Submitted:
18 June 2025
Posted:
24 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Conventional Laboratory Tests for Kidney Function and Detection of Kidney Disease
2.1. Serum Creatinine Concentration and Glomerular Filtration Rate (eGFR)
2.2. Serum Cystatin C
2.3. Urine Protein Composition and Concentration
2.4. Other Tests
3. Emerging Biomarkers of Early Kidney Injury in the General Population and PwCF
4. Potential Genetic Modifiers of CFKD in PwCF
5. Future Directions of Research on Kidney Function in PwCF
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| CF | Cystic Fibrosis |
| CFTR | CF Transmembrane Conductance Regulator |
| HEMT | Highly effective modulator therapy |
| PwCF | People with CF |
| CKD | Chronic kidney disease |
| CFKD | CF-related kidney disease |
| ESKD | End-stage kidney disease |
| AKI | Acute kidney injury |
| GFR | Glomerular filtration rate |
| eGFR | Estimate GFR |
| IDMS | Isotope dilution mass spectrometry |
| HPLC | High-performance liquid chromatography |
| CKiD | Chronic Kidney Disease in Children |
| CKD-EPI | Chronic kidney disease epidemiology collaboration |
| MDRD | Modification of diet in renal disease |
| UACR | Urine albumin to creatinine ratio |
| LMW | Low molecular weight |
| β2MG | Beta-2 microglobulin |
| RBP | Retinol-binding protein |
| ELISA | Enzyme-linked immunosorbent assay |
| SDS-PAGE | Sodium dodecyl sulfate-polyacrylamide gel electrophoresis |
| LC-MS | Liquid chromatography-tandem mass spectrometry |
| UPEP | Urine protein electrophoresis |
| KDIGO | Kidney Disease Improving Global Outcomes |
| FeNa | Fractional excretion of sodium |
| FeUrea | Fractional excretion of urea |
| ATN | Acute tubular necrosis |
| RBC | Red blood cell |
| WBC | White blood cell |
| BUN | Blood urea nitrogen |
| SAP | Serum amyloid P component |
| IgA | Immunoglobulin A |
| UPCR | Urine protein to creatinine ratio |
| UCaCR | Urine calcium to creatinine ratio |
| KIM-1 | Kidney injury molecule-1 |
| IL-18 | Interleukin-18 |
| TIMP-2 | Tissue inhibitor of metalloproteinases-2 |
| IGFBP7 | Insulin-like growth factor-binding protein 7 |
| FDA | Food and Drug Administration |
| SBP1 | Selenium-binding protein 1 |
| NGAL | Neutrophil gelatinase-associated lipocalin |
| TNFα | Tumor necrosis factor α |
| NAG | N-acetyl-β-D-glucosaminidase |
| sFas | Soluble Fas |
| EVs | Extracellular vesicles |
| uEVs | Urinary extracellular vesicles |
| ATF3 | Activating transcription factor-3 |
| AQP2 | Aquaporin-2 |
| CD133 | Prominin-1 |
| WT-1 | Wilms tumor-1 |
| MUC1 | Mucin 1 |
| MGAM | Maltase-glucoamylase |
| TGFβ1 | Transforming growth factor β1 |
| HNF1β | Hepatocyte nuclear factor 1-beta |
| ADTKD | Autosomal dominant tubulointerstitial kidney disease |
| IgAN | Immunoglobulin A nephropathy |
| ACE | Angiotensin-converting enzyme |
| MBL2 | Mannose-binding lectin |
| AAT | α1-antitrypsin |
| ANCA | Antineutrophil cytoplasm antibodies |
| β2AR | Beta-2-adrenergic receptor |
| PC2 | Polycystin 2 |
| ADPKD | Autosomal dominant polycystic kidney disease |
| IL-10 | Interleukin-1 |
| NOS | Nitric oxide synthase |
| NO | Nitric oxide |
| GST | Glutathione S-transferase |
| CaCC | Calcium-activated chloride conductance |
| GSTM1 | Glutathione S-transferase M1 |
| SK | Shwachman-Kulczycki |
References
- Chen Q, Shen Y, Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Model Exp Med. 2021 Sep;4(3):220-32.
- Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020 Jan;8(1):65-124.
- Martin C, Burnet E, Ronayette-Preira A, de Carli P, Martin J, Delmas L, et al. Patient perspectives following initiation of elexacaftor-tezacaftor-ivacaftor in people with cystic fibrosis and advanced lung disease. Respir Med Res. 2021 Nov;80:100829.
- Schechter MS, Stecenko AA. Chronic kidney disease: a new morbidity of cystic fibrosis or an old morbidity of diabetes mellitus? Am J Respir Crit Care Med. United States: 2011. Vol. 10, p. 1101-2.
- Stevanovic M, Graber ML. Characteristics of US Individuals With Cystic Fibrosis and ESRD: SA-PO324. Journal of the American Society of Nephrology. 2022;33(11S):694.
- Nowakowski ACH. Cystic Fibrosis Kidney Disease: 10 Tips for Clinicians. Front Med (Lausanne). 2018;5:242.
- Hart M, Kumar M, Goswami HB, Harris WT, Skopelja-Gardner S, Swiatecka-Urban A. Cystic fibrosis-related kidney disease-emerging morbidity and disease modifier. Pediatr Nephrol. 2025 Mar 17.
- Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation. 2021 Mar 16;143(11):1157-72.
- Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res. 2016 Mar;14(1):15-39.
- Muirhead C, Lim JY, Lapidus J, MacDonald K. Evaluation of the Risk for Acute Kidney Injury in Adult Cystic Fibrosis Patients Receiving Concomitant Vancomycin and Tobramycin. Cureus. 2017 Dec 6;9(12):e1912.
- Mendes RS, Silva PL, Robba C, Battaglini D, Lopes-Pacheco M, Caruso-Neves C, et al. Advancements in understanding the mechanisms of lung-kidney crosstalk. Intensive Care Med Exp. 2024 Sep 16;12(1):81.
