techniques
3. Wireless Power Transmission
3.1. PCB and Planar Techniques
3.2. Textile-Integrated and Flexible Antennas
3.3. Advanced Manufacturing and Innovative Designs
3.4. Wireless Power Transfer for Specialized Applications
3.5. Broadband and Multi-Band Antenna Designs
4. Conclusion
Author Contributions
Funding
Availability of Data and Material
Ethics Approval and Consent to Participate
Consent for Publication
Acknowledgments
Conflicts of Interest
References
- Ullah, M.A., et al., A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications. IEEE Access, 2022. 10: p. 17231-17267.
- Carvalho, S.S.; Reis, J.R.V.; Caldeirinha, R.F.S. A State-of-the-Art Review on 4D Printed Antennas and Other Adaptable Designs. IEEE Access 2024, 12, 62861–62881. [CrossRef]
- Chietera, F.P. Additively Manufactured Antennas and Electromagnetic Devices. Hardware 2024, 2, 85–105. [CrossRef]
- Song, C.; Ding, Y.; Eid, A.; Hester, J.G.D.; He, X.; Bahr, R.; Georgiadis, A.; Goussetis, G.; Tentzeris, M.M. Advances in Wirelessly Powered Backscatter Communications: From Antenna/RF Circuitry Design to Printed Flexible Electronics. Proc. IEEE 2021, 110, 171–192. [CrossRef]
- Persis, G.E.; Paul, J.J.; Mary, T.B.; Joy, R.C. A compact tilted split ring multiband metamaterial absorber for energy harvesting applications. Mater. Today: Proc. 2022, 56, 368–372. [CrossRef]
- Prashad, L.; Mohanta, H.C.; Mohamed, H.G. A Compact Circular Rectenna for RF-Energy Harvesting at ISM Band. Micromachines 2023, 14, 825. [CrossRef]
- Muhammad, S.; Smida, A.; Waly, M.I.; Mallat, N.K.; Iqbal, A.; Khan, S.R.; Alibakhshikenari, M.; Kumar, A. Design of Wideband Circular-Slot Antenna for Harvesting RF Energy. Int. J. Antennas Propag. 2022, 2022, 1–9. [CrossRef]
- Fan, Y.; Liu, X.; Xu, C. A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting. Micromachines 2022, 13, 563. [CrossRef]
- Derbal, M.C.; Nedil, M. High-Gain Circularly Polarized Antenna Array for Full Incident Angle Coverage in RF Energy Harvesting. IEEE Access 2023, 11, 28199–28207. [CrossRef]
- Wang, W.-C.; Garu, P. Design of an ultra-wideband omnidirectional and polarization insensitive flower petal antenna for potential ambient electromagnetic energy harvesting applications. Sci. Rep. 2022, 12, 1–16. [CrossRef]
- Sang, J.; Qian, L.; Li, M.; Wang, J.; Zhu, Z. A Wideband and High-Gain Circularly Polarized Antenna Array for Radio-Frequency Energy Harvesting Applications. IEEE Trans. Antennas Propag. 2023, 71, 4874–4887. [CrossRef]
- Alaukally, M.N.N.; Elwi, T.A.; Atilla, D.C. Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting. Int. J. Commun. Syst. 2021, 35, e5024. [CrossRef]
- Elsharabasy, A.Y.; Bakr, M.H.; Deen, M.J. Optimized polarization-independent Chand-Bali nano-antenna for thermal IR energy harvesting. Sci. Rep. 2023, 13, 1–11. [CrossRef]
- Wang, T.; Huang, K.; Liu, W.; Hou, J.; Zhang, Z. A hybrid solar-RF energy harvesting system based on tree-shaped antenna array. Int. J. RF Microw. Comput. Eng. 2022, 32. [CrossRef]
- Sabban, A. Wearable Circular Polarized Antennas for Health Care, 5G, Energy Harvesting, and IoT Systems. Electronics 2022, 11, 427. [CrossRef]