- Leung KC, Tonelli M, James MT. Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol. 2013 Feb;9(2):77-85.
- KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021 Mar;99(3s):S1-s87.
- KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024 Apr;105(4s):S117-s314.
- Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, et al. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9262-6.
- Morales MM, Carroll TP, Morita T, Schwiebert EM, Devuyst O, Wilson PD, et al. Both the wild type and a functional isoform of CFTR are expressed in kidney. Am J Physiol. 1996 Jun;270(6 Pt 2):F1038-48.
- Zhang JT, Wang Y, Chen JJ, Zhang XH, Dong JD, Tsang LL, et al. Defective CFTR leads to aberrant β-catenin activation and kidney fibrosis. Sci Rep. 2017 Jul 12;7(1):5233.
- Quon BS, Mayer-Hamblett N, Aitken ML, Smyth AR, Goss CH. Risk factors for chronic kidney disease in adults with cystic fibrosis. Am J Respir Crit Care Med. 2011 Nov 15;184(10):1147-52.
- Berg KH, Ryom L, Faurholt-Jepsen D, Pressler T, Katzenstein TL. Prevalence and characteristics of chronic kidney disease among Danish adults with cystic fibrosis. J Cyst Fibros. 2018 Jul;17(4):478-83.
- Biomarkers Definitions Working, G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89-95.
- Matthew DBaZQ. Better nephrology for mice—and man. Kidney International. 2010;77(6):487-89.
- Doi K, Yuen PS, Eisner C, Hu X, Leelahavanichkul A, Schnermann J, et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. 2009 Jun;20(6):1217-21.
- Toora BD, Rajagopal G. Measurement of creatinine by Jaffe's reaction--determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian J Exp Biol. 2002 Mar;40(3):352-4.
- Moss GA, Bondar RJ, Buzzelli DM. Kinetic enzymatic method for determining serum creatinine. Clin Chem. 1975 Sep;21(10):1422-6.
- Miller WG, Myers GL, Ashwood ER, Killeen AA, Wang E, Thienpont LM, et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med. 2005 Mar;129(3):297-304.
- Yuen PS, Dunn SR, Miyaji T, Yasuda H, Sharma K, Star RA. A simplified method for HPLC determination of creatinine in mouse serum. Am J Physiol Renal Physiol. 2004 Jun;286(6):F1116-9.
- Tian Q, Wu W, Liu J, Wu Z, Yao W, Ding J, et al. Dimensional heterostructures of 1D CdS/2D ZnIn(2)S(4) composited with 2D graphene: designed synthesis and superior photocatalytic performance. Dalton Trans. 2017 Feb 28;46(9):2770-77.
- Gounden V, Bhatt H, Jialal I. Renal Function Tests. [Updated 2024 Jul 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507821/.
- Mizdrak M, Kumrić M, Kurir TT, Božić J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J Pers Med. 2022 Mar 31;12(4).
- Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2022 Feb;79(2):268-88 e1.
- Gottlieb ER, Estiverne C, Tolan NV, Melanson SEF, Mendu ML. Estimated GFR With Cystatin C and Creatinine in Clinical Practice: A Retrospective Cohort Study. Kidney Med. 2023 Mar;5(3):100600.
- Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006 Aug 15;145(4):247-54.
- Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009 Mar;20(3):629-37.
- Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012 Jul 5;367(1):20-9.
- Pierce CB, Muñoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021 Apr;99(4):948-56.
- Inker LA, Tighiouart H, Adingwupu OM, Ng DK, Estrella MM, Maahs D, et al. Performance of GFR Estimating Equations in Young Adults. Am J Kidney Dis. 2024 Feb;83(2):272-76.
- Halacova M, Kotaska K, Kukacka J, Vavrova V, Kuzelova M, Ticha J, et al. Serum cystatin C level for better assessment of glomerular filtration rate in cystic fibrosis patients treated by amikacin. J Clin Pharm Ther. 2008 Aug;33(4):409-17.
- Beringer PM, Hidayat L, Heed A, Zheng L, Owens H, Benitez D, et al. GFR estimates using cystatin C are superior to serum creatinine in adult patients with cystic fibrosis. J Cyst Fibros. 2009 Jan;8(1):19-25.
- Wallace A, Price A, Fleischer E, Khoury M, Filler G. Estimation of GFR in Patients With Cystic Fibrosis: A Cross-Sectional Study. Can J Kidney Health Dis. 2020;7:2054358119899312.
- Sung KC, Ryu S, Lee JY, Lee SH, Cheong E, Hyun YY, et al. Urine Albumin/Creatinine Ratio Below 30 mg/g is a Predictor of Incident Hypertension and Cardiovascular Mortality. J Am Heart Assoc. 2016 Sep 13;5(9).
- Chaumont A, De Winter F, Dumont X, Haufroid V, Bernard A. The threshold level of urinary cadmium associated with increased urinary excretion of retinol-binding protein and beta 2-microglobulin: a re-assessment in a large cohort of nickel-cadmium battery workers. Occup Environ Med. 2011 Apr;68(4):257-64.
- Telser A, Farbman AI, Chacko C. A low-molecular-weight soluble protein from bovine lingual epithelium. II. Purification and characterization. J Invest Dermatol. 1982 Nov;79(5):286-92.
- Tate J, Caldwell G, Daly J, Gillis D, Jenkins M, Jovanovich S, et al. Recommendations for standardized reporting of protein electrophoresis in Australia and New Zealand. Ann Clin Biochem. 2012 May;49(Pt 3):242-56.
- Zhang J, Lou X, Shen H, Zellmer L, Sun Y, Liu S, et al. Isoforms of wild type proteins often appear as low molecular weight bands on SDS-PAGE. Biotechnol J. 2014 Aug;9(8):1044-54.
- Hamadah A, Gharaibeh K. Fractional Excretion of Sodium and Urea are Useful Tools in the Evaluation of AKI: PRO. Kidney360. 2023 Jun 1;4(6):e725-e27.
- Wołyniec W, Kasprowicz K, Rita-Tkachenko P, Renke M, Ratkowski W. Biochemical Markers of Renal Hypoperfusion, Hemoconcentration, and Proteinuria after Extreme Physical Exercise. Medicina (Kaunas). 2019 May 17;55(5).
- Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012 Jan 14;379(9811):165-80.
- Dabla PK. Renal function in diabetic nephropathy. World J Diabetes. 2010 May 15;1(2):48-56.
- Perazella MA, Markowitz GS. Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010 Aug;6(8):461-70.
- Real de Asúa D, Costa R, Galván JM, Filigheddu MT, Trujillo D, Cadiñanos J. Systemic AA amyloidosis: epidemiology, diagnosis, and management. Clin Epidemiol. 2014;6:369-77.
- Scurati-Manzoni E, Fossali EF, Agostoni C, Riva E, Simonetti GD, Zanolari-Calderari M, et al. Electrolyte abnormalities in cystic fibrosis: systematic review of the literature. Pediatr Nephrol. 2014 Jun;29(6):1015-23.
- Moresco RN, Speeckaert MM, Delanghe JR. Diagnosis and monitoring of IgA nephropathy: the role of biomarkers as an alternative to renal biopsy. Autoimmun Rev. 2015 Oct;14(10):847-53.
- Chapter 30 - Kidney Stones. In: Shlomo Melmed and Kenneth SPaPRLaHMK, editor. Williams Textbook of Endocrinology (Thirteenth Edition). Philadelphia: Elsevier; 2016. p. 1365-84.
- Downes KJ, Goldstein SL. Biomarkers for Kidney Injury in Cystic Fibrosis. Biomarkers in Kidney Disease. Dordrecht: Springer Netherlands; 2016. p. 689-718.
- Joyce E, Glasner P, Ranganathan S, Swiatecka-Urban A. Tubulointerstitial nephritis: diagnosis, treatment, and monitoring. Pediatr Nephrol. 2017 Apr;32(4):577-87.
- Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 2017 Mar 25;389(10075):1238-52.
- Fan H, Hui L, Yan X, Hou W, Bai E, Wang L, et al. Serum 25 hydroxyvitamin D levels and affecting factors among preconception fertile women. BMC Womens Health. 2020 Jul 16;20(1):146.
- Rasheda Amin and Sun-Young Ahn and Asha M. Chapter 7 - Kidney and urinary tract disorders. In: Dennis Dietzen and Michael Bennett and Edward Wong and Shannon H, editor. Biochemical and Molecular Basis of Pediatric Disease (Fifth Edition). Academic Press; 2021. p. 167-228.
- Allinovi M, Trivioli G, Gaudio C, L'Imperio V, Rauf MU, Gillmore JD. The evolving spectrum of kidney amyloidosis: advances in diagnosis, typing and treatment. Nephrol Dial Transplant. 2025 Feb 26.
- Meher D, Agarwal V, Das S, Choudhury A, Sahoo D, Sahu SK, et al. Idiopathic Hypercalciuria: A Comprehensive Review of Clinical Insights and Management Strategies. Cureus. 2025 Apr;17(4):e81778.
- Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015 Jan 7;10(1):147-55.
- Administration USFD. Letter of support for Drug-Induced Kidney Injurt (DIKI) Renal Tubular Injury Biomarkers. Letter. 2016.
- Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002 Jul;62(1):237-44.
- Bonventre, JV. Kidney Injury Molecule-1 (KIM-1): a specific and sensitive biomarker of kidney injury. Scand J Clin Lab Invest Suppl. 2008;241:78-83.
- Bonventre, JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009 Nov;24(11):3265-8.
- Lin X, Yuan J, Zhao Y, Zha Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. 2015 Feb;28(1):7-16.
- Shang W, Wang Z. The Update of NGAL in Acute Kidney Injury. Curr Protein Pept Sci. 2017;18(12):1211-17.
- Rosner GM, Goswami HB, Sessions K, Mendyka LK, Kerin B, Vlasac I, et al. Lung-kidney axis in cystic fibrosis: Early urinary markers of kidney injury correlate with neutrophil activation and worse lung function. J Cyst Fibros. 2025 Jan 2.
- Huang F, Zeng Y, Lv L, Chen Y, Yan Y, Luo L, et al. Predictive value of urinary cell cycle arrest biomarkers for all cause-acute kidney injury: a meta-analysis. Sci Rep. 2023 Apr 13;13(1):6037.
- Menon V, Shlipak MG, Wang X, Coresh J, Greene T, Stevens L, et al. Cystatin C as a risk factor for outcomes in chronic kidney disease. Ann Intern Med. 2007 Jul 3;147(1):19-27.
- Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009 Feb;4(2):337-44.
- Duru OK, Vargas RB, Kermah D, Nissenson AR, Norris KC. High prevalence of stage 3 chronic kidney disease in older adults despite normal serum creatinine. J Gen Intern Med. 2009 Jan;24(1):86-92.
- Porazko T, Kúzniar J, Kusztal M, Kúzniar TJ, Weyde W, Kuriata-Kordek M, et al. IL-18 is involved in vascular injury in end-stage renal disease patients. Nephrol Dial Transplant. 2009 Feb;24(2):589-96.
- Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009 Mar;20(3):672-9.
- Jose Luis Gorriz and Alberto M-C. Proteinuria: detection and role in native renal disease progression. Transplantation Reviews. 2012;26(1):3-13.
- Mula-Abed WA, Al Rasadi K, Al-Riyami D. Estimated Glomerular Filtration Rate (eGFR): A Serum Creatinine-Based Test for the Detection of Chronic Kidney Disease and its Impact on Clinical Practice. Oman Med J. 2012 Mar;27(2):108-13.
- Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol. 2013 May 15;304(10):F1231-42.