- Veloo, S.G.; Tiang, J.J.; Muhammad, S.; Wong, S.K. A Hybrid Solar-RF Energy Harvesting System Based on an EM4325-Embedded RFID Tag. Electronics 2023, 12, 4045. [CrossRef]
- Benkalfate, C.; Ouslimani, A.; Kasbari, A.-E.; Feham, M. A New RF Energy Harvesting System Based on Two Architectures to Enhance the DC Output Voltage for WSN Feeding. Sensors 2022, 22, 3576. [CrossRef]
- Benkalfate, C.; Ouslimani, A.; Kasbari, A.-E.; Feham, M. A New Compact Triple-Band Triangular Patch Antenna for RF Energy Harvesting Applications in IoT Devices. Sensors 2022, 22, 8009. [CrossRef]
- Bakytbekov, A.; Nguyen, T.Q.; Zhang, G.; Strano, M.S.; Salama, K.N.; Shamim, A. Dual-Function Triple-Band Heatsink Antenna for Ambient RF and Thermal Energy Harvesting. IEEE Open J. Antennas Propag. 2022, 3, 263–273. [CrossRef]
- Liu, S.-B.; Zhang, F.-S.; Boyuan, M.; Gao, S.-P.; Guo, Y.-X. Multiband Dual-Polarized Hybrid Antenna With Complementary Beam for Simultaneous RF Energy Harvesting and WPT. IEEE Trans. Antennas Propag. 2022, 70, 8485–8495. [CrossRef]
- Surender, D.; Halimi, A.; Khan, T.; Talukdar, F.A.; Kishk, A.A.; Antar, Y.M.; Rengarajan, S.R. Semi-Annular-Ring slots loading for broadband circularly polarized DR-Rectenna for RF energy harvesting in smart city environment. AEU - Int. J. Electron. Commun. 2022, 147. [CrossRef]
- Kumar, M.; Kumar, S.; Sharma, A. Dual-Purpose Planar Radial-Array of Rectenna Sensors for Orientation Estimation and RF-Energy Harvesting at IoT Nodes. IEEE Microw. Wirel. Components Lett. 2022, 32, 245–248. [CrossRef]
- Morsy, M.A.; Saleh, K. Integrated Solar Mesh Dipole Antenna Based Energy Harvesting System. IEEE Access 2022, 10, 89083–89090. [CrossRef]
- Elshaekh, D.N.; Mohamed, H.A.; Shawkey, H.A.; Kayed, S.I. Printed circularly polarized spilt ring resonator monopole antenna for energy harvesting. Ain Shams Eng. J. 2023, 14. [CrossRef]
- Mayer, K.M.; Cottatellucci, L.; Schober, R. Optimal Transmit Antenna Deployment and Power Allocation for Wireless Power Supply in an Indoor Space. IEEE Open J. Commun. Soc. 2024, 5, 3624–3640. [CrossRef]
- Kim, D.H.; Oh, S.Y.; Park, H.S.; Hong, S.K. A Power Dividing Rectenna System for High-Power Wireless Power Transfer for 2.45-GHz Band. IEEE Access 2024, 12, 86631–86638. [CrossRef]
- Rosaline, I.; Shastry, P.; Venkatesan, R.; Tamilarasan, I. Design and optimization of a miniaturized dual band rectenna for wireless power transfer applications. Results Eng. 2024, 22. [CrossRef]
- Park, M.Y.; Kim, J.H.; Yi, S.-H.; Lim, W.; Yang, Y.; Hwang, K.C. Design of Series-Fed Circularly Polarized Beam-Tilted Antenna for Microwave Power Transmission in UAV Application. Appl. Sci. 2024, 14, 3490. [CrossRef]
- Fernández, M.; Vázquez, C.; Hoeye, S.V. 2.4 GHz Fully Woven Textile-Integrated Circularly Polarized Rectenna for Wireless Power Transfer Applications. IEEE Access 2024, 12, 89836–89844. [CrossRef]
- Xu, Y., et al., Wearable Directional Button Antenna for On-Body Wireless Power Transfer. Electronics, 2023. 12(8): p. 1758.