- Yong K, Ooi EM, Dogra G, Mannion M, Boudville N, Chan D, et al. Elevated interleukin-12 and interleukin-18 in chronic kidney disease are not associated with arterial stiffness. Cytokine. 2013 Oct;64(1):39-42.
- Lee BT, Ahmed FA, Hamm LL, Teran FJ, Chen CS, Liu Y, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol. 2015 May 30;16:77.
- Sedighi O, Abediankenari S, Omranifar B. Association between plasma Beta-2 microglobulin level and cardiac performance in patients with chronic kidney disease. Nephrourol Mon. 2015 Jan;7(1):e23563.
- Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, et al. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne). 2017;4:73.
- Seki M, Nakayama M, Sakoh T, Yoshitomi R, Fukui A, Katafuchi E, et al. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3-5 chronic kidney disease: a prospective observational study. BMC Nephrol. 2019 Apr 2;20(1):115.
- Song J, Yu J, Prayogo GW, Cao W, Wu Y, Jia Z, et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. Am J Transl Res. 2019;11(3):1219-29.
- Benoit SW, Ciccia EA, Devarajan P. Cystatin C as a biomarker of chronic kidney disease: latest developments. Expert Rev Mol Diagn. 2020 Oct;20(10):1019-26.
- Laville SM, Couturier A, Lambert O, Metzger M, Mansencal N, Jacquelinet C, et al. Urea levels and cardiovascular disease in patients with chronic kidney disease. Nephrol Dial Transplant. 2022 Feb 26;38(1):184-92.
- Azukaitis K, Ju W, Kirchner M, Nair V, Smith M, Fang Z, et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int. 2019 Jul;96(1):214-21.
- Menez S, Wen Y, Xu L, Moledina DG, Thiessen-Philbrook H, Hu D, et al. The ASSESS-AKI Study found urinary epidermal growth factor is associated with reduced risk of major adverse kidney events. Kidney Int. 2023 Dec;104(6):1194-205.
- Guy EL, Bosomworth M, Denton M, Conway SP, Brownlee KG, Lee TW. Serum tobramycin levels following delivery of tobramycin (Tobi) via eFlow advanced nebuliser in children with cystic fibrosis. J Cyst Fibros. 2010 Jul;9(4):292-5.
- van Velzen AJ, Uges JWF, Heijerman HGM, Arets BGM, Nuijsink M, van der Wiel-Kooij EC, et al. Pharmacokinetics and safety of tobramycin nebulization with the I-neb and PARI-LC Plus in children with cystic fibrosis: A randomized, crossover study. Br J Clin Pharmacol. 2019 Sep;85(9):1984-93.
- Hart A, Cesar F, Zelnick LR, O'Connor N, Bailey Z, Lo J, et al. Identification of prognostic biomarkers for antibiotic associated nephrotoxicity in cystic fibrosis. J Cyst Fibros. 2024 Mar;23(2):293-99.
- Grange C, Bussolati B. Extracellular vesicles in kidney disease. Nature Reviews Nephrology. 2022 2022/08/01;18(8):499-513.
- Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G. Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res Ther. 2015 Sep 3;6:153.
- Grange C, Bussolati B. Extracellular vesicles in kidney disease. Nat Rev Nephrol. 2022 Aug;18(8):499-513.
- Yavuz H, Weder MM, Erdbrügger U. Extracellular Vesicles in Acute Kidney Injury. Nephron. 2023;147(1):48-51.
- Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018 Jan;75(2):193-208.
- Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13368-73.
- Wu Q, Poulsen SB, Murali SK, Grimm PR, Su XT, Delpire E, et al. Large-Scale Proteomic Assessment of Urinary Extracellular Vesicles Highlights Their Reliability in Reflecting Protein Changes in the Kidney. J Am Soc Nephrol. 2021 Sep;32(9):2195-209.
- Erdbrugger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. Kidney360. 2023 Feb 1;4(2):245-57.
- Alvarez S, Suazo C, Boltansky A, Ursu M, Carvajal D, Innocenti G, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant Proc. 2013;45(10):3719-23.
- Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, Leelahavanichkul A. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol. 2017 Jan 7;18(1):10.
- Miller D, Eagle-Hemming B, Sheikh S, Joel-David L, Adebayo A, Lai FY, et al. Urinary extracellular vesicles and micro-RNA as markers of acute kidney injury after cardiac surgery. Sci Rep. 2022 Jun 21;12(1):10402.
- Svenningsen P, Maslauskiene R, Palarasah Y, Bumblyte IA, Tepel M. Urinary Extracellular Vesicles for Non-Invasive Quantification of Principal Cell Damage in Kidney Transplant Recipients. Biomolecules. 2024 Sep 5;14(9).
- Dimuccio V, Peruzzi L, Brizzi MF, Cocchi E, Fop F, Boido A, et al. Acute and chronic glomerular damage is associated with reduced CD133 expression in urinary extracellular vesicles. Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F486-f95.
- Ranghino A, Dimuccio V, Papadimitriou E, Bussolati B. Extracellular vesicles in the urine: markers and mediators of tissue damage and regeneration. Clin Kidney J. 2015 Feb;8(1):23-30.
- Santelli A, Sun IO, Eirin A, Abumoawad AM, Woollard JR, Lerman A, et al. Senescent Kidney Cells in Hypertensive Patients Release Urinary Extracellular Vesicles. J Am Heart Assoc. 2019 Jun 4;8(11):e012584.
- Hamasaki and Masataka Hisano and Tae Omori and Takayuki Okamoto and Hirotsugu Kitayama and Naoya Fujita and Hiromi Kuramochi and Takanori Ichiki and Akira Oka and Yutaka, Harita KTaKUaMSaENaTNaYKaSKaKMaMHaJHaY. Urinary extracellular vesicles signature for diagnosis of kidney disease. iScience. 2022;25(11):105416.