- Yang, B.; Xia, Y.; Zhi, X.; Liu, K.; Li, M.; Wang, X. Low-cost, wearable, multifunctional antennas based on laser-induced copper for wireless information and power transmission. Device 2024, 2. [CrossRef]
- Chang, X.L.; Chee, P.S.; Lim, E.H. Compact conformal tattoo-polymer antenna for on-body wireless power transfer. Sci. Rep. 2023, 13, 1–12. [CrossRef]
- Nando, Y.A.; Chung, W.-Y. Enhancing RF Energy Harvesting and Wireless Power Transfer with GAN-Optimized 3D Quasi-Yagi Antenna. 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE). LOCATION OF CONFERENCE, JapanDATE OF CONFERENCE; pp. 454–458.
- Ma, Y.; Liu, C.; Huang, Y.; Ke, H.; Liu, X. Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer. IEEE J. Electromagn. Rf Microwaves Med. Biol. 2024, 9, 15–26. [CrossRef]
- Jiang, B.; Li, P.; Zheng, S.; Lin, Y.; Xu, H. A 24-GHz Beam-Steerable Multinode Wireless Power Transfer System With a Maximum DC Output of 5.7 dBm at 1-m Distance. IEEE Trans. Microw. Theory Tech. 2024, 72, 6774–6789. [CrossRef]
- Chang, M.; Li, Y.; Han, J.; Liu, H.; Li, L. A Compact Polarization-Insensitive Rectenna With Harmonic Suppression for Wireless Power Transfer. IEEE Antennas Wirel. Propag. Lett. 2023, 23, 119–123. [CrossRef]
- Khan, D.; Ahmad, A.; Choi, D.-Y. Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry 2024, 16, 753. [CrossRef]
- Le-Huu, H.; Seo, C. Anti-Symmetric Wing Transmitter for Angular Misalignment Insensitive Wireless Power Transfer to Biomedical Implants. IEEE Access 2023, 11, 26375–26382. [CrossRef]
- Patwary, A.B. and I. Mahbub, 4× 4 UWB Phased Array Antenna with> 51∘ Far-Field Scanning Range for Wireless Power Transfer Application. IEEE Open Journal of Antennas and Propagation, 2024. 5(2): p. 354-367.
- Almalki, M.; Podilchak, S.K. Wideband Multiport Antenna Design by Subarray Aperture Sharing Offering Dual-Circularly Polarized Beamforming for Wireless Power Transfer. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3852–3856. [CrossRef]
- Wen, L.; Sanz-Izquierdo, B.; Hu, W.; Lin, C.; Wang, C. Lightweight, Low-Cost, Tightly Coupled Dipole Array Antenna for Wireless Power Transfer. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3797–3801. [CrossRef]
- Pirzada, B.S.; Shafique, K.; Jawed, S.A.; Muqim, I.; Amin, S.U.; Abubaker, F.; Khan, F.; Shahbaz, M.A.; Jabbar, M.J.; Abbas, M.F. A mid-range wireless power transfer system for portable electronic devices using beam forming. Analog. Integr. Circuits Signal Process. 2023, 115, 195–209. [CrossRef]
- Moloudian, G.; Buckley, J.L.; O’fLynn, B. A Novel Rectenna With Class-F Harmonic Structure for Wireless Power Transfer. IEEE Trans. Circuits Syst. II: Express Briefs 2023, 71, 617–621. [CrossRef]
- Kumar, S.; Kumar, M.; Sharma, A.; Zuazola, I.J.G. Energizing an IoT Sensor Using Regenerative Opposite Fringing Fields From an Embedded Communicating Patch Antenna. IEEE Access 2024, 12, 47951–47960. [CrossRef]
- Yu, Y.; Liang, C.; Wan, Q.-Q.; Jin, D.; Liu, X.; Zhang, Z.; Sun, Z.-Y.; Zhang, G.-J. Integrated FET sensing microsystem for specific detection of pancreatic cancer exosomal miRNA10b. Anal. Chim. Acta 2023, 1284, 341995. [CrossRef]








| Title | Summary | Design | Techniques | Software | Frequency | Bandwidth | Gain | Efficiency | Applications | Sbstrate | Ref |
| Meander Line Antenna for RFID Tags | Lightweight, compact, conformal antenna designed for RFID tags, improving performance with RF ICs. | Meander line, quarter-wavelength structure, 50 Ω excitation, lumped element ports | Impedance matching, T-shape slit, partial ground plane | CST 2019 | 919 MHz | 860-960 MHz | Peak: 3.54 dB | High | RFID tags, ambient RF signal capture | [16] | |
| Implantable Antenna for RF Energy Harvesting and Data Transmission | Dual-band antenna for RF energy harvesting and data transmission, compact design for implantable applications. | Multiple radiating branches, C-shaped slot, voltage-doubled rectifier | Rogers 3210 substrate, superstrate isolation | ANSYS HFSS v.18 | 902-928 MHz, 2.4-2.48 GHz | 0.67-1.05 GHz (44.2%), 2.11-2.96 GHz (33.5%) | Peak: -28.9 dBi, -29.5 dBi | Conversion efficiency: 52% at 5 dBm | Biomedical, RF energy harvesting, data transmission | [8] | |
| IoT Infrastructure Antenna with TEH Integration | Multi-source ambient energy harvester integrating RF and thermal energy harvesting, designed for IoT. | V type dipole, Cantor fractal structure, ABS substrate, aluminum fins | RF and thermal energy harvesting, heatsink integration | Ansys HFSS, Ansys Fluent | GSM900, GSM1800, 3G | Triple-band | Gains: 3.8 dB, 4 dB, 5.3 dB | Radiation efficiency: ~80% | IoT, ambient energy harvesting | [19] | |
| Circular Polarized Antennas for Biomedical, IoT, 5G | Novel circular polarized sensors and antennas for biomedical systems, energy harvesting, IoT, and 5G. | Circular stacked patch, branch line coupler, energy harvesting unit | Microstrip fed, circular split-ring resonators (CSRRs) | Not specified | 2.4-2.9 GHz | 10-20% | 7-8.4 dBi | 87% | Healthcare, IoT, 5G, energy harvesting | [15] | |
| UWB Hilbert-Shaped Metamaterial Antenna | Ultrawide band (UWB) antenna for RF energy harvesting using organic substrates. | Low profile rectangular MTM array, INP substrate, EBG defects | Hilbert-shaped MTM, INP substrate, silver nanoparticle printout | Not specified | 3-10 GHz | UWB | 1.1-3.9 dBi | Not specified | IoT, 5G, WiMAX, RF energy harvesting | [12] | |
| UHF Wire-Mesh Dipole Antenna | UHF wire-mesh dipole antenna optimized for integration with solar panels. | Two rectangular wire mesh elements, 35 cm length, 25 mm × 20 mm mesh size | Copper wire mesh, vertical mesh configuration | Not specified | 350-600 MHz | Not specified | Not specified | 83% total, 88% radiation | Solar panels, energy harvesting | [23] | |
| Hybrid Antenna for RF Energy Harvesting and WPT | Hybrid antenna for simultaneous RF energy harvesting and wireless power transfer. | Dual-polarized omnidirectional and high-gain directional elements | Multiband dual-polarized, directional patch array | Not specified | GSM-1800, UMTS-2100, ISM-2400/5800, 5G-3500, WLAN | Not specified | Not specified | Not specified | RF energy harvesting, wireless power transfer | [20] | |
| Circularly Polarized Broadband Rectenna | CP broadband rectenna for smart city sensing nodes to harvest RF energy. | Semi-cylindrical dielectric resonator, Bow-tie slot | Semi-cylindrical dielectric resonator, microstrip feed, semi-annular slots | Not specified | 5.45-8.34 GHz | 2.89 GHz (Impedance), 680 MHz (CP AR) | 4.8 dBic | 65.20% | Smart cities, RF energy harvesting | [21] | |
| Hybrid Solar and RF Energy Harvesting System | Proposes a hybrid energy harvesting system combining solar and RF energy using tree-shaped antennas. | Tree-shaped antennas, solar cell panel, rectifiers | 3D printed antennas, SMA adaptors, solar panel | N/A | 2.39-2.52 GHz | -10 dB | 6.0 dBi | RF-to-DC: 68.7%; Max harvested power: 52.6% (8 dBm RF); Solar power: 7.3 mW | Hybrid solar-RF energy harvesting | [14] | |