- Sepahzad A, Morris-Rosendahl DJ, Davies JC. Cystic Fibrosis Lung Disease Modifiers and Their Relevance in the New Era of Precision Medicine. Genes (Basel). 2021 Apr 13;12(4).
- Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, et al. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel). 2023 Aug 25;14(9).
- Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel). 2023 Aug 3;14(8).
- Zhou YH, Gallins PJ, Pace RG, Dang H, Aksit MA, Blue EE, et al. Genetic Modifiers of Cystic Fibrosis Lung Disease Severity: Whole-Genome Analysis of 7,840 Patients. Am J Respir Crit Care Med. 2023 May 15;207(10):1324-33.
- Esnault VL, Testa A, Audrain M, Roge C, Hamidou M, Barrier JH, et al. Alpha 1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. Kidney Int. 1993 Jun;43(6):1329-32.
- Doring G, Krogh-Johansen H, Weidinger S, Hoiby N. Allotypes of alpha 1-antitrypsin in patients with cystic fibrosis, homozygous and heterozygous for deltaF508. Pediatr Pulmonol. 1994 Jul;18(1):3-7.
- Hull J, Thomson AH. Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax. 1998 Dec;53(12):1018-21.
- Mahadeva R, Westerbeek RC, Perry DJ, Lovegrove JU, Whitehouse DB, Carroll NR, et al. Alpha1-antitrypsin deficiency alleles and the Taq-I G-->A allele in cystic fibrosis lung disease. Eur Respir J. 1998 Apr;11(4):873-9.
- Tanaka R, Iijima K, Murakami R, Koide M, Nakamura H, Yoshikawa N. ACE gene polymorphism in childhood IgA nephropathy: association with clinicopathologic findings. Am J Kidney Dis. 1998 May;31(5):774-9.
- Allen RD. Polymorphism of the human TNF-alpha promoter--random variation or functional diversity? Mol Immunol. 1999 Oct-Nov;36(15-16):1017-27.
- Garred P, Pressler T, Madsen HO, Frederiksen B, Svejgaard A, Hoiby N, et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest. 1999 Aug;104(4):431-7.
- Grasemann H, Knauer N, Buscher R, Hubner K, Drazen JM, Ratjen F. Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene. Am J Respir Crit Care Med. 2000 Dec;162(6):2172-6.
- Henry MT, Cave S, Rendall J, O'Connor CM, Morgan K, FitzGerald MX, et al. An alpha1-antitrypsin enhancer polymorphism is a genetic modifier of pulmonary outcome in cystic fibrosis. Eur J Hum Genet. 2001 Apr;9(4):273-8.
- Bennett WD. Effect of beta-adrenergic agonists on mucociliary clearance. J Allergy Clin Immunol. 2002 Dec;110(6 Suppl):S291-7.
- Grasemann H, Storm van's Gravesande K, Gartig S, Kirsch M, Buscher R, Drazen JM, et al. Nasal nitric oxide levels in cystic fibrosis patients are associated with a neuronal NO synthase (NOS1) gene polymorphism. Nitric Oxide. 2002 Mar;6(2):236-41.
- Meyer P, Braun A, Roscher AA. Analysis of the two common alpha-1-antitrypsin deficiency alleles PiMS and PiMZ as modifiers of Pseudomonas aeruginosa susceptibility in cystic fibrosis. Clin Genet. 2002 Oct;62(4):325-7.
- Frangolias DD, Ruan J, Wilcox PJ, Davidson AG, Wong LT, Berthiaume Y, et al. Alpha 1-antitrypsin deficiency alleles in cystic fibrosis lung disease. Am J Respir Cell Mol Biol. 2003 Sep;29(3 Pt 1):390-6.
- Grasemann H, Storm van's Gravesande K, Buscher R, Knauer N, Silverman ES, Palmer LJ, et al. Endothelial nitric oxide synthase variants in cystic fibrosis lung disease. Am J Respir Crit Care Med. 2003 Feb 1;167(3):390-4.
- Bantis C, Heering PJ, Aker S, Klein-Vehne N, Grabensee B, Ivens K. Association of interleukin-10 gene G-1082A polymorphism with the progression of primary glomerulonephritis. Kidney Int. 2004 Jul;66(1):288-94.
- Flamant C, Henrion-Caude A, Boelle PY, Bremont F, Brouard J, Delaisi B, et al. Glutathione-S-transferase M1, M3, P1 and T1 polymorphisms and severity of lung disease in children with cystic fibrosis. Pharmacogenetics. 2004 May;14(5):295-301.
- Jaber BL, Liangos O, Pereira BJ, Balakrishnan VS. Polymorphism of immunomodulatory cytokine genes: implications in acute renal failure. Blood Purif. 2004;22(1):101-11.
- Texereau J, Marullo S, Hubert D, Coste J, Dusser DJ, Dall'Ava-Santucci J, et al. Nitric oxide synthase 1 as a potential modifier gene of decline in lung function in patients with cystic fibrosis. Thorax. 2004 Feb;59(2):156-8.
- Wooldridge JL, Deutsch GH, Sontag MK, Osberg I, Chase DR, Silkoff PE, et al. NO pathway in CF and non-CF children. Pediatr Pulmonol. 2004 Apr;37(4):338-50.
- Zheng S, Xu W, Bose S, Banerjee AK, Haque SJ, Erzurum SC. Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L374-81.
- Brouard J, Knauer N, Boelle PY, Corvol H, Henrion-Caude A, Flamant C, et al. Influence of interleukin-10 on Aspergillus fumigatus infection in patients with cystic fibrosis. J Infect Dis. 2005 Jun 1;191(11):1988-91.
- Yarden J, Radojkovic D, De Boeck K, Macek M, Jr., Zemkova D, Vavrova V, et al. Association of tumour necrosis factor alpha variants with the CF pulmonary phenotype. Thorax. 2005 Apr;60(4):320-5.