| RF Energy Harvesting System for WSN | New RF-EH system for WSN using switch circuits controlled by input powers. | Multiband meander line antenna, Teflon glass substrate | Schottky diodes, full-wave rectifier, voltage doubler | CST | 1.8 GHz, 2.1 GHz, 2.66 GHz | 13 GHz (1.8 GHz); 15 GHz (2.1 GHz) | 2.7 dB (1.8 GHz); 2.9 dB (2.1 GHz); 2.55 dB (2.66 GHz) | Max RF-to-DC: 71.5%; Max DC output: 5.6 V (open), 3.15 V (2 kΩ load) | Wireless Sensor Networks | [17] | |
| Polarization Insensitive UWB Antenna for EM Energy Harvesting | Develops an UWB antenna with flower petals for IR to UV-visible regime. | Tapered flower petals, SU8 dielectric, nickel and gold layers | Spline curves, 3x3 array | CST Microwave Studio | 25-800 THz | 209.8° (3 dB) | 6.01 dBi | Average absorption: 84.5% | Energy harvesting, THz imaging, broadband signal transmission | [10] | |
| Triple-Band Triangular Patch Antenna for RF Energy Harvesting | Proposes a compact triple-band triangular patch antenna for IoT devices. | Triangular patch resonators, Teflon glass substrate | CST optimization | CST | 2.45 GHz, 5.2 GHz, 8.15 GHz | N/A | 2.58 dBi (2.45 GHz); 4.55 dBi (5.2 GHz); 5.9 dBi (8.15 GHz) | Max RF-to-DC: 77%; Resonant frequencies: -39.5 dB (2.45 GHz), -38 dB (5.2 GHz), -29 dB (8.15 GHz) | IoT devices, RF energy harvesting | [18] | |
| Metamaterial-Based Absorber for RF Energy Harvesting | Compact tilted split ring multiband metamaterial-based absorber for LTE2350, WiFi2450, and LTE2600 bands. | Split ring resonator | Split rings on FR4 substrate, 45° tilt, thin metal ground plane | HFSS | 2.35 GHz, 2.45 GHz, 2.6 GHz | Not specified | Not specified | Not specified | RF energy harvesting | FR4, 1.57 mm thickness | [5] |
| Wideband Circular-Slot Antenna for RF Signal Harvesting | Wideband circular-slot antenna for GSM1800, UMTS2100, Wi-Fi2450, and LTE2600. | Circular-slot antenna | Circular-ring radiating element, circular and rectangular slots | ANSYS HFSS | 1.640-3.150 GHz | 1.59 GHz | 4.32 dBi | Not specified | RF energy harvesting, wireless communication | FR-4, 1.6 mm thickness | [7] |
| Dual-Purpose Radial-Array Rectenna for IoT | Radial-array rectenna for RF-energy harvesting and orientation sensing for IoT nodes. | Radial-array rectenna | Eight radially placed rectenna elements, scoop-shaped antenna, MMSE method | Not specified | 5.8 GHz | Not specified | 7 dBi | Not specified | RF energy harvesting, IoT | Not specified | [22] |
| High-Gain CP Hexagonal Antenna Array for RF Energy Harvesting | High-gain circularly polarized hexagonal antenna array for 5.8 GHz. | Hexagonal antenna array | CP antennas, X-shaped aperture-coupling, FSS, DC combiner | Not specified | 5.8 GHz | Not specified | 12.7 dBi | 67.75% | Wireless power transfer, WSNs | RT/Duroid 5880, foam layer | [9] |
| Wideband mmWave CP Complementary Antenna Array for RFEH | A wideband circularly polarized antenna array for RF energy harvesting at mmWave frequencies. | Planar 4×4 array, Full-corporate SIW network | CP magneto-electric dipole, complementary source technique, SIW network | - | 35-39 GHz | Impedance bandwidth: 20.2%, 3-dB AR bandwidth: 24.3%, 3-dB gain bandwidth: 22.8% | 8.7 ± 1.6 dBic | - | mmWave RF energy harvesting | - | [11] |
| Split Ring Resonator Shaped Monopole Antenna for RFEH | Circularly polarized monopole antenna on FR4 substrate with multiband rectifier circuit. | Size: 15 × 35 mm², Stop band: 2.5-3.5 GHz | Split ring resonator, T-shape slit, voltage doubler rectifier | HFSS, ADS | 2-10 GHz | -10 dB impedance matching: 2-10 GHz | - | 60% | RF energy harvesting for IoT and biomedical devices | FR4 | [24] |
| Chand-Bali Nano-Antenna for IR Energy Harvesting | Polarization-independent nano-antenna optimized for IR energy harvesting. | Dual-polarization, High impedance matching | Adjoint-based optimization, MIM diodes, metallic resonators | - | 10 μm (IR) | - | - | Improved by an order of magnitude | Infrared energy harvesting | Gold, TiO2 | [13] |
| Monopole Receiving Antenna for RF Energy Harvesting | Compact circular patch monopole antenna on FR4 substrate for RF energy harvesting. | Size: Length (LS), Width (WS), Thickness: 0.8 mm, Radius (r) | Microstrip line feed, reduced ground plane | - | 2.06-5.0 GHz | Impedance bandwidth: 2.94 GHz | 2.38 dBi at 2.45 GHz | >86% (95.4% at 2.45 GHz) | Ambient RF energy harvesting, low-power wireless sensors | FR4 | [6] |
| Title | Summary | Techniques | Frequency Bands | Gain | Return Loss | Impedance Matching | Substrate | Applications | Ref |
| Dual-Purpose Circular Patch Antenna for SWIPT | Proposes a circular patch antenna for simultaneous wireless information and power transmission (SWIPT). | Proximity-coupled feed for WIT, capacitive-coupled feeding network with FWR for WPT | WIT: 5.7-6.0 GHz<br>WPT: 5.2 GHz | Not specified | Not specified | Better matching at 2.43, 3.4, 4.56 GHz | Not specified | Energizing IoT sensors, wireless sensor networks (WSN) | [44] |
| High-Efficiency Rectenna for Implantable Medical Devices | Proposes a rectenna with a magneto-electric (ME) heterostructure for IMDs. | ME antenna combined with RF inductive coil | 54 kHz | Not specified | Not specified | PTE: 2.8159% at 15 mm distance | Not specified | Implantable medical devices (IMDs) | [34] |
| Continuous Aperture Antenna for WPT Systems | Design of a 2D continuous aperture antenna for ceiling deployment in WPT systems. | Omnidirectional radiating elements, strategic positioning to avoid mutual coupling | mmWave frequencies | Not specified | Not specified | Efficient power transmission, reduced blockage | Not specified | Office or residential room WPT environments | [25] |
| Power Dividing Rectenna System | Features a circular patch antenna with a 10-way radial power divider. | Via-coupled stacked-substrate, circular PCB laminates | Not specified | Not specified | Not specified | Accurate matching for high power levels | Rogers CuClad217 (εr = 2.2) | WPT, energy harvesting (EH) | [26] |
| 3D Antenna for RFEH and WPT | Presents a cube-shaped 3D antenna derived from a quasi-Yagi antenna (QYA). | Optimized 2D QYA model, CST Studio simulations, GANs for data augmentation | 915 MHz | 11.43 dBi | 45.61 dB | High gain and efficiency | Not specified | RF energy harvesting (RFEH), WPT for low-power devices | [33] |
| Textile-Integrated Circularly Polarized Rectenna for WPT | A 2.4 GHz circularly polarized rectenna for wireless power transfer, integrated into a textile. | Rectangular patch with truncated corners, T-match structure, single-diode rectifier, co-simulation strategy | 2.4 GHz | ~-1 dB | Not specified | High degree of integration, complex conjugate impedance matching | ELITEX 117/f17 2ply threads, polyester threads | Wireless power transfer in textiles | [29] |