- Steagall WK, Barrow BJ, Glasgow CG, Mendoza JW, Ehrmantraut M, Lin JP, et al. Beta-2-adrenergic receptor polymorphisms in cystic fibrosis. Pharmacogenet Genomics. 2007 Jun;17(6):425-30.
- Li X, Magenheimer BS, Xia S, Johnson T, Wallace DP, Calvet JP, et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med. 2008 Aug;14(8):863-8.
- Pirson Y. Does TNF-alpha enhance cystogenesis in ADPKD? Nephrol Dial Transplant. 2008 Dec;23(12):3773-5.
- Tesse R, Cardinale F, Santostasi T, Polizzi A, Mappa L, Manca A, et al. Association of interleukin-10 gene haplotypes with Pseudomonas aeruginosa airway colonization in cystic fibrosis. J Cyst Fibros. 2008 Jul;7(4):329-32.
- Brand P, Schulte M, Wencker M, Herpich CH, Klein G, Hanna K, et al. Lung deposition of inhaled alpha1-proteinase inhibitor in cystic fibrosis and alpha1-antitrypsin deficiency. Eur Respir J. 2009 Aug;34(2):354-60.
- Vuong MT, Lundberg S, Gunnarsson I, Wramner L, Seddighzadeh M, Hahn-Zoric M, et al. Genetic variation in the transforming growth factor-beta1 gene is associated with susceptibility to IgA nephropathy. Nephrol Dial Transplant. 2009 Oct;24(10):3061-7.
- Baylis C. Nitric oxide synthase derangements and hypertension in kidney disease. Curr Opin Nephrol Hypertens. 2012 Jan;21(1):1-6.
- Marson FA, Bertuzzo CS, Hortencio TD, Ribeiro JD, Bonadia LC, Ribeiro AF. The ACE gene D/I polymorphism as a modulator of severity of cystic fibrosis. BMC Pulm Med. 2012 Aug 8;12:41.
- Sinuani I, Beberashvili I, Averbukh Z, Sandbank J. Role of IL-10 in the progression of kidney disease. World J Transplant. 2013 Dec 24;3(4):91-8.
- Susantitaphong P, Perianayagam MC, Tighiouart H, Liangos O, Bonventre JV, Jaber BL. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron Clin Pract. 2013;123(1-2):67-73.
- Sanchez-Dominguez CN, Reyes-Lopez MA, Bustamante A, Cerda-Flores RM, Villalobos-Torres Mdel C, Gallardo-Blanco HL, et al. The tumor necrosis factor alpha (-308 A/G) polymorphism is associated with cystic fibrosis in Mexican patients. PLoS One. 2014;9(3):e90945.
- Zager RA, Johnson AC, Frostad KB. Rapid renal alpha-1 antitrypsin gene induction in experimental and clinical acute kidney injury. PLoS One. 2014;9(5):e98380.
- McElvaney NG. Alpha-1 Antitrypsin Therapy in Cystic Fibrosis and the Lung Disease Associated with Alpha-1 Antitrypsin Deficiency. Ann Am Thorac Soc. 2016 Apr;13 Suppl 2:S191-6.
- Nomani H, Hagh-Nazari L, Aidy A, Vaisi-Raygani A, Kiani A, Rahimi Z, et al. Association between GSTM1, GSTT1, and GSTP1 variants and the risk of end stage renal disease. Ren Fail. 2016 Oct;38(9):1455-61.
- Sarkar T, Singh NP, Kar P, Husain SA, Kapoor S, Pollipalli SK, et al. Does angiotensin-converting enzyme-1 (ACE-1) gene polymorphism lead to chronic kidney disease among hypertensive patients? Ren Fail. 2016 Jun;38(5):765-9.
- Vijftigschild LA, Berkers G, Dekkers JF, Zomer-van Ommen DD, Matthes E, Kruisselbrink E, et al. beta2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis. Eur Respir J. 2016 Sep;48(3):768-79.
- Guo WY, Zhu L, Meng SJ, Shi SF, Liu LJ, Lv JC, et al. Mannose-Binding Lectin Levels Could Predict Prognosis in IgA Nephropathy. J Am Soc Nephrol. 2017 Nov;28(11):3175-81.
- Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, et al. Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. J Am Soc Nephrol. 2018 Oct;29(10):2493-509.
- Medina AM, Zubero EE, Jimenez MAA, Barragan SAA, Garcia CAL, Ramos JJG, et al. NOS3 Polymorphisms and Chronic Kidney Disease. J Bras Nefrol. 2018 Jul-Sep;40(3):273-77.
- Arif E, Nihalani D. Beta2-adrenergic receptor in kidney biology: A current prospective. Nephrology (Carlton). 2019 May;24(5):497-503.
- Du S, Tian J, Xiao Z, Luo Z, Lin T, Zheng S, et al. Serum alpha 1-antitrypsin predicts severe acute kidney injury after cardiac surgery. J Thorac Dis. 2019 Dec;11(12):5053-62.
- Fernandez-Ruiz M, Gimenez E, Lora D, Aguado JM, Pascual M, Manuel O. Impact of MBL2 gene polymorphisms on the risk of infection in solid organ transplant recipients: A systematic review and meta-analysis. Am J Transplant. 2019 Apr;19(4):1072-85.
- Cai K, Ma Y, Wang J, Nie W, Guo J, Zhang M, et al. Mannose-binding lectin activation is associated with the progression of diabetic nephropathy in type 2 diabetes mellitus patients. Ann Transl Med. 2020 Nov;8(21):1399.
- Zhang Y, Dai Y, Raman A, Daniel E, Metcalf J, Reif G, et al. Overexpression of TGF-beta1 induces renal fibrosis and accelerates the decline in kidney function in polycystic kidney disease. Am J Physiol Renal Physiol. 2020 Dec 1;319(6):F1135-F48.
- Kamiar A, Yousefi K, Dunkley JC, Webster KA, Shehadeh LA. beta(2)-Adrenergic receptor agonism as a therapeutic strategy for kidney disease. Am J Physiol Regul Integr Comp Physiol. 2021 May 1;320(5):R575-R87.