| Miniaturized Transmitter Antenna for Implantable Medical Devices | A novel transmitter antenna operating at 1.71 GHz for deep-implant power transfer. | Proximity-coupled feeding, slotted ground, meandering slotted radiator, coaxial feedline | 1.71 GHz | -20 dB (Rx), 5.2 dB (Tx) | -32 dB (Rx) | Excellent impedance matching, minimal back-radiation | Roger 6010 substrate (Rx), Taonic TLY-5 (Tx) | Power transfer to implantable medical devices | [37] |
| Dual-Circularly Polarized Wideband Antenna | Low-cost, low-profile, dual-circularly polarized antenna with wideband capabilities. | Common sub-array aperture, five patch elements, sequential rotation | 2.23-2.80 GHz | Not specified | Not specified | Competitive performances, low axial ratios, cross-polarization levels | Not specified | Satellite systems, wireless communications, DCP wireless power transfer | [40] |
| UWB Phased Array Antenna for UAVs | A 4×4 phased array antenna for far-field WPT to power UAVs. | Impulse radio UWB signals, phased array, slotted patch design | 7.5-8.5 GHz | 20.9 dBi | Not specified | Optimal performance, minimal coupling coefficient, low SLL | FR4 substrate | Far-field WPT for UAVs | [39] |
| Tightly Coupled Dipole Array (TCDA) Antenna | Lightweight, low-cost TCDA antenna for wireless power transfer with improved H-plane scanning. | H-plane scanning booster (HSB), 1-to-4 differential feed network | 4.3:1 impedance bandwidth | 13.73 dBi | Low cross-polarization: -30.5 dB | Wide and consistent scanning range of ±50° | Not specified | Wireless power transfer | [41] |
| Compact Printed Rectenna Circuit | Dual-band rectenna circuit for wireless power transfer at 900 MHz and 1450 MHz. | Rectangular patch antenna, voltage doubler (VD) circuit, impedance matching circuit | 900 MHz, 1450 MHz | Max DC output voltage: 5.318 V (900 MHz), 5.52 V (1450 MHz) | Not specified | PCE: 53% (900 MHz), 54% (1450 MHz) | Rogers RO4003 | Wireless power transfer | [27] |
| Millimeter-Wave Wireless Power Transfer System | 24-GHz beam-steerable multinode WPT system with a new figure of merit (FoM). | 8x8 phased-array transmitter, 5x5 high-gain angle-deflection planar rectennas | 24 GHz | Not specified | Not specified | Beam-steering capability | Not specified | Wireless power transfer, biomedical applications | [35] |
| LIC-Antenna | Flexible, high-conductivity planar-spiral antenna using LDW technique. | Laser direct writing (LDW), programmable design | Not specified | 6.1 dBi | Not specified | High radiation efficiency: 88% | Not specified | Wearable electronics, IoT, smart devices | [31] |
| Series-Fed Antennas | Antennas with circular polarization (CP) on Taconic RF-35 substrate. | U-shaped bends, transmission lines, truncated corners | 5.77-5.88 GHz | 6.2 dBic | -10 dB | Axial ratio bandwidth: 5.81-5.85 GHz | Taconic RF-35 | Wireless power transmission, radar, communication systems | [28] |
| Tattoo-Polymer Antenna | Planar octagonal loop antenna for on-body WPT in the Wi-Fi range. | 3x3 ring-shaped FSS, PDMS substrate, silver epoxy, EGaIn liquid metal | 2.40 GHz | High radiation efficiency | Not specified | Reduced SAR values by 75.5% | PDMS | Wearable electronics | [45] |
| Tightly Coupled Dipole Array (TCDA) Antenna | Lightweight, low-cost TCDA antenna for wireless power transfer with improved H-plane scanning. | H-plane scanning booster (HSB), 1-to-4 differential feed network | 4.3:1 impedance bandwidth | 13.73 dBi | Low cross-polarization: -30.5 dB | Wide and consistent scanning range of ±50° | Not specified | Wireless power transfer | [41] |