- Mu H, Zheng Q, Hao L. IL-10 -1082 A/G polymorphism is related with the risk and clinical characteristics of acute kidney injury: a case-control study. BMC Nephrol. 2021 Jun 5;22(1):212.
- Santos GF, Ellis P, Farrugia D, Turner AM. Nephrotic syndrome secondary to alpha-1 antitrypsin deficiency. BMJ Case Rep. 2021 Mar 5;14(3).
- Tang PC, Chan AS, Zhang CB, Garcia Cordoba CA, Zhang YY, To KF, et al. TGF-beta1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne). 2021;8:628519.
- Baldassarri M, Zguro K, Tomati V, Pastorino C, Fava F, Croci S, et al. Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes. Cells. 2022 Dec 16;11(24).
- Levy RV, Reidy KJ, Le TH, David V, Winkler C, Xu Y, et al. Association of GSTM1 Deletion With Progression of CKD in Children: Findings From the Chronic Kidney Disease in Children (CKiD) Study. Am J Kidney Dis. 2022 Jul;80(1):79-86.
- Padhi UN, Mulkalwar M, Saikrishna L, Verma HK, Bhaskar L. NOS3 gene intron 4 a/b polymorphism is associated with ESRD in autosomal dominant polycystic kidney disease patients. J Bras Nefrol. 2022 Apr-Jun;44(2):224-31.
- Trojan T, Alejandre Alcazar MA, Fink G, Thomassen JC, Maessenhausen MV, Rietschel E, et al. The effect of TGF-beta(1) polymorphisms on pulmonary disease progression in patients with cystic fibrosis. BMC Pulm Med. 2022 May 7;22(1):183.
- Barratt J, Lafayette RA, Zhang H, Tesar V, Rovin BH, Tumlin JA, et al. IgA nephropathy: the lectin pathway and implications for targeted therapy. Kidney Int. 2023 Aug;104(2):254-64.
- Bezzerri V, Gentili V, Api M, Finotti A, Papi C, Tamanini A, et al. SARS-CoV-2 viral entry and replication is impaired in Cystic Fibrosis airways due to ACE2 downregulation. Nat Commun. 2023 Jan 10;14(1):132.
- Lutful Kabir F, Ambalavanan N, Liu G, Li P, Solomon GM, Lal CV, et al. MicroRNA-145 Antagonism Reverses TGF-beta Inhibition of F508del CFTR Correction in Airway Epithelia. Am J Respir Crit Care Med. 2018 Mar 1;197(5):632-43.
- Sun H, Harris WT, Kortyka S, Kotha K, Ostmann AJ, Rezayat A, et al. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia. PloS one. 2014;9(9):e106842.
- Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F, et al. ACE Inhibitor Benefit to Kidney and Cardiovascular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3-5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs. 2020 Jun;80(8):797-811.
- Baylis, C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol. 2008 Jan;294(1):F1-9.
- Phua YL, Chen KH, Hemker SL, Marrone AK, Bodnar AJ, Liu X, et al. Loss of miR-17~92 results in dysregulation of Cftr in nephron progenitors. Am J Physiol Renal Physiol. 2019 May 1;316(5):F993-F1005.
- van Heeckeren AM, Schluchter MD, Drumm ML, Davis PB. Role of Cftr genotype in the response to chronic Pseudomonas aeruginosa lung infection in mice. American journal of physiology Lung cellular and molecular physiology. 2004 Nov;287(5):L944-52.
- Hodges CA, Grady BR, Mishra K, Cotton CU, Drumm ML. Cystic fibrosis growth retardation is not correlated with loss of Cftr in the intestinal epithelium. American journal of physiology Gastrointestinal and liver physiology. 2011 Sep;301(3):G528-36.
- McHugh DR, Steele MS, Valerio DM, Miron A, Mann RJ, LePage DF, et al. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PloS one. 2018;13(6):e0199573.
- Sun X, Yi Y, Yan Z, Rosen BH, Liang B, Winter MC, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med. 2019 Mar 27;11(485).
- Birket SE, Davis JM, Fernandez-Petty CM, Henderson AG, Oden AM, Tang L, et al. Ivacaftor Reverses Airway Mucus Abnormalities in a Rat Model Harboring a Humanized G551D-CFTR. Am J Respir Crit Care Med. 2020 Nov 1;202(9):1271-82.
- Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM, Chu KK, et al. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight. 2018 Jan 11;3(1).
- Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest. 2010 Sep;120(9):3149-60.
- Delrue C, De Bruyne S, Speeckaert MM. Application of Machine Learning in Chronic Kidney Disease: Current Status and Future Prospects. Biomedicines. 2024;12(3):568.