| Compact Printed Rectenna Circuit | Dual-band rectenna circuit for wireless power transfer at 900 MHz and 1450 MHz. | Rectangular patch antenna, voltage doubler (VD) circuit, impedance matching circuit | 900 MHz, 1450 MHz | Max DC output voltage: 5.318 V (900 MHz), 5.52 V (1450 MHz) | Not specified | PCE: 53% (900 MHz), 54% (1450 MHz) | Rogers RO4003 | Wireless power transfer | [27] |
| Millimeter-Wave Wireless Power Transfer System | 24-GHz beam-steerable multinode WPT system with a new figure of merit (FoM). | 8x8 phased-array transmitter, 5x5 high-gain angle-deflection planar rectennas | 24 GHz | Not specified | Not specified | Beam-steering capability | Not specified | Wireless power transfer, biomedical applications | [35] |
| LIC-Antenna | Flexible, high-conductivity planar-spiral antenna using LDW technique. | Laser direct writing (LDW), programmable design | Not specified | 6.1 dBi | Not specified | High radiation efficiency: 88% | Not specified | Wearable electronics, IoT, smart devices | [31] |
| Series-Fed Antennas | Antennas with circular polarization (CP) on Taconic RF-35 substrate. | U-shaped bends, transmission lines, truncated corners | 5.77-5.88 GHz | 6.2 dBic | -10 dB | Axial ratio bandwidth: 5.81-5.85 GHz | Taconic RF-35 | Wireless power transmission, radar, communication systems | [28] |
| Tattoo-Polymer Antenna | Planar octagonal loop antenna for on-body WPT in the Wi-Fi range. | 3x3 ring-shaped FSS, PDMS substrate, silver epoxy, EGaIn liquid metal | 2.40 GHz | High radiation efficiency | Not specified | Reduced SAR values by 75.5% | PDMS | Wearable electronics | [32] |
| Wearable Directional Button Antenna for Wireless Power Transfer | Design of a wearable directional button antenna for power transfer on the human body. | AMC cells, monopole antenna, microstrip line feed, textile materials | 5.47-6.11 GHz | Not specified | Not specified | Achieves 180° phase difference | 100% cotton substrate, nickel-copper conductive textile, F4BTM substrate | On-body wireless power transfer | [30] |
| ASW-Tx Antenna Design for Biomedical Implants | Antenna design with anti-symmetric wing plane for biomedical implants. | Taconic TLY-5 substrates, anti-symmetric wing, magnetic dipole, impedance matching network | 1.95 GHz | Not specified | Peak S11: -26 dB | Optimal current directions matched to 50Ω source | Taconic TLY-5 substrates | Biomedical implants | [38] |
| Wide-Band Monopole Antenna for UHF-RFID | Monopole antenna with enhanced impedance bandwidth for UHF-RFID. | Cutting angles, modified feed line | 0.554-1.06 GHz | Peak gains: 2.82 dBi and 2.95 dBi | -38.4 dB at 868 MHz, -25.3 dB at 915 MHz | Enhanced impedance bandwidth, improved matching and coupling | Not specified | UHF-RFID applications | [43] |
| Polarization-Insensitive Rectenna for WPT | Metasurface-based rectenna design for polarization insensitivity in WPT. | Octagonal metal ring, meandered groove | 5.8 GHz | Maximum: 66% | Not specified | Improved rectifier efficiency by 1%-4% | Not specified | Wireless power transfer | [36] |
| Wireless Power Transfer System with Beam Steering | Design of a WPT system with beam steering for indoor settings. | 1D microstrip patch antenna array, ESP-32 module, charge-pump rectifier | 2.4 GHz | TX: 4.4 dBi, RX: 4 dBi | Not specified | Quarter-wave transformer for optimal matching | Microstrip patch antenna | Indoor wireless power transfer | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).