| eGFR Formula | Population | Age Group | Characteristics |
|---|---|---|---|
| CKiD U25 eGFR | CKiD | 1-25 years | Age, sex, height, serum creatinine, and serum Cystatin C [35,36] |
| CKD-EPI 2021 (Creatinine) | General adult population | ≥ 18 years | Age, sex, and serum creatinine [36] |
| MDRD Study | CKD | ≥ 18 years | Age, sex, race, and serum creatinine [32] |
| Schwartz Formula | Pediatric population (general) | 1-18 years | Height and serum creatinine [33] |
| CKD-EPI 2012 (Creatinine-Cystatin C) | General adult population | ≥ 18 years | Age, sex, race, serum creatinine, and serum Cystatin C [34] |
| Kidney complication | Laboratory/Imaging test for detection |
|---|---|
| AKI | Serum creatinine, BUN, urinalysis, urine microscopy, FeNa, FeUrea, and urine output monitoring [54] |
| Pseudo-Bartter syndrome | Serum electrolytes, venous blood gas, and urine electrolytes [51] |
| AA amyloidosis | Serum amyloid A, kidney biopsy, and SAP scintigraphy [50,59] |
| IgA nephropathy | Urinalysis, urine microscopy, UPCR, and kidney biopsy [52] |
| Diabetic glomerulopathy | Urinalysis, UACR, eGFR, and kidney biopsy [48] |
| Tubulointerstitial nephritis | Urinalysis, kidney ultrasound, and kidney biopsy [49,55] |
| CKD | eGFR, UACR, UPCR, and urinalysis [56] |
| LMW proteinuria (non-glomerular) | Urine β2MG, and UPEP [58] |
|
Hypercalciuria/ nephrolithiasis/ nephrocalcinosis |
UCaCR, 24-hour urinary analysis calcium excretion, urine microscopy, serum 25-hydroxyvitamin D, and kidney ultrasound [53,57,60] |
| Biomarker/Test | Type | Early Stage (Subclinical Injury) | Intermediate Stage (Functional Decline) | Late Stage (Established CKD) |
|---|---|---|---|---|
| Serum creatinine [72,74] | Functional decline | Normal | Starts increasing | High in late-stage CKD |
| BUN [82,85] | Functional decline | Normal | Increases moderately | High in severe CKD |
| Cystatin C [70,84] | Functional decline | Normal or slightly elevated | Moderately increased | High in severe CKD |
| eGFR [76] | Functional decline | Normal or even high | Progressive decline | Severely reduced in CKD |
| Proteinuria [75] | Glomerular dysfunction | Slight increase | Increases significantly | Severe elevation in CKD |
| KIM-1 [83] | Tubular injury marker | Early rise | Decreases with chronicity | Low but persists in CKD |
| β2MG [80,81] | Glomerular dysfunction | Normal or slightly elevated | Moderately increased | High in severe CKD |
| NGAL [71] | Tubular injury marker | Early and rapid increase | Fluctuates with injury | Persistent in progressive CKD |
| IL-18 [73,78] | Inflammatory marker | Early marker of tubular damage | Moderate increase | Can persist in CKD |
| TNFα [77,79] | Inflammatory marker | Low or normal | Elevated due to chronic inflammation | Persistently high in late CKD |
| Modifier | Role in PwCF | Role in CKD |
|---|---|---|
| TGFβ1 | The most established genetic modifier in CF. Several TGFβ1 polymorphisms[111–166 are associated with CF progression and P. aeruginosa infection [164]. | Drives HNF1β-induced ADTKD [150]. Susceptibility to IgAN [138], polycystic kidney diseases [156], and CKD [160]. |
| ACE | The D/I polymorphism is associated with disease severity [140]. Expression and localization are controlled by CFTR [161,166]. | DD genotype is a risk factor for CKD [147]. ID/DD genotypes are associated with chronic lesions, such as capsular adhesions or glomerulosclerosis and proteinuria in severe In severe IgAN [115]. |
| MBL2 | Decreased survival and increased susceptibility to infections to P. aeruginosa and worse lung functions [117,154]. The pathogenic variants are Gly54Asp (the B allele, rs1800450), Gly57Glu (the C allele, rs1800451), and Arg52Cys (the D allele, rs5030737), which together referred to as 0 allele [143]. | Glomerular deposition of MBL has been consistently observed in kidney biopsy specimens in people with IgAN [149,165]. High serum levels are also associated with the development and progression of diabetic nephropathy [155]. |
| AAT | The most abundant proteinase inhibitor in the lung with anti-inflammatory effects. Genetic modifier protecting against disease progression [119,123,137,145]. M (normal), S (264Glu→Val) and Z (342Glu→Lys) [114]. Contradictory results for the effect of S and Z alleles [112,114,119,122]. | Rapid rise of serum levels predicts AKI in experimental and clinical settings [144,153]. S and Z alleles were associated with high levels of the antigen of ANCA in Granulomatosis with polyangiitis [111]. In CKD, AAT has a protective effect [159]. |
| β2AR | Stimulation results in improved lung function [120]. The Gly16Glu27 genetic variant upregulates CFTR activity [133,148]. | Expressed in proximal tubules, glomeruli, and podocytes [152]. Anti-inflammatory [157]. |
| TNFα | (-308 GA, rs1800629) polymorphism is associated with CF [143]. +691g ins/del polymorphic locus is associated with the severity of lung disease and. aeruginosa infection [132]. TNFα -308GA promoter polymorphism (rs1800629) that were associated with high TNFα transcription, CF and AKI severity [116,127,142]. | High levels disrupt the localization of PC2 to the plasma membrane and primary cilia in ADPKD [134,135]. |
| IL-10 | Anti-inflammatory cytokine present at low levels in PwCF. The haplotype GCC/ACC is significantly associated with P. aeruginosa infection and CF severity [136]. A significant association was found between the −1082GG genotype and colonization with A. fumigatus and allergic bronchopulmonary aspergillosis [131]. | Important role in normal physiology, AKI and CKD progression [141]. Polymorphisms are associated with AKI [127]. L-10 -1082 A/G polymorphism was associated with an increased risk of AKI [158] and primary glomerulonephritis [125]. |
| NOS | Low levels of exhaled NO [129,130]. NOS1 and NOS2 polymorphisms are associated with disease severity and inflammation [118,121]. G847T polymorphism in the NOS3 gene, is associated with high NO production had a slower decline in lung function [124,128]. | Levels are reduced in CKD. NOS inhibition causes systemic and glomerular hypertension, glomerular ischemia, glomerulosclerosis, tubulointerstitial injury, and proteinuria [139]. Presence of the two NOS3 gene polymorphisms, Glu298Asp polymorphisms 4 b/a and -786T>C is a risk of ESKD in patients with CKD and ADPKD [151,163]. |
| GST | M1 (GSTM1) allele associated with worse lung disease [113]. GSTM3*B allele contributes to clinical severity in CF [126]. | GSTM1, GSTT1, and GSTP1 polymorphisms are risk of ESKD [146]. GSTM1 deletion associated with more rapid progression of pediatric CKD [162]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
